
Comparison Function with Right Answer for Software Design
Support Tool Perseus

Tetsuro Kakeshita and Yuki Shibata
Graduate School of Information Science, Saga University, Saga 840-8502, Japan

Keywords: Software Design Education, Engineering Design, Automatic Comparison, Software Tool, XML,
Levenshtein Distance, e-Learning.

Abstract: Systematic software design is a typical engineering design problem which has multiple solutions. We have
developed a software design support tool Perseus for systematic software design education. In this paper, we
develop and evaluate the comparison function for Perseus between student’s answer and a set of multiple
right answers. Perseus represents software design by a tree structure. The comparison function automatically
makes correspondence between tree nodes using tree matching. The matching between nodes is performed
by utilizing Levenshtein distance. Considering the nature of software design, the comparison function
utilizes various parameters such as alternative answer, keyword, NG word, incorrect answer and integrates
the adjustment function of the threshold value for comparison. We also develop a right answer editor named
Pras.Edit. We perform an evaluation of the comparison function using 20 student answers. The number of
mistakes detected by the improved comparison function is approximately 3 times larger than that of the
manual checking. Furthermore 93.1% of the detected mistakes were correct.

1 INTRODUCTION

Software design is a typical engineering design
problem and greatly affects maintainability,
reusability and efficiency of computer software
(McConnell, 2004). It is unusual that only one
optimum solution exists in software design. Thus
software design is a complex process which requires
multiple iterations.

Systematic design of computer software is
becoming more and more important due to
increasing scale and complexity of software. For
example, ISO/IEC 12207 defines standard process
for software life cycle (ISO, 2008). Software design
is an important process in this international standard.

When we teach software design at a university,
practical exercise is necessary in addition to the
lecture. Review of the software design produced by
the students is the core of the exercise. We have
proposed the software design support tool Perseus in
order to support such exercise (Kakeshita and
Fujisaki, 2006). Perseus provides the editing and
review functions of various components of software
design such as module, routine, algorithm and data
structure.

A problem of Perseus was that a teacher has to
manually review and correct the design produced by
the students. This becomes a big problem when the
number of students is getting larger and software
design becomes more complex. It often happens
that students make similar mistakes within a same
class. We thus propose the comparison function with
the right answer in this paper.

Software design is represented by a tree in
Perseus. The right answer provided by the teacher is
also a tree whose node contains alternative right
answers, keywords, NG words and incorrect answers.
The comparison function utilizes Levenshtein
distance (Levenshtein, 1966) in order to
automatically make correspondence between the
student’s answer and the right answer. Each node of
the student answer is evaluated to be correct if it
satisfies the following conditions for the
corresponding node of the right answer: (1) the node
matches to at least one of the alternative answers; (2)
it contains all of the keywords and none of the NG
words; and (3) it does not match to none of the
incorrect answer.

Furthermore the comparison function is extended
to handle multiple right answers. A teacher can
register multiple right answer files to the system.

Kakeshita, T. and Shibata, Y.
Comparison Function with Right Answer for Software Design Support Tool Perseus.
In Proceedings of the 8th International Conference on Computer Supported Education (CSEDU 2016) - Volume 1, pages 259-266
ISBN: 978-989-758-179-3
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

259

The system automatically performs comparison
between the student answer and each of the right
answer.

We also developed a right answer editor named
Pras.Edit to edit the right answer and the comments
added to the incorrect answers.

This paper is organized as follows. Section 2
introduces the basic function and features of
Perseus. We shall explain overview of the
comparison function and the basic algorithm of the
comparison function in Section 3. The right answer
editor Pras.Edit is introduced in Section 4. We
improve the original comparison function by
introducing various parameters such as alternative
answer and keyword. We shall evaluate the
comparison function and analyze the impact of
improvement in Section 5. Difference with the
related tools will be explained in Section 6.

2 SOFTWARE DESIGN SUPPORT
TOOL PERSEUS

Perseus is a software design support tool mainly
designed for students and beginners of software
design. Perseus supports both of structured design
and object oriented design. It also supports various
software design activities such as algorithm, data
structure, routine and module design. Students can
separate software design and coding processes by
utilizing the design as high level comments of the
source code.

We utilize Perseus at various exercises of two
courses at our university: Data Structure and
Algorithm, and Software Engineering.

