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Abstract: Decomposition methods aim to split a problem into a collection a collection of smaller interconnected sub-
problems. Several research works have explored decomposition methods for solving large optimization prob-
lems. Due to its theroretical properties, Tree decomposition has been especially the subject of numerous
successfull studies in the context of exact optimization solvers. More recently, Tree decomposition has been
successfully used to guide the Variable Neighbor Search (VNS) local search method. Our present contribution
follows this last direction and proposes two approaches called BSOGD1 and BSOGD?2 for guiding the Bees
Swarm Optimization (BSO) metaheuristic by using a decomposition method. More pragmatically, this paper
deals with the MAX-SAT problem and uses the Kmeans algorithm as a decomposition method. Several ex-
perimental results conducted on DIMACS benchmarks and some other hard SAT instances lead to promising
results in terms of the quality of the solutions. Moreover, these experiments highlight a good stability of the
two approaches, more especially, when dealing with hard instances like the Parity8 family from DIMACS.
Beyond these first promising results, note that this approach can be easily applied to many other optimization
problems such as the Weighted MAX-SAT, the MAX-CSP or the coloring problem and can be used with other
decomposition methods as well as other metaheuristics.

1 INTRODUCTION stantiation of variables ilv that satisfies a maximal
number of clauses. As with many NP-complete prob-

The NP-Complete satisfiability problem (SAT) is of €ms, existing algorithms dedicated to SAT are either
central importance in computation theory. SAT for- Complete or incomplete. A complete algorithm aims
malism is used to model many academic or real prob- {0 Solve the problem while an incomplete algorithm
lems like coloring problem, decision support and @ims only to find satisfying instantiations. The most
automated reasoning. Formally, SAT is defined as Effective complete algorithms are based on the DPLL
follows: given a set ofn boolean variableyy —  Procedure (Davis et al., 1960). They mainly differ
{V1,V2, ...,Va}, @ Conjunctive Normal Form (CNF) is by the heuristics used for the branching rule (Dubois
a conjunction of clauses, each clause being a disjunc-€t al-. 1996)5. MAX-SAT is a generalization of SAT.
tion of literals, while a literal is a variabig from V Butwhile SAT is a decision problem, MAX-SAT is its
or its negation, noteehv;. A clause is satisfied when ~ OPfimization version. Of course, finding the optimal
at least one of its literals is set to true. A CNF is Solution for a NP-Complete optimization problems is

satisfied if an assignment of some variableVigat- (00 time expensive because of the exponential time
isfies all the clauses. The SAT problem asks for an as- Complexity.
signment of some variables ihthat satisfies a CNF To deal with this problem, many incomplete meth-

F. The problem is said SAT if such an assignment ods are proposed for solving MAX-SAT problems.
exists and UNSAT otherwise. This paper addressesGSAT (Li, 1997) is a randomized local search. It
the NP-Hard MAX-SAT problem, a generalization of starts drawing randomly a valuation for the variables
SAT. Given a CNF formulé&, the objective of MAX- and then makes a certain number of flips on variables
SAT is to satisfy as many clauses Bfas possible.  that reduce the number of unsatisfiable clauses. This
A solution of a MAX-SAT instance is a complete in- process is repeated until getting the optimal solution
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or reaching a limit on the number of attempts. Walk- perimental results of our proposition are reported in
sat (Selman et al., 1994) is an extended version of section 4. Finally, section 5 concludes the present pa-
GSAT. A noise represented by a probabilistic instruc- per by some remarks and perspectives.
tion, is introduced in the procedure to achieve the
random walk move. A variable drawn randomly is
considered with a probabilitp and with (1— p) the 2 TH E BSO'M AXSAT
variable that yields to the maximum satisfied clauses
is selected. Then it improves the obtained solution ALGORITHM
by a local search method. In (Drias et al., 2005), a
Bees Swarm Optimization metaheuristic (BSO) has In (Drias et al., 2005), a Bees Swarm Optimization al-
been proposed for solving Weighted Maximum Sat- gorithm for solving the Weighted MAX-SAT problem
isfiability Problem. Currently, a trend for improv- was proposed. MAX-SAT is a particular Weighted
ing incomplete algorithms, consists in combining MAX-SAT problem in which the weight associated
wisely the best properties from different approaches. with each clause is 1. The main principle of this ap-
In (Lardeau et al., 2006), a new hybrid algorithm proach called BSO-MAXSAT is formally resumed by
(called GASAT) embedded a tabu search procedurealgorithm 1.
into the evolutionary framework. The GASAT perfor-
mance comes from its original and highly specialized Algorithm 1. BSO-MAXSAT algorithm.
crossover operators, a powerful tabu search method Input: A MAX-SAT instanceP
and the interaction between these two methods. To Begin
enhance the performance of MAX-SAT solvers and | . . .
) , . 1: Sref« Initial_Solution
in order to deal with hard and large instances, some _ = °

