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Abstract: In Drosophila brain, gamma neurons in the mushroom body are involved in higher functions such as olfactory 
learning and memory.  During metamorphosis, they undergo remodelling after which they adopt their adult 
shape. Some mutations alter remodelling and therefore neuronal final morphology, causing behavioural 
dysfunctions. The RNA binding protein Imp, for example, was shown to control this remodelling process at 
least partly by regulating profilin expression. This work aims at precisely characterizing the morphological 
changes observed upon imp knockdown in order to further understand the role of this protein. We develop a 
methodological framework that consists in the selection of relevant morphological features, their modelling 
and parameter estimation. We thus perform a statistical comparison and a likelihood analysis to quantify 
similarities and differences between wild type and mutated neurons. We show that imp mutant neurons can 
be classified into two phenotypic groups (called Imp L and Imp Sh) that differ in several morphological 
aspects. We also demonstrate that, although Imp L and wild-type neurons show similarities, branch length 
distribution is discriminant between these populations. Finally, we study biological samples in which Profilin 
was reintroduced in imp mutant neurons, and show that defects in main axon and branch lengths are partially 
suppressed. 

1 INTRODUCTION 

Gamma neurons in Drosophila brain mushroom body 
are in charge of high functions such as olfactory 
learning and memory (Xie et al., 2013). Mutations 
affecting their adult shape cause several behavioural 
dysfunctions (Redt-Clouet et al., 2012). 

During metamorphosis, gamma neurons go 
through a process of pruning –where the main part of 
their axons and dendrites is lost– followed by 
regrowth, resulting in the establishment of the adult 
shape (Williams and Truman, 2005). The 
understanding of this process and its main involved 
factors is critical to explain why some mutations 
cause important changes in the neuron adult 
morphology. 

This study is focused on the remodelling process, 
composed by regrowth and branching after pruning. 
The correct development of this process gives rise to 
well-formed and functional adult neurons.  

Medioni et al. (2014) have shown that the RNA 
binding protein Imp is not essential during the initial 

axonal growth of gamma neurons, but is necessary 
during their remodelling. This work shows that, in 
adults, ~50% of imp mutants display shorter axons 
than wild types (WT) and fail to reach their target. 
Imp mutants also exhibit an overall loss of branch 
number and complexity. Molecular and genetic 
analysis have further shown that profilin mRNA, 
which encodes an actin cytoskeleton regulator 
(Verheyen and Cooley, 1994), is a direct and 
functional target of Imp and both are key regulators 
of the Drosophila gamma neuron axonal remodelling 
process, acting on the same molecular pathway. 
Interestingly, the overexpression of profilin in imp 
mutants partially rescues the main axon length, but 
not the branch complexity (Figure 1). These results 
suggest that Imp controls axonal extension during 
remodelling by regulating profilin mRNA expression. 
However they also suggest that the branching process 
may be dependent on the regulation of other Imp 
mRNA targets, yet to be identified.  

In this paper, we intend to further understand the 
role of Imp and the importance of profilin mRNA  
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Figure 1: Representation of the morphology of each one of the groups under study (in order: Wild type, imp mutant and imp 
mutant rescued by Profilin). imp mutants are divided into short and long species (named Imp Sh and Imp L respectively) as 
both phenotypes are equally observed (Medioni et al., 2014). 

expression regulation during remodelling by deeply 
analysing the impact of Imp knockdown in neuron 
development. To overcome the variability of axonal 
projection patterns associated with a given biological 
sample, we propose to identify the main features of 
adult gamma neuron morphology and quantify their 
similarities and differences between WT and mutated 
axons using a well-defined statistical framework. 
This approach provides both a biological 
interpretation and a quantification of resemblance 
between biological samples. This framework is 
general and can be applied to model and characterize 
neuron types. 

Because effects of Imp knockdown and rescue 
with Profilin can be identified in the main axon as 
well as in the branch development or independently, 
we consider both structures separately. The four 
features we chose are: “main axon length”, “main 
axon shape”, “first order branch distribution along the 
main axon” and “branch length distribution”. To 
measure these features, we segmented a set of images 
corresponding to each neuron type to obtain a 
numeric tree-shaped skeleton representing the 
morphology of each neuron. We then measured the 
features values using homemade software. The image 
segmentation as well as the measurement of each 
feature are described in the following sections. 

