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Abstract: The paper addresses the problem of stretch wide short-term prediction of traffic stream state. The problem is 
a multivariate problem where the responses are the speeds or flows on different road segments at different 
time horizons. Recognizing that short-term traffic state prediction is a multivariate problem, there is a need to 
maintain the spatiotemporal traffic state correlations. Two cutting-edge machine learning algorithms are used 
to predict the stretch-wide traffic stream traffic state up to 120 minutes in the future. Furthermore, the divide 
and conquer approach was used to divide the large prediction problem into a set of smaller overlapping 
problems. These smaller problems are solved using a medium configuration PC in a reasonable time (less 
than a minute), which makes the proposed technique suitable for practical applications.  

1 INTRODUCTION 

Nowadays, due to the technology advances, the 
intelligent transportation systems (ITS) are widely 
deployed in many countries to manage the 
transportation resources and solve traffic problems. 
Advanced traffic management systems (ATMS) and 
advanced traveller information systems (ATIS) are 
two ITS’s components that are mainly involved in 
relaxing traffic congestion and decreasing travel time. 
The ATMS collect real-time traffic data using 
different sensing devices such as cameras and speed 
sensors. These collected data are fed to the Traffic 
Management Center (TMC) where it is fused together 
and get ready for downstream analysis and prediction. 
Based on the outcome of the analysis, actions can be 
taken (e.g. traffic routing, DMS messages) to avoid 
congestion and decrease travel time. 

Data-driven modelling is considered a good 
approach to model complex traffic characteristics 
when applying mathematical models that are based on 
macroscopic and microscopic theories of traffic flow 
is difficult. Data-driven short-term prediction of the 
traffic characteristics such as flow, density and speed 
has been a very important tool in ITS. The short-term 
prediction is not a straightforward task because of the 
unstable traffic conditions and complex road settings 
(Vlahogianni et al., 2014). 

During the last decades, the traffic characteristics 
prediction has been studied and many prediction 
approaches have been developed. The developed 
prediction approaches are classified into three broad 
categories; parametric models, nonparametric 
models, and simulations.  

Time-series techniques is a parametric model that 
is used widely in traffic flow prediction. The 
autoregressive integrated moving average (ARIMA) 
model was used very early to predict short-term 
freeway traffic flow (Ahmed and Cook, 1979). After 
that, different advanced versions of ARIMA were 
used to develop more accurate prediction models. 
Voort et al. integrated the Kohonen self-organizing 
map and ARIMA into a new method called 
KARIMA(Van Der Voort et al., 1996). KARIMA 
uses a Kohonen self-organizing map to cluster the 
data and then model each cluster using ARIMA. Lee 
et al. used subset ARIMA model for the one-step-
ahead forecasting task which gave more stable and 
accurate results than the full ARIMA model (Lee and 
Fambro, 1999).  

Due to both the highly nonlinear nature of traffic 
characteristics and availability of data, nonparametric 
methods attracted the researchers’ attention.  In the 
traffic flow prediction area, there are many versions 
of K-NN algorithm that showed a good prediction 
accuracy. Davis and Nihan argue that K-NN can 
capture linear and nonlinear relationships therefore it 
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is able to model the nonlinear transition between free-
flow and congested traffic(Davis and Nihan, 1991). 

However, the results of their empirical study 
showed that K-NN is not better than a simple 
univariate time-series forecasts.  Sun et al. considered 
the traffic prediction model as a non-linear system 
which has historical and current traffic characteristics 
as inputs and its output is the future traffic 
characteristics(Sun et al., 2003). Therefore, they used 
the local linear regression model to approximate the 
nonlinear relationship between system inputs and 
outputs and to predict future traffic characteristics. 
Young-Seon et al. proposed a short-term traffic flow 
predictions algorithm that combines the online-based 
SVR with weighted learning method for short-term 
traffic flow predictions (Young-Seon et al., 2013). 
ANN is considered one of the best tools to model 
highly non-linear relationship between inputs and 
outputs so that there are many papers that adopted 
many ANN models for predicting traffic flow such as 
the Bayesian neural network (Zheng et al., 2006) and 
radial basis function neural network(Park et al., 
1998). Interested readers are recommended to read 
(Vlahogianni et al., 2014) for a good review of the 
proposed techniques and challenges of short-term 
prediction. 

2 PROBLEM STATEMENT  

In this Paper, we are interested in the short-term 
prediction of stretch-wide speed/flow. The evolution of 
traffic state is a complex spatiotemporal process. In 
order to define our prediction problem, we first define 
the spatiotemporal state matrix , where  is the 
number of the stretch’s segments and  is the day’s 
time intervals. The traffic state prediction problem can 
be stated as follows. Let  be the observed elements 
of the spatiotemporal traffic state matrix at the time 
interval = 1,2, … ,  and segment = 1,2, … , ℎ of 
the studied road stretch. Our goal is to predict the 
spatiotemporal traffic state submatrix that spans the 
time interval [ + 1, + ∆] for some prediction 
horizon	∆, given the spatiotemporal observed traffic 
state submatrix that ends at time	 , the forecasted 
weather condition, and the visibility level. 

