
Spontaneous Pupillary Oscillation Signal Analysis Applying Hilbert 
Huang Transform 

Fabiola M. Villalobos-Castaldi1, José Ruiz-Pinales2, Nicolás C. Kemper-Valverde1, 
Mercedes Flores-Flores3, Laura G. Ramírez-Sánchez1 and Metztli G. Ortiz-Hernández1 

1Centro de Ciencias Aplicadas y Desarrollo Tecnológico, UNAM, Expert Systems Lab, 
Circuito Exterior S/N C.P. 04510, Ciudad Universitaria, Ciudad de México, D.F., Mexico 
2Electronics Engineering Department, Engineering Division, Universidad de Guanajuato 

Carretera Salamanca - Valle de Santiago Km. 3.5 + 1.8. Comunidad de Palo Blanco Salamanca, 
Leon, Gto., C.P. 36885, Mexico 

3Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnológico S/N, Valle de Anahuac, C.P. 55210,  
Ecatepec de Morelos, Mexico 

Keywords: Time-frequency Analysis, Hilbert Huang Transform, Spontaneous Pupillary Oscillation, Non-traditional 
Time-series Characterization Scheme. 

Abstract: This paper proposes a new application of the Hilbert-Huang transform (HHT). Pupillogram recordings were 
analyzed through the non-traditional HHT to investigate patterns in the time-frequency parameters of 
Spontaneous Pupillary Oscillation (SPO) signals. The traditional Fourier transform is only useful for linear 
stationary signals analysis, but the HHT was designed for the analysis of non-linear and non-stationary 
signals. However, the HHT is a more suitable tool to study SPO signals which are fundamentally non-
stationary. The intrinsic properties of the Spontaneous Pupillary Oscillation signals were highlighted by the 
HHT scheme and the results showed that SPO waves present local and intermittent variations through the 
time span. The numerical parameters demonstrated that it is a wide inter-subject variation in the intrinsic time-
frequency parameters contribution from each yielding mode to the total signal content.  

1 INTRODUCTION 

This study proves the assumption that spontaneous 
pupillary fluctuation is stationary can be a serious 
misconception.  Complex interactions exist between 
the sympathetic and para-sympathetic systems which 
are two components of the ANS autonomic nervous 
system acting as a balance between competing neural 
mechanisms. Using selected stimulations, the 
dynamics of this balance mechanism could be 
significantly altered. Such modifications can be 
studied using relevant autonomic indices (De Souza, 
et al., 2007). 

The iris is a vascular structure and changes in 
pupil size are controlled by two smooth muscles in the 
iris (Sylvain and Brisson, 2014). The sphincter 
pupillae located in the stromal layer is under 
cholinergic control, mediated via para-sympathetic 
nerves from the Edinger-Westphal nucleus. The 
dilated pupillae situated posterior to the constrictor 

muscle is innervated by adrenergic fibers originating 
in the superior sympathetic ganglion. This set of 
opposing muscles exercise a fine but extensive 
control over the pupil (Newman, 2008).  

The constriction and dilatation of the pupillary 
aperture is produced mainly through ANS control 
exerted on the muscles of the iris. More specifically, 
neurons of the PSN innervate circular fibers of the 
iris, causing pupillary constriction, whereas 
excitation by SNS neurons causes the radial fibers of 
the iris to produce dilation of the pupil (Lowenstein, 
1950). Pupil diameter can range from 1.5 to more than 
9 millimeters in humans, and a little time, just about 
0.2 seconds, it is required by the muscles of the iris to 
react to stimulation (Goldwater, 1972). The ANS in 
its role of maintaining homeostasis is in a state of 
constant fluctuation (Malpas, 2010), (Hreidarsson 
and Gundersen, 1988). This fluctuation, expressed by 
spontaneous variations in the rhythmic changes in 
pupil-size of around 1% occurs with heart beats and 
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breathing due to fluctuations in blood pressure 
(Warga, et al, 2009). The variance of normal pupil 
size is very large. When a constant light level is 
maintained, the pupil is seen to exhibit continual 
fluctuations called Spontaneous pupillary 
fluctuations (SPF) or pupil unrest or physiological 
hippus. These variations in pupil size is a  
characteristic of the regulatory mechanism and it is 
often said that it shows a state of pupillary unrest. 
This is a physiologic phenomenon that represents a 
dynamic equilibrium of pupil size of  the sympathetic 
and para-sympathetic activity modulated by the 
central nervous system is responsible (Newman, 
2008), (Nowak et al., 2008). A typical recording of 
pupil size in a constant light source shows marked 
spontaneous activity with an irregular pattern of a 
periodic oscillation. Unrest amplitudes are highest for 
medium pupil sizes (Rosenberg and Kroll, 1999). 

