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Abstract: Phase-shifted fiber Bragg grating (PS-FBG) inscription in nonphotosensitive single mode fiber (SMF) by 
the fusion splicing technique and femtosecond laser is reported. Two SMFs are fusion spliced to introduce a 
refractive index modulation point which acts as a phase shift, then exposing the fusion spliced fiber with 
femtosecond laser and a uniform phase mask. Two dips can be observed in the transmission spectrum of 
inscribed grating, and the max induced refractive index modulation can reach to 4.210-4 without any fiber 
sensitization for a peak power density of 4.51013 W/cm2. The annealing tests show that type I PS-FBG is 
successfully inscribed. This type of grating also shows good strain and pressure characteristics. Such PS-
FBGs can be potentially used for optical fiber lasers, filters and sensors. 

1 INTRODUCTION 

Phase-shifted fiber Bragg gratings (PS-FBGs) show 
a very narrow transmission band within its reflection 
spectrum, and they have found many applications in 
wavelength-division multiplexing systems (Agrawal 
and Radic, 1994), optical fiber lasers (Chen et al., 
2005), high finesse transmission filters (Zou et al., 
2013), ultrasonic detectors (Rosenthal et al., 2011; 
Liu and Ham, 2012) and optical fiber sensors 
(Malara et al., 2015). Many methods have been 
presented for PS-FBG inscription, such as 
employing a phase-shifted phase mask (PM) (Liu 
and Ham, 2012), Moiré method by slightly tuning 
the laser wavelength (Malara et al., 2015) or shifting 
the fiber perpendicularly to the fiber axis (Reid et al., 
1990), moving fiber-scanning beam technique (Cole 
et al., 1995), post-processing technique by exposing 
the uniform FBG with focused UV (Canning and 
Sceats, 1994) or CO2 laser (Xia et al., 2005), and 
exposing twice process (Chehura et al., 2010), in 
which two uniform FBGs with same parameters are 
overlapped physically by one grating period. These 
methods mentioned above possess good repeatability, 
flexibility and quality, but they need the relatively 
expensive phase-shifted PM or a high precise control 

or the PS-FBGs show poor annealing properties. 
In the past decades, femtosecond laser has been 

explored for writing complex FBGs in many types 
of fibers (Thomas et al., 2008; Marshall et al., 2010; 
Williams et al., 2011). PS-FBG has been inscribed 
by point-by-point technique with femtosecond laser 
by modulating the phase and frequency of 
femtosecond laser with two triggers (Marshall et al., 
2010) or an electro-optical modulator (Burgmeier et 
al., 2014) in conjunction with a high precise stage, 
this technique is versatile and repeatable; however, it 
requires the synchronization of pulse train with the 
writing position. The PS-FBG has be also inscribed 
by introducing an in-grating bubble in the middle of 
uniform FBG with femtosecond laser and fusion 
splicing technique (Liao et al., 2013), in which the 
phase shift is adjusted by filling liquids with 
different refractive indices into the bubble, whereas 
the fabrication process is complex. Another PS-FBG 
inscription technique is proposed by overexposing a 
uniform FBG with femtosecond laser and a uniform 
PM (He et al., 2015), which is easy to implement, 
but an obvious decrease in the transmission loss at 
the Bragg wavelength is observed during the 
inscription process. 

In this paper, a new method for PS-FBG 
inscription in nonphotosensitive single mode fiber 
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(SMF) by fusion splicing technique and 
femtosecond laser is reported. The PS-FBG is 
inscribed by fusion splicing two SMFs and then 
exposing the fusion spliced fiber with femtosecond 
laser and a uniform PM. Its annealing, strain and 
pressure characteristics are experimentally studied. 