The problem state above has the general solution 
form shown in equation (1); ∆ = , , Θ + ∆ (1)

Where 
 The chosen model ∆ The response at some prediction horizon ∆ 

 The inputs predictors which includes the 
observed elements of the spatiotemporal 
traffic state submatrix at the time interval 

 Θ Estimated model parameters ∆ Errors (unexplained variability) because 
of absence of the factors that we cannot 
observe  

 
Figure 1: Prediction Model. Illustration of problem where 
model is needed to predict the traffic state evolution in time 
(x-axis) and space (y-axis). 

2.1 Why Machine Learning is the 
Suitable Framework  

Machine learning techniques are suitable models for 
this problem for three reasons. First is the stochastic 
nature of the input-output data where it is possible to 
find two different responses for the same input. In 
other words, the response corresponding to any input 
predictors is a distribution rather than a single point 
in the response space. Second, the problem is 
multivariate and the relationships between variables 
are nonlinear. Third, there is no closed mathematical 
form (model) that can be used to explain the 
relationship between the input predictors and the 
response. 

3 METHODS 

3.1 Partial Least Squares Regression 
(PLSR) 

Multiple linear regression (MLR) is generally a good 
tool for modelling the relationship between predictors 
and responses. In many scientific problems, the 
relationship between the predictors and responses are 
poorly understood, and the main goal is to construct a 
good predictive model using a large number of 
predictors. MLR is effective when the number of 
predictors is small, there is no significant 
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multicollinearity, and there is a well-understood 
relation between predictors and responses (Abdi). 
However, if the number of predictors gets too large, 
an MLR model will over-fit the sampled data 
perfectly but fail to predict new data well. 
Accordingly, in this case, MLR is not a suitable tool.  

PLSR is a recently developed technique that 
generalizes and combines features from principal 
component analysis and MLR. It is used to predict Y 
from X and to describe their common structure. PLSR 
assumes that there are only a few latent factors that 
account for most of the variation in the response. The 
general idea of PLSR is to try to extract those latent 
factors, accounting for as much of the predictors’ X 
variation as possible, and at the same time to model 
the responses well.  

3.2 Artificial Neural Networks (ANN)  

In machine learning, artificial neural networks (ANN) 
are used to estimate or approximate unknown linear 
and non-linear functions that depend on a large 
number of inputs. Artificial neural networks can 
compute values or return labels using inputs. 

An ANN consists of several processing units, 
called neurons, which are arranged in layers. We used 
the multi-layered feed-forward ANN, in which the 
neurons are connected by directed connections, which 
allow information to flow directionally from the input 
layer to the output layer. A neuron k at layer  
receives an input x  from each neuron j at layer m−1. The neuron adds the weighted sum of its inputs to 
a bias term. The whole thing is then applied to a 
transfer function and the result is passed to its output 
toward the downstream layer.  

3.3 Principal Component Analysis 
(PCA)  

The stretch-wide prediction problem is a multivariate 
problem that may involve a considerable number of 
correlated predictors. PCA is a popular technique for 
dimensionality reduction that linearly transforms 
possibly correlated variables into uncorrelated 
variables called principal components. 

PCA is usually used to reduce the number of 
predictors involved in the downstream analysis; 
however, the smaller set of transformed predictors 
still contains most of the information (variance) in the 
large set. The principal components are the 
Eigenvectors of the dataset covariance matrix. The 
first principal component is the normalized 
Eigenvector, which is associated with the highest 
Eigenvalue. The first principal component represents 

the direction in the space that has the most variability 
in the data, and each succeeding component accounts 
for as much of the remaining variability as possible.  

4 MODEL CALIBRATION  

4.1 Divide and Conquer Approach 

The big challenges to stretch-wide traffic state short-
term prediction are the large dimension of the 
predictors and responses vectors and the huge number 
of parameters required for estimation. Once the road 
stretch grew to a certain point, most of the machine-
learning algorithms we usually used either required 
too much time for training or suffered from memory 
problems. To handle these issues, a divide and 
conquer approach model was adopted in this study. 