Neuron morphological automatic classification 
has already been addressed in the bibliography. Kong 
et al. (2005) proposed an unsupervised clustering of 
ganglion cells in the mouse retina by the k-means 
algorithm in order to define cell types. They initially 
disposed of 26 morphological parameters and found 
out that clustering with only three of them was the 
most effective way. Guerra et al. (2011) establish the 
advantage of applying supervised classification 
methods regarding morphological feature based 
classification to distinguish between interneurons and 
pyramidal cells. They also conclude that reducing the 
number of features to an optimal number outperforms 
the classical approach of using all the available 

information. Lopez-Cruz et al., (2014) built a 
consensus Bayesian multinet representing the 
opinions of a set of experts regarding the 
classification of a pool of neurons. The 
morphological parameters chosen by each expert to 
make their decisions are not considered. A different 
approach was proposed by Mottini et al., (2014) 
which consists on classifying different neuron types 
by reducing them to trees and calculating a distance, 
combining geometrical and topological information. 

Nevertheless, the different published approaches 
intend to accurately discriminate between different 
types of neurons, considering misclassification as a 
methodological error and consequently developing 
techniques to avoid these cases. However, similarities 
between populations are not necessarily to be 
excluded as they may reflect the properties of 
biological samples and help us in their 
characterization. Furthermore, these methods do not 
intend to understand which morphological 
characteristic is discriminant between different 
species. A deeper multi-criteria statistical analysis is 
thus required. Our approach thus consists in 
developing a probabilistic model for each of the 
mentioned features and estimate the associated 
parameters. The similarities or dissimilarities 
between the populations for each feature are assessed 
through statistical tests under null hypothesis and 
likelihood classification.  

In the next section, we introduce each one of the 
features followed by the correspondent model. Next 
we present the results of the classification combining 
different criteria which allows to finally deduce the 
morphological changes induced by the studied 
mutations. 
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2 DATA 

2.1 Images 

We used 3D images taken with a confocal 
microscope. Each set of images show the distal part 
of an axonal tree at adult stage (Figure 2). Single 
axons are labelled by GFP using the MARCM 
technique (Wu and Luo, 2006), which allows to 
image a single mutated (or wild type) neuron in a wild 
type environment. The database we used for this 
study consists of 46 wild type images, 48 imp mutants 
and 15 imp mutants rescued by Profilin. 

The voxel size varies among the images and is 
anisotropic in the Z axis.  The voxel length in Z is 
between 5 and 12 times its length in X and Y, which 
varies from 0.09 to 0.15 µm.  

 

Figure 2: Maximum intensity Z projection showing a wild 
type axon (red) and the morphology of the mushroom body 
(blue). 

2.2 Segmentation 

To avoid artificial jumps along the Z axis due to 
image anisotropy, we applied a simple quadratic 
interpolation algorithm included in FIJI (the open 
source image analysis software developed by NIH, 
Maryland, USA) (Schindelin et al., 2012). 

An automatic segmentation of the images is still 
not available in our case due to noisy background and 
poorly defined neuron trace. When observing the 
images, it can be not trivial even for experts to 
determine the correct 3D path followed by main 
axons and their branches. Their trajectories can be 
very complex as well as non-continuous and difficult 
to differentiate from background structures. 
Therefore we segmented the images with the open 
software Neuromantic (Myatt et al., 2012), specially 
developed to segment 2 or 3D neurons manually or 
semi-automatically. As output we obtain a set of 
points along the main axon and branches that we 
connect using a Bresenham-inspired 6-connectivity 

algorithm. We chose this connectivity to keep further 
measurements and models simple. After this process 
we obtain a tree-like set of numeric 3D curves that 
describe the morphology of each neuron (Figure 3). 

To ensure all the neurons to be similarly oriented 
we rotated the images to align the medial and the 
dorsal lobes with the X (horizontal) and Y (vertical) 
axis correspondingly. The beginning of each neuron 
was considered just before entering the medial lobe. 
No further registration was applied to the images, to 
avoid axon deformation. Conserved morphology was 
preferred rather than more accurate spatial location. 

 

Figure 3: Detail of the Z projected image showed in Figure 
2, where the neuron has been segmented (yellow) to obtain 
a tree-like set of numeric 3D curves. 

2.3 Tree Hierarchy 

When studying their morphology it is necessary to 
understand how neurons are structured i.e. main axon 
and first, second, third (etc.) order branches (the 
neuron body and dendrites are not present in the 
studied images). To accurately label the paths 
forming the tree that represents each neuron, we have 
developed an automatic pseudo-recursive algorithm 
capable of processing trees of any order. It first takes 
the whole tree and labels the selected path as the main 
axon, followed by a repeated identical analysis of all 
the resulting sub-trees. In each step, the main path is 
assigned following the criteria used by experts when 
done visually: total length, directionality and sense 
coherence. To achieve this, in each step we consider 
the points in all the paths between the root and the 
leaves of the tree (i.e. the whole axon) or subtree and 
calculate their linear regression obtaining a straight 
guideline, which will determine directionality and 
sense coherence. For each path in the analysed 
subtree, a cost function is computed that depends on 
the distance between each point in the path and the 
guideline (directionality), the parallelism between 
them (accounting for the sense coherence) and the 
path total length. Finally the path that minimizes this 
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cost function is selected as main axon in the case of 
the whole tree (first step), or main branch in the case 
of the different subtrees (Figure 4). 