. 2: while non stopdo
solving approaches propose to explore the structural buli f
properties of the problem. 3 T_a duL|st<—hSre_ fK

This paper follows this line of research and its FindSearchRegion (Sretk Sa, S, -, SR
main purpose is to improve the BSO metaheuristic forLian]hsggrecﬂo( Sui, BestSa)
by decomposing the problem before solving it. Ti 'B Q

X . TableDance— BestSaql

decompose a problem several clustering techniques

© N>R

: . end for
ca}n.be found in the Ilteratu_re. In thg context of data . Sref« BestSolution(TableDance)
mining, unsupervised learning algorithms correspond .
10: end while
to the most popular class. In general, the cluster- =t
n

ing consists in grouping together or putting in the
same cluster homogeneous data. In this paper, the

Kmeans algorithm was selected for the decomposi-  First, the initial beeBeelnit creates the solu-
tion step. Based on structural knowledges coming tion reference name&ref and saves it in a Tabu
from Kmeans, this paper proposes two extended BSOlist. From this solutiorSref a set ofk regionsR =
algorithms guided by decomposition nanR80GO {SR1,Sr2, - .-, Rk} is determined thanks to the proce-
andBSOGD. In BSOGO each bee of the colony dureFindSearchRegion. After that, each beég; is
considers as its region only a part of the problem that assigned to a regio&g; in order to explore it using
coincides with a particular cluster. The bee returns the local search proceduredcalSearch). Finally,

a partial modification of the “reference solution” be- the communication between bees is performed via the
cause it can access to variables in only one cluster. ATableDance, in order to elect the best solution that
bee inBSOGL2 can access to all the clusters and has will be the solution reference for the next iteration.

consequently a more important knowledge about the | o Eyaluation of the Solution: A solutions of
structural properties of the instance to be solved. To 555 MAXSAT is an instantiation of variables

yalu;ate tBe propos_eg appgml:ggss’ exgerlmenﬁal ZtUd' where theith element is set to 0 if the variable
les have been carried out and some har is assigned tdalseand set to 1 if the variable is

Uniform—Random- 3 — SATinstances, the first re- assigned tdrue. The evaluation o is based on

sults reveal that the our approaches outperform the the number of clauses satisfied 8y

state of the art MAX-SAT approaches.
The reminder of this paper is organized as fol- ® Determination of Regions: The aim of procedure

lows. Section 2 presents the BSO-MAXSAT algo- FindSearchRegion is to divide the space of solu-

rithm. Section 3 concerns our main contributionsand  tions intok disjoint regions. Given the solution

mainly presents the two proposed algorithms. Theex- ~ referenceSref a parameteFlip is introduced in
order to ensure the diversification step. Thkn,
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disjoint solutions are generated where tHeso- Kmeans procedure on clauses clustering, we propose
lution is obtained by changing successfully from a new similarity and center of gravity computation for
Srefthe bits: {(1 x Flip) +i,(2x Flip) +1i, (3 x clauses.