A divide and conquer paradigm suggests that if 
the problem cannot be solved as is, it should be 
decomposed it into smaller parts, and these smaller 
parts then solved. A divide and conquer algorithm 
breaks down a problem into two or more smaller 
problems of the same type. The final solution to the 
larger, more difficult problem is the combination of 
the smaller problems’ solutions. Divide and conquer 
is applied in a straightforward manner to our 
prediction problem by dividing the inputs predictors 
of the spatiotemporal speed or flow matrix into 
smaller overlapping windows and then doing the 
same with the responses. The overlap of the windows 
is important if we need to get smooth predicted 
responses. Because of this overlap between windows, 
each segment has two predicted speeds/flows at the 
testing phase, and the final predicted speed/flow for 
overlapped segments is the average. 

4.2 Training and Testing Phase  

Typically, in machine learning, the model calibration 
process consists of a training phase and a testing 
phase. In the training phase, the model parameters are 
estimated using the training dataset. In the testing 
phase, the constructed models’ accuracy is tested 
using an unseen dataset called the testing dataset. 

The training phase in our approach includes the 
following steps: 

1. Partitioning (dividing) the whole stretch into 
small windows, which each have a small 
number of segments. 

2. Preparing the  and  matrices for each 
window by reshaping the traffic state, weather, 
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and visibility inside the windows, which have 
widths of ℎ and  respectively.  

3. Shifting the window to the right and repeating 
step 2 to get another raw  and .  

4. Applying the machine learning algorithm to the 
,  matrices to get the model parameter such as 
the Coefficient matrix  in the case of PLSR.  

The testing phase is always simpler and does not 
need large time. For example, it includes multiplying 
the testing data by the matrix of the PLSR coefficient 
or passing the testing data through the neural network 
after reducing it using the same principal components. 
The last step in testing is collecting the predicted pieces 
together to get the prediction for the whole stretch. 

5 EXPERIMENTAL ANALYSIS 

5.1 Study Site  

Traffic speed and flow from loop detectors are used 
to develop the proposed prediction models. 
Specifically, the study included 2013~2014 data 
along US-75 northbound as shown in Figure 2. This 
road segment includes 42 loop detectors along 23.3 
miles. In order to reduce the stochastic noise and 
measurement error, raw speed data were aggregated 
by 5-minute intervals and 15-minutes interval. 
Therefore, the traffic speed and flow matrices over 
spatial (upstream to downstream) and temporal 
domains could be obtained for each day.  

 
Figure 2: Layout of the Selected Freeway Stretch on US-
75. (Source: Google Maps). 

5.2 Evaluation Criteria  

The mean absolute percentage error (MAPE) and the 
mean absolute error (MAE) were calculated for the 
different proposed algorithms 

MAPE = ∑ ∑ 	
  (2)

 MAE = ∑ ∑ y −	y   (3)

Where  
J = total number of observations in the testing data 
set,  
I = total number of elements in each observation,  
y = ground truth traffic state, and y = predicted traffic state.  

5.3 Investigating the Effect of Window 
Size on Prediction Errors 

Our method for solving the wide stretch prediction 
problem is based on a divide and conquer approach, 
which requires fine-tuning the window size . In 
this section, we perform a sensitivity analysis of the 

 parameter in the divide and conquer approach. We 
compare the performance of the PLSR and 
PCA+ANN for different  values. 

The ANN is a suitable technique for the stretch-
wide prediction and its performance is close to 
PLSR’s performance as will be shown; however, its 
training time is significantly larger compared to 
PLSR. In this section, to overcome the training time 
problem, we adopted the PCA as the dimension 
reduction technique. PCA is used to transform the 
training predictors’ matrix and use the subspace 
consisting of the principal components with the most 
variance. In this paper we use the PCA to reduce the 
dimension of input data to 50% of its original size. 
Using PCA would also fix the multicollinearity 
problem if it existed. Moreover, we used the 15-
minutes aggregated data with the PCA+ANN where 
using 5-minutes aggregated with this approach is very 
time-consuming and therefore impractical. The 
neural network used in this experiment has only one 
hidden layer which has 9 neurons. The activation 
function of the hidden neurons is Tanh and the 
activation function of the output layer is linear. In this 
experiment set we used the 5-minutes aggregated data 
when finding the best window size when using PLSR 
algorithm to build the prediction model. The 
experimental results show that as we increase the 
window size, the errors are reduced. Moreover, the 
divide and conquer approach using w=32 is the best 
approach, and is slightly better than the model that 
does not use divide and conquer.  

We investigate the effect of the window size using 
ANN+PCA and as shown in Table 1, as we increase 
the window size, the errors are almost the same at 
small   prediction   horizon   and   are   increased    at 
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Table 1: The mean of MAPE (%) of the Us-75 flow dataset (15-minute aggregated) using ANN+PCA at different window 
size. 