 

Figure 4: Scheme of the three-hierarchy algorithm. For a 
given tree, the guideline is calculated followed by the cost 
function for each possible path (1-4). The one that 
minimizes it is assigned as main axon (here path 2). The 
algorithm is applied recursively to each subtree resulting in 
the hierarchy of the entire tree. 

3 MODEL DEVELOPMENT 

After the segmentation, interpolation in the Z axis and 
tree hierarchy algorithm, the neuron skeletons 
become a 3D tree made out of unitary segments 
described by their round coordinates or pixels. Taking 
this simple neuron geometrical description into 
account, we define the main features that describe and 
discriminate the individuals under study: the main 
axon length and sinuosity, as well as the branch 
density and length distribution. In the following 
sections we describe the probabilistic models for each 
feature and compute associated statistical tests under 
null hypothesis between the different groups (WT: 
wild type neurons that are used as controls, Imp: 
neurons with imp knockdown, reported to be 
morphologically aberrant in the literature, and Prof 
Rescue: imp mutants with an overexpression of 
profilin, known to partially suppress the imp 
phenotype). Besides, we derive the likelihood of each 
model.  

3.1 Main Axon Length 

The main axon length was measured taking the total 
amount of pixels in the corresponding path and 
multiplying by the pixel size (µm). The length 
distribution was modelled as Gaussian where the 
mean and standard deviation for each group (µm.a., 

σm.a.) were calculated from data. We observed the 
bimodal behaviour in the Imp group reported by 
Medioni et al. (2014) (Figure 5). Therefore, to make 
a more accurate modelling of this parameter, we 
separated Imp mutant neurons into two groups -
neurons with long axons (Imp L) and neurons with 
short axons (Imp Sh)- using the k-means algorithm. 
54% of the neurons were assigned to Imp Sh and 46% 
to Imp L, consistent with the percentage reported by 
Medioni et al. (2014). Figure 5 shows the main axon 
length histograms for each group, Imp divided into 
Imp L and Imp Sh.  

 

Figure 5: Main axon length distributions for each biological 
sample. 

To know which groups can be considered to 
present significantly different main axon length 
measurements, non-parametric Kruskal Wallis tests 
were carried out between all the possible pairs of 
groups (Table 1). We chose this test for the sake of 
consistency, as it can be applied to analyse all the 
features (independently of each model). For p values 
inferior to 5%, we consider that the null hypothesis 
that both distributions are the same can be rejected. 
Thus, the only pair not presenting a significant 
difference is WT and Imp L. It is relevant to highlight 
that Prof Rescue distribution lies in between the 
distributions for Imp L and Sh and even though more 
similar to Imp L, still significantly different. 

Table 1: p values from the non-parametric Kruskal Wallis 
test comparing the main axon length between the studied 
groups. 

 Imp L Imp Sh Prof Rescue 

WT 0.1219 5.0098E-12 0.000144 

Imp L   3.2627E-09 0.0013 

Imp Sh     2.48E-06 

The likelihood of a given neuron n of length	 	to 
belong to a given group is defined by the Normal 
probability density function  

1 

2 

3 

4 

Main axon 

First order branches 

Second order branches 

First order subtrees 

Second order subtrees 
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where ( . ,	 . ) are the mean and standard 
deviation of the main axon length corresponding to 
the group X. 

3.2 Main Axon Morphology 

To define the shape model, we consider as random 
variable the unit vector 	  that accounts for the shift 
of the axon tip between t-1 and t. Because we consider 
the 6-connectivity and backwards moves are not 
allowed, each  can take five different values, as 
shown in Figure 6. Assuming the main axon 
development follows a second order Markov 
property, we have 

	 |	 	 	 |	 , . (2)

The morphology model is then completely 
defined by the conditional probabilities  
	 |	 , . There are 30 possible 

combinations of the two unit vectors [ , ] and 
each of these combinations has five possible future 
jumps	 , giving a total of 150 possible transitions 
in t+1, each of them with probability  (conditionally 
to [ , ]). The order of the Markov chain was 
chosen to combine a discriminative efficiency 
between similarly shaped axons and a reasonable 
combinatorial to robustly estimate the conditional 
probabilities. 

Figure 6 presents two basic configurations of a 
pair of unit vectors [ , ] and their corresponding 
five possible	 . The one on the left depicts one of 
the six possible cases where the vectors 	and  
are in line (in this case in the +z direction). The 
second configuration exemplifies the 24 cases where 
the vectors  and 	  are not in line. 

We estimate the conditional probabilities from 
data using the empirical estimator (3), where 
# 	accounts for the number of times the nth 

configuration of three unit vectors	 , , ] 
appears. 