Flip)+i,..n—i}.

e Local Search Process: The aim of procedurko-
calSearch is to explore a region by identifying in
each step the neighbors of a given solution. Given
the solutions, this operation ensures the intensifi-
cation by changing only one bit sfat a time.

3.1.1 Similarity Between Clauses

The similarity between two clauses represents the
degree of consistency between them. On the con-
trary their dissimilarity denotes the inconsistency be-
tween them. Intuitively they are similar when they
This algorithm was tested on the well knoBMC share a lot of variables and they are dissimilar if they
instancel The obtained results were very promis- are different. Let us propose as a similarity mea-
ing by finding the optimal solution in most of the sure denote®ist_clausedetween two clauses and
cases. However, the performance of BSO-MAXSAT c;, the following formula:Dist_clause$cs,c;) = n—
decreases when dealing with large instances and harchcv(cy, c2) wherencv(cy, cp) is the number of com-
ones. To cope with this problem, two approaches are mon variables between; andc;.
proposed in the next section to guide BSO-MAXSAT This distance is a valid metric because it meets the fol-
by exploring some structural knowledge coming from lowing mathematical properties of a metric distance
a decomposition. function, which are:

e V(c1,cp) € C? Dist_clause$c;,cp) € R
e Vc e C Dist_clausesc,c) =0

3 BSO GUI DED BY ° V(C] CZ) c C2 Dist clause$c] Cz) =
) - )
DECOMI OSI I ION DiSt_C|aUSGSC2,C])

3
This section presents the main contributions of this ¢ V(cl,c|2,03) € C Dlst]clause$cl,cz) <
paper. First the principle of Kmeans for SAT problem R Cllse s DSl AU €Cana)

is described in subsection13 Then two differentap- ~ Example 1. Consider a SAT instance defined as the
proaches to guide BSO by using decomposition will set of variables V= {vy,v>,v3,v4} and the two fol-
be formally described in subsectior23and subsec- lowing clauses cand ¢:

tion 3.3. e Ci: V1, Vo, V3.

® Cp: Vo, V4, V3.

3.1 Kmeansfor Decomposing SAT The common variables of and ¢ are {v2,v3} so

. . . . ncvcy, cp) = 2and Distclauses$cy,cy) =1
K-means is one of the simplest unsupervised learning UcL, C2) §1,C2)

algorithms which can solve the well known clustering 312 Centroid Computation

problem. The procedure follows a simple and easy

way to classify a given data set through a certain num- consider the set of claus€s= {c,¢;,...,¢;}. The

ber of clusters (assume k clusters) fixed a priori. The ajm is to find the clause corresponding to the centroid.
main idea is to define k centroids, one for each clus- Tne jdea is to compute the frequency of each variable
ter. The centroids should be placed in a cunning way among all the clauses in a same cluster. The length
because the clustering result depends on their loca-qf the clause center notéadvhich corresponds to the

tion in the clusters. In order to optimize the efficiency ayerage number of items of all theclauses is deter-
of the outcomes, it is judicious to place them as far _ . + Sl .
mined as follows] = == Then, the variables of

as possible from each other. The next step is to take . .

. ; . .__ther clauses are sorted according to their concurrency
each point belonging to a given data set and assouatem ther clauses and only thefrequent variables are
it to the nearest centroid. When no point is pending, ket i leE Y f ”q .
the first step is completed and an early grouping is eptin a vector calle@ireqas follows:
done. At this stage we need to re-calculate k new cen- centerclausgFreq[j]] =1
troids for the new clusters resulting from the previous { Y i# Freq[j] centerclauséi] =0
step and iterate the process. The latter stops when no .
more changes of the clusters are observed, in otherExample2. Let be the MAX-SAT following problem:

words when no centroid move any more. To adaptthe F = (=V1) A (=V2 V' V1) A (=V1 V =V2 V =v3) A (Vi V
- . V2)/\ (—|V4\/V3)/\ (—|V5\/V3)
Thttp://www.cs.ubc.chibos/SATLIB/benchm.html Note that this problem is UNSAT because there is no
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possible value foror v, that satisfies the clause v
V2. The success ratio of this instance is 83% because
only 5 clauses out of 6 can be satisfied.