Figure 1: Perseus User Interface.

The basic function of Perseus is the editing function
of the design tree and the review function. Figure 1
illustrates the user interface of Perseus.

The Tree View of Perseus shows the design tree.
A student can select a node of the design tree to
manipulate the tree. A student can modify text of
the selected node; create a new subtree representing
a module, routine, data structure and statement;
delete, copy, cut or paste of a subtree; expand and
shrink the design tree.

Perseus restricts the type of a new subtree
depending on the selected node in order to maintain
consistency of the design tree. For example, a
subtree representing a compound statement can only
be added to a node of a subtree representing
algorithm. Similarly, certain deletion, copy, cut and
paste operations are prohibited for predefined nodes
and subtrees. Buttons corresponding to the
prohibited operations are disabled as illustrated in
Figure 1. Expansion and shrinking of a subtree can
be executed at any subtree.

A teacher can add an arbitrary text to a node of
the design tree using the review function. The added
text is stored as a review comment of the
corresponding node. Perseus also provides a
function to store the comments to a CSV file. The
stored comments can be classified and can be added
to an arbitrary node of the design tree. The review
function is designed to facilitate reuse of the
comment text.

Perseus utilizes XML data to represent software
design tree. Each of the module, routine, data
structure and algorithm is represented by a subtree
whose root has the same name of the subtree. Each
node is assigned a node-id, comment tag and review-
comment tag.

3 COMPARISON FUNCTION
WITH RIGHT ANSWER

Although Perseus provides the review function, a
teacher must manually add review comments.
Teacher’s workload will increase according to the
increase of the complexity of the design tree and the
number of students submitting the design tree. The
comparison function is designed to automatically
compare the design tree with the right answer
provided by the teacher.

3.1 Overview

The comparison function is developed for semantic
checking of the design tree which the student creates.
Since software design may have multiple right
answers, Perseus allows registering multiple right

CSEDU 2016 - 8th International Conference on Computer Supported Education

260

answer files to the system. The comparison function
compares the student tree and each of the registered
design trees representing right answers. Perseus
automatically selects a registered design tree which
is most similar to the student tree based on the
Levenshtein distance.

Figure 2: Comparison Result.

In Figure 2, the design tree created by the student is
shown. The red nodes are the nodes different from
the right answer. The yellow node is the node which
do not contain keywords defined on the
corresponding node of the right answer. When a
student selects a colored node, explanation messages
of the detected difference are displayed in the text
box at the right side of the window. There are four
types of messages for the red nodes depending on
the types of the mismatches as explained below.

Type 1. Extra child node exists in the student’s
answer which does not correspond to a node in the
right answer.

Type 2. Child node is missing in the student’s
answer which corresponds to a node in the right
answer.

Type 3. There is no node in the right answer
corresponding to the selected node.

Type 4. Levenshtein distance from the
corresponding node in the right answer exceeds
the predefined threshold.

The “Closest Right Answer” combo box in
Figure 2 contains the name of the right answer file
which is most similar to the student answer. A
Perseus user can also select an arbitrary right answer
file using the combo box to compare with the
student answer. In either case, the user can view the
detail of the comparison result and the right answer
at a window illustrated in Figure 3. The comparison
result is represented by the comparison table
between student design and the right answer. The

detailed definition of the comparison table will be
explained in Section 3.3.

Figure 3: Detailed Comparison Result.

The comparison function is automatically executed
when the user registers a right answer file or when
the system reads a new student file. The registration
function is executed by pressing the “Register Right
Answer” button as illustrated in Figure 2.

Figure 4 illustrates the registration window of
right answer files. A user can add and delete a right
answer file at the window. The “compare” button is
used to compare a selected right answer and the
student design. The “delete comments” button is
used to delete all the explanation messages added to
the student answer.

Figure 4: Registration of Right Answers.

3.2 Levenshtein Distance

Each node of a design tree carries a string so that
REMEST utilizes the notion of Levenshtein distance
(Levenshtein, 1966) in order to evaluate the distance
between the two corresponding nodes of the design
trees. The Levenshtein distance is defined by the
minimum number of edit operations, i.e. insertion or
deletion of a character, to convert a string to another
string. We utilize the famous algorithm in order to
compute the Levenshtein distance between two
strings using dynamic programming.