#
∑ #

,
1, . . . ,5
0, . . . ,29

 (3)

We performed the Kruskal Wallis non-parametric test 
between populations for each	 ,	1 150. Table 
2 shows the amount of parameters 	 	that presents a 

p value inferior to 5% between each pair of 
populations. 

 

Figure 6: Two examples of three vector (past, present and 
future steps) configurations on a 3D 6-connected path. Each 
future direction has a probability of occurrence conditioned 
by the present and past directions and is numbered from 1 
to 150. 

Table 2: Number of parameters with p<0.05 for the non-
parametric Kruskal Wallis test. 

 Imp L Imp Sh Prof Rescue 

WT 12 22 28 

Imp L   16 19 

Imp Sh     14 

Regarding the possible two past unit vectors [ ,
], the results of the estimation show that all the 

groups share the six most frequent configurations, 
representing together between 65 and 76% of the 
total. 

The computation of the Markov chain likelihood 
appears to lack of robustness when comparing 
populations. This can be explained by the limited 
length of the axons in pixels (~1500) and the 
combinatorial of the problem (150 conditional 
probabilities). Indeed, some of the three vector 
configurations, even though with non-zero 
probability, may not appear in the learning sample. 
When this is the case, if the axon to classify does 
present at least one time this configuration the 
likelihood becomes zero. This means that the 
likelihood is extremely sensible to fluctuations in the 
presence of low probable events, which is statistically 
inevitable with the size of our data. To overcome this 
inconvenience and add robustness to the likelihood 
analysis, we consider the 30 probability distributions 
	 |	 , 	 as independent, and define a 

multinomial Bernoulli distribution for each possible 
value of   given [ , ].  
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For each neuron n, the likelihood of each group X 
according to the shape model of X, , ,		and the 
frequencies of appearance of three unit vectors 
corresponding to n, # , is then defined as follows 

# # | ∈  

# # | ∈  

	 | ∊ X	  

	

#
# 	 #

#
#

 

	 # #
#

#
 

	 # # #
#

#
 

#
. 

5 1 , #  

(4)

3.3 Branch Density 

We propose a model to describe the branching point 
distribution independently of the axon length, based 
on the biological process of interstitial branch 
formation during development. This process can be 
described in three simple steps (Figure 7): A. the main 
axon grows following particular external and internal 
guiding cues. B. When the growth cone senses 
external guiding cues indicating the formation of an 
interstitial branch, the main axon decreases its 
growing speed until it stops while it accumulates 
molecular material in its tip. C. After some time the 
main axon continues growing following its particular 
cues, leaving the accumulated material in a specific 
zone of its shaft. The left material has been organized 
into an independent growing tip and starts elongating 
an interstitial branch towards its particular target, 
different from the one of the main axon (Szebenyi et 
al., 1998). 

In summary, the emergence of an interstitial 
branch depends on the presence of specific external 
guiding cues that cause the modification of the axon 
growing rate, which allows the accumulation of the 
molecular material needed for the creation of the new 
branch. Modelling this process becomes initially 
unreachable as none of this two features (growing 
rate, guiding cues presence) can be measured from the 
adult stage static images available as data. Regarding 
this limitations, we propose a model to mimic this 

dynamic process from our static data. We focus our 
study on the behaviour of the axon growing rate, 
starting with a certain initial speed 	and evolving 
until 0, when a new branch point appears. 

 

Figure 7: Interstitial branch formation during axonal 
development described schematically in three main steps, 
adapted from Szebenyi et al. (1998). 

We can measure the number k of pixels between 
every two successive branching points along the main 
axon of a segmented neuron. Then we suppose that 
each one of this pixels represents a differential 
progress in the axonal growth where, during 
development, the axon had a certain growing rate	 . 
Our model assumes random decreases in speed which 
we call	∆ , with a probability of occurrence p. When 
a certain number of decreases ∆  occur, the speed  
equals zero thus the growing tip stops, allowing the 
material needed to form a branch to accumulate. After 
some time the process starts again, with initial 
speed	 . 

Because at each one of the k pixels a decrease in 
	may or not happen, we describe the problem using 

a Bernoulli probability distribution (Forbes et al., 
2011) where each success means a differential 
decrease in speed. We consider that the growing rate 
goes to zero after A+1 steps of speed decreasing. The 
probability to reach 0 after k steps is then written 
as follows: 

1
1 	. (5)

Equation (5) gives the probability of having A 
successes in 1 trials and a success in the kth trial. 
This means the axon tip decreases its speed A times 
before stopping completely (which happens in A+1), 
or equivalently that the length between two branching 
points is k (Figure 8). Thus, our Bernoulli-based, 
time-mimicking branching point distribution model 
has two parameters, A and p, to be estimated from 
data. Knowing the distances k between successive 
branching points for every axon in each group, we can 
calculate their mean and variance 	and	 . From 

μk
1

1  (6)
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and  

σ2k	
1

1

μk  

(7)

it can be shown that μk ,  and σ2k	 ,  have the 
simple forms 

μk , , 

 

	σ2k	 ,
1

								 

(8)

which allow to easily estimate A and p from data. 
Once A and p are estimated, A needs to be rounded as 
it has to be an integer. Then p can be recalculated 
knowing the value of A as  

μk σ2k	

μk σ2k	
. (9)

The number A+1 of needed accumulation of 
increments ∆  and p their probability to happen will 
define each axonal group regarding their branch 
density. 