2 EXPERIMENTAL SETUP 

The inscription process is divided into three steps. 
First, the SMF (Coring SMF-28e+) is cleaved into 
two sections by using an optical fiber cleaver after 
stripping its coating with a length of about 20 mm. 
Then the two sections are spliced by a fusion splicer, 
and the typical fusion loss is 0.01 dB. Finally, the 
fusion spliced fiber is exposed by femtosecond laser 
through a cylindrical lens and a uniform PM. Figure 
1 shows the schematic diagram of the PS-FBG 
inscription by femtosecond laser. The femtosecond 
laser pulses have a 35 fs duration and are generated 
by a Ti:sapphire amplifier at wavelength of 800 nm 
with pulse repetition rate of 1 kHz. The max output 
pulse energy of 4 mJ can be adjusted by rotating a 
half-wave plate followed by a polarizer. The laser 
beam has a radius of 4 mm and is focused by the 
cylindrical lens with focal length of 40 mm through 
a zero-order nulled PM onto the fiber. The half-
width of the focal line  is 2.5 m according to 
=f/(0), where  is the wavelength, f is the focal 
length of the cylindrical lens, and 0 is the incident 
beam radius. The coating stripped SMF is cleaved 
and spliced, and then it is positioned behind the PM 
at a distance of about 2 mm in order to produce two-
pure interference (Smelser et al., 2004). The PM is 
designed for 800 nm radiation with a period of 2142 
nm (Ibsen Photonics) which is twice of the period of 
inscribed PS-FBG. Less than 5% of the beam is 
diffracted into the 0th order, and more than 70% of 
the  beam  is  diffracted  into  the  1st   orders.   The  

 
Figure 1: Schematic diagram of the PS-FBG inscription by 
femtosecond laser. 

during the inscription process by an ASE source and 
an optical spectrum analyzer. 

3 RESULTS AND DISCUSSIONS 

The fusion spliced fiber is exposed by 600 J laser 
pulses for 100 s and the peak power density at the 
focus is about 4.11013 W/cm2. Figure 2 gives the 
reflection and transmission spectra of the induced 
PS-FBG. We can see that there are two main dips in 
the transmission spectrum because the PS-FBG is 
successfully inscribed. A refractive index 
modulation point is introduced by fusion splicing 
two SMFs in the fiber core, which acts as a phase 
shift during the inscription process. The 2nd order 
PS-FBG is inscribed according to the Bragg 
condition defined by mBragg=2neffg, where Bragg is 
the Bragg wavelength, m is the order number, neff 

represents the effective index of fiber core, and g 
donates the grating period. The measured Bragg 
wavelength Bragg=1548.1 nm, so the calculated 
neff=1.445. The phase shift is observed during the 
whole inscription process which is different from the 
PS-FBG formation in stage II (He et al., 2015), and 
it is almost unchanged. The cladding modes are also 
observed due to the light coupling into the fiber 
cladding, which can be suppressed by scanning the 
inscription laser beam vertically to maximize 
coverage of the fiber core region. 
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Figure 2: Reflection and transmission spectra of the PS-
FBG inscribed by femtosecond laser. 

During the inscription process, the wavelengths 
show a nonlinear red shift for about 0.14 nm with 
the exposure time (total incident laser fluence). The 
transmission losses of the 1st and 2nd dips increase 
to -9.3 dB and -4.8 dB, while the wavelengths shift 
to 1548.20 nm and 1547.94 nm, respectively. No 
obvious saturation is observed within 100 s. The 
induced refractive index modulation can be inferred 
from the expression for maximum reflectivity 
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R=tanh2(L), where the coupling coefficient 
=mnm/(2neffm), L is the grating length, nm is 
the refractive index modulation of the mth order 
grating, and m is the PM period. So the induced 
refractive index modulation nm=3.310-4 for a dip 
of -9.3 dB. The fiber core’s refractive index neff at 
the fusion spliced point decreases within few 
hundreds of micronmeters due to dopant diffusion, 
glass structure change and residual stress relaxation 
(Abrishamian et al., 2012), so negative refractive 
index change in the fusion spliced point is 
introduced to form a PS-FBG during the inscription 
process. The insertion loss at 1550 nm is about 0.3 
dB. 

The annealing tests are conducted in a tube 
furnace. The evolution of the transmission spectra of 
PS-FBG form 24 °C to 940 °C are shown in Fig. 3. It 
can be seen that the transmission spectrum of PS-
FBG shifts to long wavelength, at the same time, it 
transmission decreases with increase the 
temperature. The change of the central wavelengths 
and the transmission losses with the temperature are 
given in Fig 4 (a) and (b), respectively. It can be 
seen that the central wavelengths of the two dips 
shift almost with the same speed according to the 
polynomial fit results. But the transmission loss of 
the 2nd dip changes slowly compared with the 1st 
dip.  There is a turning point near the temperature of 
800 °C at which the loss of the 2nd dip is larger than 
the 1st one. At the same time a new third dip can be 
observed, its loss increases firstly and approaches to 
the 2nd one at the temperature of 920 °C, and then 
they decrease at the same speed. The experimental 
results show that type I PS-FBG has been inscribed. 