Comparison
Table

Register
Right Answer

Explanation
Message

Selected Step
(yellow node)

Closest Right
Answer

red node

Comparison Function with Right Answer for Software Design Support Tool Perseus

261

3.3 Tree Matching

We shall propose the tree matching algorithm for the
comparison function in this section. The algorithm
is further extended to handle multiple right answers
of a software design problem. Such extension can
be realized by a simple repetition of the proposed
tree matching algorithm between a student tree and
each of the right answer.

Although two corresponding nodes of the design
trees can be compared using Levenshtein distance,
we need a tree matching algorithm in order to
compare the student’s answer and the right answer
since a design tree can be regarded as a tree.

Let and be the trees representing design
trees of the student’s answer and the right answer
respectively. Let be the root node of and
, ⋯ , be the subtrees of whose root node is a

child of . Similarly, let be the root node of
and , ⋯ , be the subtrees of whose root node
is a child of . We can assume, without loss of
generality, that the numbers of subtrees of and
are the same by adding empty subtrees to either S or

.
The distance , between two nodes and

 is defined by the Levenshtein distance of the
strings representing the nodes. The distance
between and can be defined by the following
formulae if either of or is an empty tree ∅.

, ∅ 	∑ | |∈ , ∅, 	∑ | |∈

Here is a node belonging to or . | | is the
number of characters in .

Assuming the above definitions, we can now
define the distance between and in the case that

 and are not empty trees. Let be a
permutation of 1,⋯ , and be the -th value of

. The distance between and is defined by the
following formula representing the minimum
distance among all permutation .

, , 	min ,

The distance between two subtrees and can
also be calculated recursively by applying the above
formula.

Now we can explain the tree matching algorithm
used by the comparison function. The algorithm
computes the minimum distance based on the above
formulae and utilizes the greedy method to identify
the optimal permutation as explained below.
1 Read and .

2 Calculate the comparison table , whose
element represents the distance d ,
between and .

3 Repeat the following steps until the table ,
becomes empty.

3.1 Identify the minimum distance
, in , .

3.2 Let and be the corresponding
subtrees.

3.3 Output and record the above pair of
subtrees with the distance d , between
them.

3.4 Delete row and column from table
, .

Step 2 of the above algorithm is executed
recursively according to the definition of the
distance. If there exist more than one pairs of
and with the minimum distance in Step
3.1, then the permutation with the minimum sum
of the distances is selected. Perseus maintains the
list of corresponding subtrees and the distance as
defined in Step 3.3. The corresponding subtrees are
represented by the position number assigned to the
root node of the subtree.

4 RIGHT ANSWER EDITOR
Pras.Edit

4.1 Overview

Pras.Edit (Perseus Right Answer Editor) is a
software tool to create and edit the right answer used
for the comparison function. The tool provides two
major windows: the main window (Figure 5) and the
detailed setting window (Figure 6). The two
windows can be switched by pressing a button at
each window.

The right answer is represented by an XML file
and contains additional information for comparison
such as alternative answer, keywords and threshold
value to compare with the calculated Levenshtein
distance. The right answer file is created by the
teacher and is distributed to the students so that the
file is encrypted before distribution. Then a student
can check his own design by himself.

CSEDU 2016 - 8th International Conference on Computer Supported Education

262

Figure 5: Main Window of Pras.Edit.

Figure 6: Detailed Setting Window of Pras.Edit.

4.2 Functions

The basic function of Pras.Edit is the editing
functions of the right answer. The function is
essentially the same as the editing function of the
design tree explained in Section 2.

Pras.Edit also provides the following editing
functions to add various types of information to the
right answer file.

1. Editing function of the review comments added
to the incorrect nodes of the design tree.

2. Editing function of keywords and NG words. A
node of the right answer tree can have an
arbitrary number of keywords and NG words.
The comparison function is extended so that the
corresponding node is regarded as correct only
when the node contains all of the keywords and
none of the NG words associated to the
corresponding node of the right answer.

3. Editing function of the threshold value at each
node of the right answer. A teacher can adjust
coefficient of the threshold value of each node by
the function. The threshold value is used in
order to compare with the Levenshtein distance

between the right answer and the corresponding
node of the design tree. Thus the editing
function can be utilized to control strictness of
the comparison.