Table 3 and Table 4 present the resulting values 
of A and p for each group and the p values from the 
non-parametric Kruskal Wallis test of the distances 
between two consecutive branches k among neuron 
groups, respectively.  

While every group has the same value of A, Imp 
Sh presents the highest value of p meaning that 
∆ 	occurrence is more probable and it takes less time 
to reach 0, thus it is the most branched group. 
This difference is significant (p<0.05) between Imp 
Sh and every other group. 

To calculate the likelihood of each neuron n to 
belong to the group X regarding this model, we use 
the Binomial probability density function considering 
the distances between each pair of branches ,  
independent between them, obtaining 

, ∊ X  
 

, , … , , | ∊ X = 
 

, ∊ X  

 

, 1
,  

(10)

where M is the total number of pairs of branches. 

 

Figure 8: 2D 4-connected path showing the axonal 
trajectory until the formation of a branching point (3D not 
shown for simplicity). Pink pixels occur with a probability 
p, decreasing the growing rate. When the number of pink 
pixels equals A+1, =0 and a new branching point appears. 

Table 3: p values from the non-parametric Kruskal Wallis 
test comparing the distances in pixels between consecutive 
branches between the studied groups. 

 Imp L Imp Sh Prof Rescue 

WT 0.9398 4.20E-03 0.5704 

Imp L   2.16E-02 0.6478 

Imp Sh     1.32E-02 

Table 4: Value of the parameters A and p describing the 
branching points distribution. 

 A p p for A=1 

WT 1.2 0.0087 0.0078 

Imp L  1.0 0.0068 0.0067 

Imp Sh  0.9  0.008 0.0084 

Prof Rescue 1.2 0.0074 0.0068 

3.4 Branch Length Distribution 

To study the branch length distribution within the 
neuron groups, we established four length categories 
( ); : 0,1 , : 1,5 , : 5,10 	and	 : 10,∞  
following Tessier and Broadie (2008). The length was 
measured in the same way as described for the main 
axon, and branches of all levels were taken into 
account. For each group of axons we calculated the 
mean and standard deviation (µbi, σbi), 1<i<4 of the 
relative number of branches corresponding to each 
length category per axon b1-b4 (i.e. number of 
branches in each length category normalized by the 
total number of branches, per axon). 

The percentage of branches in each category is 
shown in Table 5. 

To know between which groups and length 
category the differences in the results displayed in 
Table 5 are significant we performed the Kruskal 
Wallis non-parametric test for the four length groups. 
Significant results (p<0.05) are only present in 
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	and	 . The p values are shown in Table 6 and 
Table 7. 

Table 5: Branch length distribution by length and neuron 
group (%). 

  
 

  
 

 
  

 
  
 

  
WT 10.6 49.2 11.7 28.5 

Imp L 8.4 66.5 10.1 15 
Imp Sh 19.8 48.2 14.5 17.5 

Prof Rescue 19.5 48.3 10.2 22 

Table 6: p values from the non-parametric Kruskal Wallis 
test comparing the branch length distribution in 	 	between 
the studied groups. 

 Imp L Imp Sh Prof Rescue 

WT 8.92E-05 0.9392 0.7884 

Imp L  9.04E-04 0.0014 

Imp Sh   0.9134 

Table 7: p values from the non-parametric Kruskal Wallis 
test comparing the branch length distribution in 	 	between 
the studied groups. 

 Imp L Imp Sh Prof Rescue 

WT 3.45E-04 1.29E-04 0.1822 

Imp L   0.7383 0.1238 

Imp Sh     0.1387 

Imp L presents significantly more branches in 	
	than any other group while WT has a bigger 

proportion of	 	branches than Imp L and Sh, but not 
Prof Rescue. For further analysis we take the 
categories 	and .The distribution modelling the 
relative amount of branches within these length 
categories and for each group was considered as 
Gaussian. 

To calculate the likelihood of each neuron n with 
each group X regarding the branch length distribution 
in 	and 	- , 	and , - we considered a bivariate 
Gaussian distribution with mean 		 ,  
and	Σ 	the covariance matrix between 	and . 

| ∊ X | ∊ X  
 

1

2 |Σ |
, 

(11)

where |Σ | is the determinant of the covariance 
matrix Σ . 