 
Figure 3: Evolution of the transmission spectra of PS-FBG 
under different temperature. 

The hydrostatic pressure test of the PS-FBG was 
performed in a sealed stainless steel tube filled with 
water. The transmission loss of the PS-FBG is about 
-13 dB, so the induced refractive index modulation 
nm=4.210-4. Figure 5 gives the evolution of the 

transmission spectra of PS-FBG under different 
pressures in the range from 0 MPa to 25 MPa with a 
step of 5 MPa. It can be seen that the transmission 

 

 
Figure 4: Change of the (a) central wavelengths and (b) 
transmission losses for two dips with the temperature. 
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Figure 5: Evolution of the transmission spectra of PS-FBG 
under different pressures. 

spectrum has a blue shift and its shape is not 
distorted during increasing the pressure. Figure 6 
depicts the central wavelengths and transmission 
losses for the two dips under different pressures. 
From Fig. 6 (a), we can see that the central 
wavelengths for two dips decrease linearly with the 
pressure at a same sensitivity of -4.4 pm/MPa, which 
is slightly higher than that of the UV laser induced 
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FBG in standard SMF. There is no hysteresis for 
both increasing and decreasing cycles. In Fig. 6 (b), 
the transmission losses of the two dips are almost 
unchanged under different pressures, and the 
fluctuation is only about  0.1 dB. 

0 10 20 30
1547.9

1548.0

1548.1

1548.2

1548.3

1548.4

1548.5

 

 

 Increase of the 1st dip   Increase of the 2nd dip
 Decrease of the 1st dip  Decrease of the 2nd dip
 Linear fit of increase of the 1st dip 
 Linear fit of increase of the 2nd dip
 Linear fit of decrease of the 1st dip
 Linear fit of decrease of  the 2nd dip

W
av

el
en

gt
h 

(n
m

)

Pressure (MPa)

The 1st dip
Increase: Y1=1548.279-0.0044*X1
Decrease: Y2=1548.277-0.0044*X2

The 2st dip
Increase: Y3=1548.082-0.0044*X3
Decrease: Y4=1548.082-0.0044*X4

(a)

 

0 10 20 30
-15

-10

-5

0

 

 

 Increase of the 1st dip
 Increase of the 2nd dip
 Decrease of the 1st dip
 Decrease of the 2nd dip

Tr
an

sm
is

si
on

 (d
B)

Pressure (MPa)

(b)

 
Figure 6: Changes of the (a) central wavelengths and (b) 
transmission losses for two dips under different pressures. 

The strain test of another PS-FBG with the dip of 
-11.6 dB inscribed under the same condition was 
performed by fixing it on two manual translating 
stages with a resolution of 0.01 mm, and the space 
between the two fixed points was 483 mm. The 
strain was applied on the FBG by adjusting one of 
the translating stages up to 1 mm with a step of 0.05 
mm. Figure 7 shows the evolution of the 
transmission spectra under different strains in the 
range from 0  to 2070 . We can see that the 
transmission spectrum has a red shift and there is no 
distortion during increasing the strain. Figure 8 (a) 
and (b) depict the wavelengths shift for two dips 
under different strains. We can see that the strain 
response of the PS-FBG shows good linearity and 
repeatability, and the strain sensitivity is 1.2 pm/, 
which is the same with that of the UV laser induced 
FBG. But the transmission loss of the 1st dip 
decreases when increasing the strain, while it 
increases for the 2nd one. 
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Figure 7: Evolution of the transmission spectra under 
different strains. 
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Figure 8: Change of the (a) central wavelengths and (b) 
transmission losses for two dips under different strains. 

4 CONCLUSIONS 

In conclusion, PS-FBGs have been successfully 
inscribed in nonphotosensitive SMFs by fusion 
splicing technique and femtosecond laser through a 
uniform PM. Two main dips can be observed due to 
the formation of PS-FBG and its transmission 
spectrum of PS-FBG shows a nonlinear red shift 
during the inscription process. The max induced 
refractive index modulation of 4.210-4 is achieved 
for a PS-FBG with a dip of -13 dB for a peak power 
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density of 4.51013 W/cm2. The annealing, strain 
and pressure characteristics of the PS-FBG are 
experimentally studied. These PS-FBGs inscribed in 
SMFs by femtosecond laser will find applications in 
optical fiber lasers, two wavelength filters and 
optical fiber sensors. 
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