Table 1: Variables and their Frequency.

Variables | Frequency
Vi 04
Vo 03
V3 03
\ 01
Vs 01

To compute the center-clause of the six ongs ¢
to ¢, we first compute the centroid I. Hered
11213121262 — 2 Then, the | frequent variables are
selected. According to the table {vi,v,} are fre-
quent variables. So centetause= {vi,V2}.

3.2 BSOGDI1: A First BSO Algorithm
Guided by Decomposition

This section aims to present a first BSO algorithm
Guided by Decomposition calleBSOGO. Intu-
itively, BSOGIL proceeds like BSO-MAXSAT, ex-
cept that each bee explores its region by taking into
account the structural knowledge coming from the de-
composition step (the clusters and/or separators). The
principle of BSOGDL1 is formally described by algo-
rithm 2.

Algorithm 2: Algorithm BSOGD1.

Input: A MAX-SAT instanceP

Begin

. Decompose(P, k, G1, Go, ...

2: Sref<« Initial_Solution

3: FindSearchRegionl ( k,G1, G, ..
. RO

4: while non stopdo

5. TabulList+ Sref

6: for each beedo

7

8

» Gk)

" le Rllel

LocalSearchl( Sref, R;, BestSq)
TableDance— BestSql

Kmeans one presented in subsection 3.1. The pro-
cedureDecompose(P, k, G1, Gy, ..., Gy) splits a
given MAX-SAT instanceP into a collection ok
clustersGy, G, ..., Gk, wherek is the number of
bees. Each cluster is a subset of the initial set of
clauses of. A clause belongs to only one clus-
ter. Two clusterssi andGj are connected if they
share at least one variable which is a variable
used both by a clause &fi andGj.

The second step concerns the principle of BSO
for solving MAX-SAT. The specificity of this ap-
proach is to use the proceduFéndSearchRe-
gionl instead of the conventional procedure of
BSO for determining the regions. The proce-
dure FindSearchRegionl takes as input a set
of clustersGy, Gy, ..., Gk obtained from the
Kmeans procedure and returns a collection of re-
gionsRy,R>...,R. Initially, a set of variables
Var(G;i) in Gj is assigned to each regi® When

a variablev belongs simultaneously to boffhand

R; itis removed from the cluster that contains the
minimum clauses including. This heuristic gen-
erates independent regions allowing each bee to
improve locally the solution. The procedure-
calSearchlimprovesin the solutio8re fonly the
variables of its region and returns in TableDance a
solution with a partial improvement. The function
BestSolution1 determines the next solutiddre f

as follows:

Sref+ s« BestSal[R] ®... ®BestSal[Ry]

whereBestSal[R/] is the partial solution found by
abed and® is a simple concatenation of the par-
tial solutions.

3.3 BSOGD2: A Second BSO

Algorithm Guided by
Decomposition

BSOGD?2 differs from BSOGDL1 by the determination

end for
Sre f«+ BestSolution1(TableDance)

: end while
: End

BSOGD1 consists of two main steps described as G1, G2, -

follows:

of regions, the local search procedure and the election
of the next solutiorSref. BSOGD2 determines the
regions in a conventional way, like BSO-MAXSAT.
However unlike BSO-MAXSAT, each bee explores its
own region by considering in its search all the clusters
., Gk. This heuristic enables a bee to guide
more finely its research because ih has a global in-

formation unlike than the bee in BSOGD1. The next

e The first step (Procedurdecompose) partitions
the constraint network corresponding to the ini-
tial problemP to be solved in order to identify
some relevant structural components such as the
clusters and the separators for instance. The de-
composition method used in this algorithm is the

solutionSrefis the best solution among all the solu-
tions found by the bees. The principle of BSOGD2 is
formally described by algorithm 3.
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algorithm on the same instances (the DIMACS

Algorithm 3: Algorithm GDBSO2.
ones).