4 LIKELIHOOD ANALYSIS 

For a neuron n, we calculate the corresponding 
features and then compute the likelihood for each 
group of neurons X, (X ∊ 	 WT, Imp, Prof	Rescue}). 
The neuron n is then classified in the group that 
maximizes the global likelihood. All the 
classifications present in this work were done using 
the leave one out technique, which consists in 
classifying a sample that has been removed from the 
database to perform the learning stage, i.e. the 
estimation of the distribution parameters. This 
maximum likelihood classification provides some 
assessment about the discriminative properties of the 
proposed models but is also used to analyse the 
mixture of feature values between the populations. 

Considering our four features to be independent 
from each other, the global likelihood is given as 
follows 

, # , # , , , ∊ X  
 

| ∊ X # , # , ∊ X  
 

| ∊ X ∊ X , 

(12)

and the maximum likelihood estimation results 

∊ X ↔ X  
 

argmax , # , # , , , ∊ X  

 
X WT, Imp L, Imp Sh, Prof	Rescue . 

(13)

Equation (13) allows to classify each neuron by 
resemblance to each group considering the four 
morphological features and their mathematical 
models. Table 8 presents the results of the general 
resemblance analysis. 

Table 8: General likelihood analysis considering the four 
features. Imp L and Imp Sh reconsidered separately. 

    Predicted (%) 

    WT Imp L Imp Sh 

A
ct

ua
l C

la
ss

 

WT 82.6 17.4 0 

Imp L 54.5 45.5 0 

Imp Sh 19.2 3.9 76.9 

This results suggest a relevant difference between 
neurons belonging to Imp L and Imp Sh, as well as 
between WT and Imp Sh. More than half of Imp L are 
likely to be WT while for Imp Sh this propotion is less 
than 20%.  
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To understand how each morphological feature 
contributes to the results in Table 8, we carried out 
the likelihood analysis regarding each of them 
separately. For the main axon length, as expected 
from Figure 5, WT neurons are shared between WT 
and Imp L; and Imp L is correspondingly mixed with 
WT. Imp Sh is completely separated from the rest of 
the groups (Table 9). 

Table 9: Likelihood analysis according to main axon length. 

L  
 

  Predicted (%) 

     WT Imp L Imp Sh 

A
ct

ua
l C

la
ss

 

 WT 39.1 54.4 6.5 
 

Imp L 22.7 77.3 0 
 

Imp Sh 0 0 100 

According to the main axon shape in Table 10, 
WT and Imp L look again similar and, interestingly, 
Imp Sh looks more similar to WT than to Imp L. 

Table 10: Likelihood analysis according main axon shape. 

 SH   Predicted (%) 

    WT Imp L Imp Sh 

A
ct

ua
l C

la
ss

 

WT 54.3 43.5 2.2 

Imp L 50 50 0 

Imp Sh 61.5 38.5 0 

Table 11 presents the likelihood analysis results 
regarding the branch point density. It can be noticed 
that every group is mainly classified as Imp Sh, which 
our previous analysis revealed as the most branched 
group. The reason for this behaviour relies on the 
nature of the model. Even though the means of the 
distances between branches are different between the 
biological groups, axons frequently display one or 
more pairs of branches which are close. Because for 
close branches the likelihood is maximum for Imp Sh, 
with a significant difference from the other groups, 
the presence of near branches automatically classifies 
a neuron as Imp Sh. Nevertheless, the branch density 
coherence is respected for each group as the 
resemblance with Imp Sh is maximum for the most 
branched group (itself) and is followed in the correct 
order: WT and then Imp L.  

Finally, according to the branch length 
distribution (Table 12) WT, Imp L and Imp Sh show 
a higher likelihood to their own groups, suggesting a 
significant difference between them regarding this 
feature.  

Table 11: Likelihood analysis according branching point.  

 BP 
 

  Predicted (%) 

     WT Imp L Imp Sh 

A
ct

ua
l C

la
ss

 

 WT 0 13 87 
 

Imp L 13.6 18.2 68.2 
 

Imp Sh 7.7 11.5 80.8 

Table 12: Likelihood analysis according branch length 
distribution.  

 BL   Predicted (%) 

    WT Imp L Imp Sh 

A
ct

ua
l C

la
ss

 

WT 60.9 23.9 15.2 

Imp L 18.2 72.7 9.1 

Imp Sh 15.4 30.8 53.8 

In order to analyse the morphological changes 
induced by profilin recue, we performed the general 
likelihood analysis considering either imp mutants 
altogether (Table 13), or split between Imp L and Imp 
Sh (Table 14). We have already shown in the previous 
section that Prof Rescue presents i) an histogram in 
between that one of Imp L and Imp Sh regarding the 
main axon length, ii) no significant difference with 
WT nor Imp L (but with Imp Sh) regarding branching 
point density and ii) it is the only group to present no 
significant differences with WT regarding the 
branching length distribution. 