4. Editing function of alternative answers to the
right answer file. Each node of the right answer
file can have an arbitrary number of the
alternative answers. The comparison function is
extended so that the student’s design tree is
correct when the tree matches to an alternative
answer having the minimum Levenshtein
distance.

5. Editing function of incorrect answers. A node of
the design tree is regarded as incorrect when the
node matches to an incorrect answer. This
function is utilized to detect typical design
mistakes of the student.

Editing function of the review comment and the
threshold value can be executed at the main window
(Figure 5). On the other hand, Keywords, NG words,
alternative and incorrect answers can be edited at the
detailed setting window (Figure 6).

The followings are the miscellaneous functions
of Pras.Edit. These functions can be executed at the
main window.

1. Conversion function from a Perseus design tree
file to the corresponding right answer file

2. Encrypt and decrypt functions of the right
answer file. A teacher cannot edit the right
answer file when the file is encrypted. The
encrypted right answer file can be distributed to
the students and is useful to self-check the
student answers by utilizing the comparison
function.

4.3 XML Structure

As explained in the previous section, the right
answer file contains various data associated to the
right answer. The right answer is represented by an
XML file. The DTD is designed so that various
design elements such as module, routine, data
structure and control structure can be represented in
a flexible manner.

Figure 7: DTD of Each Node of the Right Answer.

encrypt/
decrypt

Right
Answer Review

Comment

To Detailed
Setting Window

Right
Answer

Alternative
Answer

Keywords and
NG word

Incorrect Answer

To Main WindowThreshold Value

Comparison Function with Right Answer for Software Design Support Tool Perseus

263

On the other hand, the associated data such as
review comments, keywords, NG words, threshold
values, alternative answers and incorrect answers, is
represented by a node of the right answer. The
structure of the node is defined by the DTD
illustrated in Figure 7.

5 EVALUATION EXPERIMENT

We conducted an evaluation experiment to analyze
correctness of the original comparison function and
the extension of the comparison function.

5.1 Outline of the Experiment

We utilize 20 student answers of a software design
exercise at our university. These answers were
randomly selected among 68 answers so that the
number of answers becomes same at each evaluation
score. Students are assigned a detailed software
specification and create design tree composed of
modules and routines based on the stepwise
refinement technique taught at the class. The
supplied software specification represents a credit
management system at university which the students
have enough familiarity.

We evaluate the effect of the comparison
function by comparing the difference among the
following three cases.

Case 1. Design errors detected by manual checking
of the teacher

Case 2. Design errors detected by the original
comparison function, defined in Section 3,
utilizing the Levenshtein distance only

Case 3. Design errors detected by the improved
comparison function, explained in Section 4.2,
utilizing adjustment of threshold value, keyword,
NG word, alternative and incorrect answers as
well as the Levenshtein distance

Table 1: Coefficient Values for Case 3.

Type of Node
Coefficient

Value
Data Structure 0.25

Predefined Routine by Teacher 0.5
Nodes Fully Described by Student 2.0

Others 1.0

The detailed parameters of cases 2 and 3 are
selected so that the number of correctly detected
design errors is maximized and the number of
incorrectly detected nodes is minimized. The

threshold value for the comparison is 15 for Case 2.
The coefficient of each node is defined as
represented in Table 1.

There are two routines which students frequently
made mistakes. These routines are defined as
incorrect answers. We also defined distinctive
keywords for major nodes for Case 3.

5.2 Overall Evaluation Result

We first compare the design errors detected
automatically by Cases 2 or 3 with the design errors
detected manually by Case 1 defined above. There
are four cases of the comparison result.

Case A. The design errors can be detected by both
of Case 1 and Case 2/3.

Case B. The design errors can be detected only by
Case 1, but cannot be detected by Case 2/3.

Case C. The design errors can be detected only by
Case 2/3, but cannot be detected by Case 1.

Case D. The design errors detected by Case 2/3 are
incorrect.

Granularity of the detected errors is different
between Case 1 and the other cases because of the
difference of manual checking and automatic
checking. It is our experience that a manually
detected error corresponds to approximately 5 to 6
errors detected automatically.