:Bne%llth] AMAX-SAT instanceP 3. Finally, in order to further analyze the gain of our
_ K contribution, the two algorithms BSOGD1 and
1: Decompose®, k, Gy, Gy, ..., Gy) BSOGD?2 are confronted to each other onlthe-

2 Sre;f<— Initial_Solution form Random-3-SAihstances.
3: while non stopdo

4: TabulList— Sref To validate our approach from a practical point of
5. FindSearchRegion2(Sref, k, Sri.Sro, .., view, the following performance measures are consid-
S ered: the CPU time, the average success rate (SR%)

6: for each beedo and the best success rate (B8&%). Note that the

7: L ocalSearch2(Srt, G1, G, ... ., Gk, Sol) results reported in all the tables are an average of the
) TableDance— Sol results obtained on 100 executions. Moreover, the
9  end for column (n,m) gives the size of an instance where n
10:  Sref+ BestSolution(TableDance) is the number of variables and m is the number of
11: end while clauses. The execution times were not reported since
12: End all the times are comparable, although the slight dif-

ferences are in favor of the BSO algorithm.

4.2 Comparison of the GASAT and the
4 PERFORMANCE ANALYSIS Hybrid BSO-MAXSAT Algorithms

4.1 Experimental Conditions As mentioned in section 1, iBASAT a simple local
search is added at the end of the Genetic Algorithm

To validate the proposed approaches several experito improve the quality of the final solution. In or-
ments were carried out in a Single MachiPentium- der to compard8SO-MAXSATo GASAT the same

I3 with 4Gomemory. The proposed approaches have local search used iGASATIs added to the classical
been implemented usintvaenvironment and tested BSO-MAXSATThe resulting algorithm is called Hy-
on 21 instances of the well knoiliMACSinstances  brid Bees Swarm Optimization for Maximal Satisfia-
and 10Uniform Random-3-SATnstances. All the  bility Problem HBSO-MAXSAT.

considered instances are available at SATLIB $ite Table 2 summarizes the results of the comparison
The DIMACS instances used in this study were di- between these two algorithms. Note that for GASAT,
vided into three classeaim-50 aim-10Q and par- only the best success rates are presented by the au-

ity8. Theaim-50class contains 8 different instances thors, while for HBSO-MAXSAT, both the average
involving 50 variables and a number of clauses which success rate and the best success rates are presented.
varies from 80 to 100. Thaim-100class includes 8  Clearly, our approach presents a better stability. In-
instances defined on 100 variables, while the numberdeed the average results are almost closed to the best
of clauses varies from 160 to 200. The last class con-ones, and are often around the order of 92% for the
tains 5 instances d®arity8 with 350 variables and a  first two groups of instances. Furthermore, the results
number of clauses varying from 1149to 1171. More- are also comparable for all instances (around 90%) for
over, for theUniform Random-3-SAinstances, the each instance. For the third family, the best success
number of variables varies from 20 to 250 while the rates are of about 60%, because this class includes

number of clauses varies from 91 to 1065. very hard instances. However the stability of this ap-
In this section, the results of the following tests are proachis still kept. Unlike HBSO-MAXSAT, GASAT
presented: presents too distant success rates from one instance

to another (only 6% for the instance 1-6yesl1-2 and
100% for the instance 1-6-yesl1-3). The results are
very bad for the third family of problems. Finally,
the GASAT algorithm (the well-known incom- reg?rding the avirage results, HB.SO'MAXSAT out-
plete algorithm for theMAXSATproblem). performs everywhere GASAT. Th|s. encouraging re-
sult confirms the relevance of our idea that aims to

2. Then, the two proposed algorithms BSOGD1 and guide the BSO algorithm by decomposition.
BSOGD2 are compared to the BSO-MAXSAT

1. First, the results obtained with tBSO-MAXSAT
algorithm on the three classes PAMACS in-
stances are compared to the ones obtained with

2http://www.cs.ubc.cdibos/SATLIB/benchm.html
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Table 2: Comparing HBSO-MAXSAT and GASAT algorithms.