Table 13: General likelihood analysis considering the four 
features. Prof. Rescue is included. 

    Predicted (%) 

    WT Imp 

A
ct

ua
l C

la
ss

 

WT 80.4 19.6 

Imp 37.5 62.5 

Prof Rescue 60 40 

Table 14: General likelihood analysis considering the four 
features. Imp L and Imp Sh reconsidered separately and 
Prof. Rescue is included. 

 
 

  Predicted (%) 

     WT Imp L Imp Sh 

A
ct

ua
l C

la
ss

 

 WT 82.6 17.4 0 
 

Imp  35.5 23 41.5 
 

Prof Rescue 40 26.7 33.3 
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From the analysis in Table 13 we can highlight 
that while only 37.5% of imp mutants present a WT 
phenotype, the 60% of Profilin rescue neurons exhibit 
this behaviour. A deeper study, considering the 
subdivision of imp mutants in Imp Sh and Imp L 
(Table 14), shows that 40% of neurons in Prof Rescue 
present WT phenotype compared to 35% for Imp. 
Moreover, it is interesting to analyse how Prof Rescue 
is classified regarding Imp L and Imp Sh. The 
percentage of neurons classified as Imp Sh decreases 
compared to imp mutants from 41 to 33% while the 
tendency for Imp L is inversed, with 23% for Imp and 
27% for Prof Rescue. We have also performed the 
likelihood analysis for Prof Rescue considering each 
feature separately, and observed that Prof Rescue 
presents 33% of short main axons compared to 54% 
in imp mutants, and a likelihood towards WT 
regarding the branch length distribution of 33%, 
which is around two times that of Imp L and Imp Sh. 

Finally a brief comparison can be done regarding 
the classification results with those in Mottini et al. 
(2013), who analysed wild type as well as imp 
mutated gamma neurons. The authors report an 80.4 
and 91.7% of accurate classifications for WT and imp 
mutants respectively with the ESA curve distance 
method and 85 and 79.2% with RTED. It is relevant 
to highlight that the goal in their work is to merely 
discriminate between populations, thus they privilege 
to consider exclusively highly discriminative 
parameters. On the contrary, our results -80.4 and 
62.5% for WT and Imp respectively- aim to show and 
value not only the differences but also the existing 
similarities between phenotypes, considering relevant 
morphological features and link the conclusions with 
biological parameters. Finally, our sample size 
doubles the one used in the cited work. 

5 DISCUSSION 

5.1 Axon Growing Rate and Branch 
Formation 

The value of A=1 indicates that the axon tip 
diminishes its growing speed only two times before 
stopping to create a branch, instead of doing it 
gradually. The first time can be related to when it 
senses the external guiding cues. Then it continues 
growing more slowly, which may facilitate other cues 
detection, until it finally stops, consequence of the 
second and last speed lost. When this happens, 
branching material is accumulated and after some 
time an interstitial branch is created. An increased 

value of p may indicate a higher sensibility to external 
cues as well as the presence of aberrantly stronger 
internal cues triggering branching. Another 
interpretation can be that axons with a defective 
growing rate (i.e. slower speed, or high p) are more 
susceptible to stop independently from external cues, 
and therefore to branch more. 

All the groups present the same value of A 
indicating this two-step behaviour may be conserved 
and therefore independent from Imp. Regarding p, 
Imp Sh is significantly more branched than the rest of 
the groups, including Imp L, even though they have 
the same genotype. We suggest a correlation between 
the size of the main axon and the branch density for 
imp mutants. More interestingly, Profilin rescue 
axons present the same value of p than Imp L. This 
suggests that the phenotype presenting an aberrant 
branch density is rescued by profilin overexpression 
(or, in other words, is back to wild type branch 
density). 

5.2 Wild Type Neurons Are 
Characterized by Their Branch 
Length Distribution 

The general likelihood analysis results in more than 
80% of WT axons to be correctly classified (Table 8, 
Table 13 and Table 14). Nevertheless, when looking 
at each particular feature it becomes evident that WT 
shares most of them with Imp L. Regarding the main 
axon length (Table 9), 54% of WT neurons are likely 
to be Imp L and 43% for the main axon shape (Table 
10). The analysis following the branching point 
density results in 13% of WT neurons likely to be Imp 
L, while no WT neuron was correctly classified. This 
results are validated by the p values for main axon 
length and branch length distribution that do not show 
significant differences. We encounter a similar 
situation regarding the shape model, as between Imp 
L and WT the amount of significantly different 
parameters is the minimum of all the group pairs and 
it is only 12 in 150. 