Table 2 summarizes the number of the detected
design errors of the three cases of the error detection
classified by the type of errors defined in Cases A to
D. The numbers in parentheses represent the number
of errors manually detected by Case 1. Other
numbers represent the number of errors detected
automatically by Cases 2 or 3.

Table 2: Distribution of Detected Design Errors.

Type of
Errors

Comparison between
Difference

Cases 1 & 2 Cases 1 & 3
Case A 379 (68) 419 (71) +10%
Case B (4) (1) -75%
Case C 664 851 +28%
Case D 174 94 -46%
Total 1221 (72) 1364 (72) +12%

There are 72 design errors detected manually by
the teacher. The original comparison function (Case
2) detects 94.4% among them, while the improved
comparison function (Case 3) detects 98.6% of them.
The numbers of design errors which cannot be
detected by the comparison function were reduced
from 4 to 1 by improving the comparison function.

The number of correct design errors detected by
Case 2 is 1047 so that 85.7% of the detected errors

CSEDU 2016 - 8th International Conference on Computer Supported Education

264

are correct even in the original comparison function.
The percentage can be further improved to 93.1% by
integrating various techniques explained in Section
4.2. The numbers of incorrect errors are reduced by
46% as can be observed by the difference at Case D.
This is mainly due to the effect of the adjustment
function of the threshold values.

The readers should also note that there are a
significant number of design errors which could not
be detected manually by the teacher both in Cases 2
and 3 by observing the row of Case C. This is an
advantage of utilizing automatic error detection
proposed by the comparison function.

It can also be said that the errors detected by the
comparison function is more concrete than manual
detection. We often observe that students prefer
concrete instruction so that automatic error detection
method is useful to improve software design
education.

5.3 Detailed Analysis of the Improved
Comparison Functions

We discuss the detailed impact of the associated
functions of the original comparison function in this
section. The discussion will clarify the reason of the
improvement of the original comparison function.
We also analyze the incorrect detection by the
improved comparison function.

5.3.1 Adjustment of Threshold Value

We detect 158 design errors by adjusting the
threshold values. This was achieved mainly because
slight mistakes can be detected at the design of data
structure and algorithm by utilizing coefficient less
than 1. Another reason is that tree matching can be
performed more accurately so that child nodes of the
trees can be matched correctly.

The number of incorrect design nodes was 80 for
the original comparison function. But the number
was reduced to 12 by utilizing the adjustment
function. Main reason of the remaining nodes is the
missing or fluctuation of description in the student
answer. We consider that the number of these nodes
can be further reduced by integrating alternative
answer and proper keywords or NG words.

5.3.2 Incorrect Answers

We detect 30 design errors by utilizing incorrect
answers. No error was detected incorrectly. 11
incorrect errors detected by the original comparison
function were not detected by introducing the

incorrect answers. This implies that proper setting
of incorrect answers is a powerful means to detect
more design errors without increasing the number of
incorrect errors.

However we experienced that addition of
alternative answer may cause incorrect matching of
the nodes with registered incorrect answer.
Although such incorrect matching can be avoided by
careful definition of the alternative answer, we are
investigating a systematic means in order to avoid
such incorrect matching.

5.3.3 Keywords and NG Words

We detect 49 design errors by utilizing keywords
and NG words. Among them, 8 were incorrect. One
reason of the incorrect detection is spelling mistake
within the student answer. Another reason is the
checking of the keyword within an incorrect node
due to incorrect tree matching. The incorrect tree
matching can be reduced by utilizing alternative
answer.

21 incorrect errors detected by the original
comparison function were not detected by
introducing the keywords and NG words. The effect
of keywords and NG words exceeds the effect of
incorrect answers. This is mainly because keywords
and NG words can be adopted more widely to detect
design errors, while an incorrect answer only
represents a specific design error.

5.3.4 Incorrect Detection of Design Errors of
the Improved Comparison Function

94 design errors were incorrectly detected by the
improved comparison function. These errors can be
classified into 5 types as shown in Table 3.

Table 3: Classification of Incorrect Design Errors of the
Improved Comparison Function.