Class Instances | (n,m) HBSO-MAXSAT GASAT
SR (%) | BestSR (%) | BestSR (%)
1-6yesl1-1| (50,80) 92,39 97,75 100
1-6yes1-2| (50,80) 93,12 | 975 6
1-6yes1-3| (50,80) 90,27 93,75 100
aimb0 | 1-6yesl-4| (50,80) 90,01 | 93,75 100
2-Oyes1-1| (50,100) | 91,96 | 95 68
2-Oyes1-2| (50,100) | 90,53 | 95 100
2-Oyes1-3| (50,100) | 92,13 | 97 100
2-Oyes1-4| (50,100) | 90,39 | 95 100
Average 91,35 95,59 84,25
1-6yes1-1| (100,160) | 90,93 [ 95 2
1-6yesl1-2| (100,160) | 91,96 | 96,25 0
1-6yes1-3| (100,160) | 92,91 96,25 0
aim100 | 1-6yes1-4| (100,160) | 92,37 96,25 0
2-Oyes1-1| (100,200) | 90,65 | 94 10
2-Oyes1-2| (100,200) | 90,34 | 93,5 74
2-Oyes1-3| (100,200) | 91,33 | 94 98
2-Oyes1-4| (100,200) | 92,06 | 95 18
Average 91,74 95,25 25,25
1 (350,1149)[ 55,51 | 60,57 17,02
2 (350,1157)| 56,23 | 61,8 25,53
Parity8 | 3 (350,1171)| 55 59,78 21,28
4 (350,1155) | 54,18 58,78 15,22
5 (350,1171) | 54,86 59,95 21,74
Average 55,16 60,18 20,16
4.3 Performance of the Approaches 4.3.2 Results Obtained on the Uniform
Guided by Decomposition Random-3-SAT Instances

The aim of this second series of tests is to show the TNiS 1ast series of tests aims to more analyse the
benefit obtained with the two proposed approaches.Pehaviour of the proposed approaches when dealing
For this purpose, the Hybrid version &SOGD1  With harder MAXSAT instances. Therefore, thiB-

(constructed in the same manner as the HBSO- SOGD1landHBSOGD?2algorithms are compared on

MAXSAT algorithm) called HBSOGD1and the Hy-  theUniform Random-3-SAihstances. Table 4 shows
brid BSOGD2called HBSOGD2are compared to (N success rates and the best success ratt890-

HBSO-MAXSAT MAXSATHBSOGD1andHBSOGDZor different in-
stances.
4.3.1 Results Obtained on the DIMACS This table reveals thatBSOGD2improvesHB-
I nstances SOGDL1 Indeed, the success rate of the second algo-

rithm is up to 90% in all the used instances, while it
Table 3 shows the success rates and the best succeg¥es not exceed 90% in some cases for HBSOGD1.
rates obtained usingBSO-MAXSATHBSOGDIland This is because the bees in the second approach have
HBSOGD2on the DIMACS instances. According @ global vision of the decomposed problem and each
to this table, one can remark that thanks to the ex- bee can access to all clusters and their separators if
ploitation of the structural knowledge extracted from necessary. In the second approach, each bee im-
the Kmeansdecomposition (the clusters are intercon- proves the worst cluster, which is the one that has
nected via small separators), bo#BSOGD1and the least satisfied clauses. Nevertheless, the bees in
HBSOGD2behave better than thdBSO-MAXSAT  the first approach have access to only a restricted part
approach in all the cases. Moreover, when deal- of the problem, which more specifically refers to a
ing with hard instances d IMACSsuch as théar- cluster. Moreover, the obtained results show that the
ity8, the success rate grows from 60% fdBSO- two approaches improve again the resultd$H&SO-
MAXSATto 72% for HBSOGD1and 73% forHB- MAXSATDby more than 13% in most cases.
SOGD2 These results are very promising.
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Table 3: Positionning HBSOGD1 and HBSOGD?2 versus HBSO-MAXSesults obtained on the DIMACS instances.