Prediction 
horizon (minutes) window size 2 window size 4 window size 8 window size 16 window size 32 

15 
30 
45 
60 
75 
90 

105 
120 

11.0840 
12.5249 
12.0642 
12.6834 
13.2808 
13.8105 
13.7811 
13.9212 

11.3875 
11.6274 
12.4716 
12.6261 
13.0412 
13.3066 
13.5860 
13.9483 

10.8014 
11.8170 
12.3469 
12.7570 
13.2466 
13.5227 
13.7143 
14.0594 

10.9167 
11.6387 
12.6305 
13.4120 
13.6641 
14.0085 
14.3569 
14.5721 

10.6331 
11.7886 
12.5065 
12.7703 
13.7153 
14.5708 
14.2725 
14.8917 

 
prediction horizon greater than or equal 90 minutes. 
So that we set up the window size equals to four when 
using ANN+PCA. In order to explain why the errors 
increases as the window size increase recall that large 
window means large neural network and large 
number of free parameters (coefficients and biases). 
Network with large number of parameters is more 
prone to overfitting so that network validation process 
stops the network training when there is no 
improvement in the neural network cost function 
during validation phase. One solution to overcome 
this problem is increasing the training dataset witch is 
not feasible in our case. 

5.4 Error Reduction by Result 
Averaging 

The results in the previous section show that the best 
window size for PLSR is 32; however, the MAE and 
MAPE are still large. For example, the MAPE for two 
hours of prediction is 23.34% .We visually inspected 
the speed and flow patterns of the five minutes 
aggregated data and observed two types of variations. 
The first variation has a low frequency that describes 
the differences in flow or speed at free flow and 
congestion conditions, which are exactly the types of 
conditions we need to predict. The second variation 
has a high frequency and can be removed by filtering 
(smoothing) the speed or flow signal. We tried two 
approaches to improving prediction. The first 
approach involves smoothing the data itself by using 
15-minutes aggregated data instead of 5 to train and 
test the proposed PLSR. The second approach 
involved using the five minutes aggregated data to 
build the PLSR models and then smoothing the 
prediction result. In other words, we averaged the 
predicted result to get 15-minutes of aggregated 
prediction. Due to the limited space in this paper, in 
the following subsection, we will present only two 
figures showing the experimental results.  

 
Figure 3: Comparison between the MAE (Vehicle per hour) 
of the Us-75 flow dataset. 

 
Figure 4: Graph Comparison between the MAE (MPH) of 
the Us-75 speed dataset. 

The figures above show that smoothing the data 
by reducing its resolution to 15 minutes results in a 
lower MAE and MAPE rate compared to the 5 
minutes aggregated data. This reduction in the errors 
is very good for the ANN+PCA case but not as good 
for the PLSR case. In the case of the second approach, 
which trains and the tests the PLSR models using five 
minutes aggregated data and then smooths the 
prediction results, the reductions in MAE and MAPE 
are good. .In conclusion, ANN+PCA gives a better 
result than PLSR when the training data is 15 minutes 
aggregated. If the data is 5 minutes aggregated, then 
using PLSR to build the models and smoothing the 
prediction result is recommended.  
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6 CONCLUSIONS AND FUTURE 
WORK 

In this paper, two machine-learning techniques were 
used to predict the spatiotemporal evolution of traffic 
stream states. A divide and conquer approach was 
proposed to overcome the CPU computational and 
memory loads that occur for a large road stretch and 
large prediction horizons. The two techniques were 
compared by building prediction models for a 23.3-
mile stretch of US-75. The models were compared 
using the MAE and the MAPE statistics. In order to 
reduce the training time needed for ANNs, PCA was 
used to reduce the problem dimensionality using 50% 
of the principle components to cover almost all the 
variance in the data.  

A sensitivity analysis was conducted to identify 
the optimum window size in the divide and conquer 
technique using the PLSR & ANN+PCA approaches. 
The experimental results showed the best window 
size to be 32 segments for PLSR; and 4 segments for 
the ANN+PCA because it reduces the ANN 
overfitting problem. Data aggregated at 5-minute and 
15-minute intervals were used and the experimental 
results show that the ANN+PCA performed better 
than the PLSR approach when the 15-minute data the 
PLSR performed better. In the case of 5-minute 
aggregated data training, the ANN approach was 
found to be time consuming, rendering it impractical. 

We should mention that the models proposed in 
this paper do not consider the response of travellers if 
the agencies operating the network disseminate 
predicted traffic information were sent to them. One 
area for future work is studying the interaction of the 
informed traveller and including the travellers’ 
response as an input factor to the prediction models. 
Another area for future work is network-wide traffic 
prediction, for which models to predict the traffic on 
different roadway segments in a network. For the 
network-wide prediction, we can make use of newly 
available technologies along with new big data 
techniques to integrate travel behaviour and enhance 
traffic predictions. Moreover, the traffic patterns 
inside cities are dynamic and change over time, so 
online learning algorithms that continue to learn from 
each test (unseen example) in order to capture the 
dynamics of the traffic patterns are also needed. 
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