Type of Incorrect Errors # of Errors
Different Description 15

Fluctuation of Description 12
Incorrect Tree Matching 30

Incorrect Matching of Nodes 7
Others 30

The incorrect detection due to the difference of
description can be reduced by alternative answers.
Many of the incorrect detection due to fluctuation of
description can be reduced by adding appropriate
keywords and NG words. 16 of the incorrect
detection due to incorrect tree matching can be
improved also by defining alternative answers. The
incorrect detection of design errors caused by

Comparison Function with Right Answer for Software Design Support Tool Perseus

265

incorrect matching of nodes can be reduced by
utilizing NG words.

However the remaining incorrect detection
cannot be reduced by the proposed method. Such
incorrect detection includes the following cases.
The reduction of incorrect detection is left as a
future research topic.
 Incorrect matching of design tree for data

structure consisting of multiple subtrees

 Misspelling of student

6 RELATED WORKS

There are many software design tools such as
Astah* Professional (Change Vision) available for
professional use. Although few of them are
developed for educational use, there is an
educational UML design evaluation tool utilizing
various software metrics (Sato, Tamura and Ueda,
2008). However the messages produced by the tool
tend to be rather abstract for the students. The
comparison function proposed in this paper can
provide more concrete information about the
incorrect nodes.

7 CONCLUSION AND FUTURE
VISION

We developed and evaluated the comparison
function of software design support tool Perseus in
this paper. Although the original comparison
function can detect more design errors than manual
checking by the teacher, it can be further improved
by adding alternative answer, keyword, NG word,
adjustment of threshold value, and incorrect answer.
The improved comparison function will be a
powerful support tool for the teachers of various
aspects of software design.

Current limitation of the comparison function is
the workload of fine tuning of the right answer. We
are currently developing a software tool to improve
the right answer during the reviewing process of the
student’s design tree by integrating Perseus and
Pras.Edit.

We are currently developing a series of
education tools for other process of software
development. A tool named REMEST (Kakeshita
and Yamashita, 2015) is developed for the education
of software requirement management. A tool named
pgtracer (Kakeshita, Yanagita, Ohta and Ohtsuki,
2015) is developed for programming education.

These tools will be utilized to improve education of
systematic development of computer software.
They are also useful to collect the learning log of the
students. The analysis of the collected data will be
valuable to analyze and evaluate the understanding
level of each student. It will also be useful to
quantitatively analyze the effect of various learning
techniques and technologies.

Our future vision is to integrate various
education support tools to develop a systematic
learning environment covering the entire process of
software development including requirement
management, software design and computer
programming.

REFERENCES

Change Vision, Astah* professional, http://astah.net/
ISO, 2008. ISO/IEC 12207:2008, Systems and software

engineering – Software life cycle processes (to be
revised).

Kakeshita, T., Fujisaki, T., 2006. Perseus: An educational
support tool for systematic software design and
algorithm construction, Proc. 19th Conf. on Software
Engineering Education and Training (CSEE&T), pp.
13-16.

Kakeshita, T., Yamashita, S., 2015. A requirement
management education support tool for requirement
elicitation process of REBOK, Proc. 3rd Int. Conf. on
Applied Computing & Information Technology (ACIT
2015), Software Engineering Track, pp. 41-46.

Kakeshita, T., Yanagita, R., Ohta, K., 2015. A
programming education support tool pgtracer utilizing
fill-in-the-blank questions: overview and student
functions, Proc. 2nd Int. Conf. on Education Reform
and Modern Management (ERMM 2015), pp. 164-
167.

Kakeshita, T., Ohta, K., Yanagita, R., Ohtsuki, M., 2015.
A programming education support tool pgtracer
utilizing fill-in-the-blank questions: teacher functions,
Proc. 2nd Int. Conf. on Education Reform and Modern
Management (ERMM 2015), pp. 168-171.

Levenshtein, Vladimir I., 1966. Binary codes capable of
correcting deletions, insertions, and reversals, Soviet
Physics Doklady, 10 (8), pp. 707-710.

McConnell, S., 2004. Code Complete: A Practical
Handbook of Software Construction, 2nd Edition,
Microsoft Press.

Sato, M., Tamura, S., Ueda, Y., 2008, A study of quality
evaluation model for UML design, Journal of
Information Processing, Vol. 49, No. 7, pp. 2319-
2327. (in Japanese).

CSEDU 2016 - 8th International Conference on Computer Supported Education

266