Class Instances | (n,m) HBSO-MAXSAT HBSOGD1 HBSOGD2
SR (%) | BestSR (%) | SR (%) BestSR (%) | SR (%) | BestSR (%)
1-6yes1-1| (50,80) 92,39 97,75 96,06 98,75 96,01 98,75
1-6yes1-2 | (50,80) 93,12 97,5 96,14, 98,75| 96,4 98,75
1-6yes1-3 | (50,80) 90,27 93,75 94,31 97,5 93,99 96,25
aim50 1-6yes1-4 | (50,80) 90,01 93,75 93,77 96,25 93,89 96,25
2-Oyes1-1| (50,100) 91,96 95 96,07 98 96,06 98
2-Oyes1-2 | (50,100) 90,53 95 94,53 97 94,17 97
2-Oyes1-3| (50,100) 92,13 97 95,86 98 96,05 99
2-Oyes1-4 | (50,100) 90,39 95 94,53 97 94,51 97
Average 91,35 95,59 95,16 97,66 95,13 97,62
1-6yesl-1| (100,160) | 90,93 95 94,53 97 94,51 97
1-6yesl-2| (100,160) | 91,96 96,25 95,66 97,5 95,76 98,12
1-6yes1-3| (100,160) | 92,91 96,25 96,39 98,75 96,49 98,12
aim100 | 1-6yesl-4| (100,160) | 92,37 96,25 96,48 98,75 96,41 98,75
2-Oyesl-1| (100,200) | 90,65 94 95,08 97 95,21 96,5
2-Oyesl-2| (100,200) | 90,34 93,5 94,64 96,5 94,65 96,5
2-Oyes1-3| (100,200) | 91,33 94 94,5 97,5 96,93 98
2-Oyes1-4| (100,200) | 92,06 95 95,91 97,5 95,99 98
Average 91,74 95,25 95,67 97,56 95,80 97,62
1 (350,1149) | 55,51 60,57 72,55 74,32 72,52 74,32
2 (350,1157) | 56,23 61,8 73,2 74,93 73,22 74,5
Parity8 | 3 (350,1171) | 55 59,78 72,16 74,04 72,16 73,7
4 (350,1155) | 54,18 58,78 71,26 72,81 71,26 72,81
5 (350,1171) | 54,86 59,95 72,04 73,53 72 74,29
Average 55,16 60,18 72,42 73,93 72,23 73,92

Table 4: Positionning HBSOGD1 and HBSOGD?2 ver-
sus HBSO-MAXSAT: results obtained on the Uniform
Random-3-SAT instances.

Instances HBSO-MAXSAT | HBSOGD1 | HBSOGD2
uf20-91 80,79 88,94 92,13
uf50-218 79,35 90,33 93,52
uf75-325 81,13 90,84 94,22
uf100-430 80,40 90,43 90,43
uf125-538 79,64 89,42 92,65
uf150-645 80,68 89,51 90,25
uf175-763 80,89 89,47 90,31
uf200-860 80,57 89,72 92,32
uf225-960 80,33 89,54 90,24
uf250-1065 80,48 89,47 93,26

5 CONCLUSION

A bee iInBSOGL2 can access to all the clusters. To
demonstrate the performance of the two approaches,
two main series of experimentation have been carried
out. First, the results on tHeIMACSinstances indi-
cate that the two approaches outperform the classical
BSO algorithm. Then, the results obtained on the hard
instances of Uniform-Random-3-SAT reveal that the
second approach benefits from the best exploration of
the decomposition and improves the results obtained
by the first approach. As a short term perspective, we
plan to investigate other metaheuristics to analyze in a
deeper way the effect of a decomposition on the max-
imal satisfiability problem. We also plan to apply the
two proposed approaches to other optimization prob-
lems like the Weighted MAXSAT, the coloring Prob-
lem, and Constraint Satisfaction Problems.
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