Regarding the likelihood analysis taking branch 
length distribution, WT is well defined (Table 12). 
WT and Imp L present both 80% of branches in 
	and  (Table 5), with the difference that WT 

shows statistically more branches in 	while Imp L 
in	 . We can relate our results to those of Tessier and 
Broadie (2008) and Medioni et al. (2014). The first 
publication reports that a loss of  branches by a late 
pruning process occurs in wild type neurons and not 
in dFMRP mutants (dFMRP is also a profiling 
regulator) and the second one concludes a defective 
development of long branches ( ) in imp mutants. 
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The maximal percentage of correct classification 
for WT considering the features separately is 60% for 
the branch length distribution (Table 12), followed by 
54, 39 and even 0% corresponding to main axon 
shape, length and branching point distribution (Table 
10, Table 9 and Table 11). Interestingly, the general 
classification mixing the four features improves these 
percentages up to 80% (Table 8, Table 13 and Table 
14). This suggests that WT neurons are well defined 
and different from Imp mutants but it is necessary to 
consider all the morphological features together. This 
highlights the advantages of our method as it goes 
beyond a simple statistical analysis, allowing to mix 
different features as well as to consider each neuron 
independently. 

5.3 imp Knockdown Presents Two 
Different Phenotypes 

It has already been reported by Medioni et al. (2014) 
that imp mutants could either present a conserved 
main axon length or an aberrant one, with a 50% of 
occurrence each. We corroborate this results by 
applying the k-means automatic algorithm which 
separated our Imp population in Imp L and Imp Sh, 
with a 46 vs. 54% of incidence each. This bimodal 
behaviour can also be seen in the length distribution 
Figure 5. Surprisingly, we have found other relevant 
morphological differences between this two groups 
that have not been yet reported in the bibliography. 
The main one is the branching points distribution, as 
Imp Sh is significantly more densely branched than 
Imp L (Table 3 and Table 4). Also, the percentage of 
branches ranging from 1 to 5 µm, while aberrant in 
Imp L, is conserved in Imp Sh (which shows no 
differences from WT (Table 6)). 

Regarding the general likelihood analysis (Table 
8), while less than 20% of Imp Sh neurons can be 
considered to have a WT phenotype, 55% of Imp L 
do, allowing to conclude that Imp L presents a 
generally more wild type phenotype. Finally, we can 
conclude that the penetrance of the phenotype is 
~63%, following our general likelihood analysis 
(Table 13 and Table 14). 

5.4 Adding Back Profilin Rescues the 
Main Axon Length and the Branch 
Length Distribution 

The general likelihood analysis (Table 13) 
considering Imp altogether shows that Profilin 
decreases the percentage of imp mutant phenotype 
from 63 to 40%.  

Regarding the main axon length, while the 
aberrant neurons represent the 54% of the Imp 
population, they are reduced to only 33% in Prof 
Rescue (in Prof Rescue 67% of neurons present a 
conserved length (WT + Imp L) and only 33% do 
not). Following the branch length distribution 
resemblance analysis, 33% of Prof Rescue neurons 
are classified as WT and represent the second 
maximum percentage after WT itself (only 18 and 
15% correspond to Imp L and Sh, respectively). 
Looking at the p values between branch length 
categories (Table 6 and Table 7), we can conclude 
that Profilin rescues the late pruning showing a 
conserved percentage of 	branches and also allows 
to develop long branches. Even though the percentage 
of branches in 	is slightly smaller for Prof Rescue 
than WT (Table 5), this difference does not come out 
as significant in the statistical tests, suggesting a 
conserved percentage of long branches in Prof Rescue 
which is not seen in Imp Sh nor in Imp L.  

Finally, regarding the general likelihood analysis 
considering Imp L and Imp Sh separately (Table 14), 
we conclude that Profilin rescue diminishes the 
general morphological aberration, as it moves the 
tendency towards WT and Imp L phenotypes and 
diminishing the percentage of neurons with an Imp Sh 
phenotype. 

6 CONCLUSIONS 

In this work we proposed probabilistic models 
describing the behaviour of relevant morphological 
features (i.e. main axon length and shape as well as 
branch length and density) in Drosophila gamma 
neurons. This approach allows to accurately describe 
as well as differentiate genetically different 
Drosophila gamma neurons considering their 
morphology. The similarities and differences we are 
able to enunciate thanks to this work between wild 
type neurons and the studied mutants directly help to 
the understanding of the role of Imp and Profilin 
during axonal remodelling, particularly on axon 
elongation and branch formation. 

We propose that this method consisting in feature 
selection, model application and likelihood analysis 
could be applied to any case of study between species 
where similarities are as important as differences. We 
can also conclude that the study of individuals is 
relevant and more enriching than just population 
analysis driven by ordinary statistics. 
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