2 RELATED WORKS 

In the nighties (McLaren et al., 1992) the authors 
developed digital filtering techniques and Fourier 
analysis to calculate several parameters designed to 
report hippus and miosis. These techniques provided 
a quantitative manner to evaluate pupillograms to be 
used in the assessment of alertness. The first 
parameter designed to report hippus was derived from 
the Fourier-transformed pupillogram and was the area 
of the frequency spectrum in a selected band of 
frequencies. A second parameter to report hippus was 
also investigated. Spectra differ the most at low 
frequencies. At higher frequencies, differences were 
seen to diminish.  

A fast Fourier transformation was carried out as a 
vigilance objective test for frequencies from 0.0 to 0.8 
Hz in (Lüdtke et al., 1998) with the purpose of 
detecting fatigued waves, i.e., slow pupillary 
oscillations. For temporal changes analysis in the 
frequency domain of pupillary oscillation two 
parameters were extracted. One parameter based on 
the FFT regarded only frequencies below 0.8 Hz, 
neglecting fast pupillary changes (>1.5625 Hz). An 
additional parameter referring to the tendency for 
pupil instability, the pupillary unrest index (PUI), was 
defined by cumulative changes in pupil size based on 
mean values of consecutive data sequences. The 
power and PUI were compared using the Mann–
Whitney U-test. Both parameters showed significant 
differences between the two groups. The main 
differences between an alert and a sleepy group of 
people in power and PUI demonstrated the usefulness 
of this method to objectively detect and quantify 

sleepiness. 
The study purpose reported in (Calcagnini et al, 

2000) was to assess whether and the extent LF and 
HF rhythms contribute to spontaneous pupil diameter 
fluctuations in rest and during sympathetic activation. 
To investigate the statistical properties of the SPDF, 
a parametric spectral and cross-spectral estimation 
was used. The spectral coherences were used to 
quantify the statistical link among rhythms in 
different signals. A rhythmic respiratory component 
(HF) was clearly found at 0.25 Hz in the pupillogram 
spectrum in all the subjects. Cross spectral analysis 
showed a significant coherence in this band between 
pupil and respiration, pupil and tachogram, and pupil 
and systogram (Cerutti, 2000).  

In conclusion the analysis of the SPF showed the 
contribution of two specific harmonic components, 
which have been found to correspond to the well-
known LF and HF rhythms of the Heart Rate and 
Blood Pressure variability signals (Cerutti, 1997). 
Additionally, the authors concluded that the 
apparently stochastic behavior of the spontaneous 
PDF hides specific harmonic components reflecting 
autonomic activity (Cerutti, 1999). 

In the two thousands (Nowak et al, 2008) the 
authors developed a new method of variability 
description for the Spontaneous Pupillary Fluctuation 
(SPF) signals based on the time-frequency analysis by 
studying the variability of the SPF signal spectrum. 
The application of fast pupillometry for recording the 
SPF permitted expanding the analyzed frequency 
band to 20 Hz. The proposed method of analysis and 
the introduced measures of SPF variability helped 
them in the detection and quantitative description of 
short-lasting time-frequency and time-amplitude 
variations that were obscured by the overall spectral 
analysis (Elsenbruch, 2000). The authors mentioned 
that the Fourier Transform (which requires a 
stationary signal and is commonly used in the spectral 
analysis of SPF), has limitations in signal testing. It 
was concluded that the SPF signal is non-stationary, 
i.e. its spectrum is varying in time. Thus, it was 
clearly demonstrated that the previous assumptions 
are no longer valid (Longtin, 1989). 

The previous belief was that fluctuations in pupil 
diameter arose from random processes, but new 
results from chaotic time series has shown that they 
may also arise from deterministic systems 
(Rosenberg and Kroll, 1999). The accumulated 
evidence supports the notion that the dynamics of 
pupil size are governed by deterministic chaos rather 
than a linear or stochastic process, and this has been 
demonstrated by analyzing the pupil size versus time 
from six subjects using pupillography and nonlinear 
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techniques (Rosenberg and Kroll, 1999). The 
examined values of the correlation dimension, the 
Hurst exponent, the flat power spectra, the values of 
the Lyapunov exponent, and phase plane analyses 
indicate a chaotic system as the origin of the 
phenomenon. Pupil activity reported showed 
repetitive complex patterns which could be explained 
by a chaos rather than a random system (Rosenberg 
and Kroll, 1999).   

As previously mentioned, the SPF signal analysis 
has been used for monitoring the level of alertness in 
clinical conditions, diagnosing sleep disorders, 
assessing how the different rhythms of the SPS 
contribute to spontaneous pupil diameter fluctuations 
at rest and during sympathetic activation, and also for 
assessing the efficacy of therapeutic interventions 
(Boyina et al., 2012), (Naber et al., 2013), (Jain et al., 
2011), (Heaver, 2012), (Calcagnini et al., 2000), 
(Bouma and Baghuis, 1971), (Pedrotti et al., 2014), 
(Regen et al., 2013)  and (Lüdtke et al., 1998). These 
analyses have generally been performed by spectral 
indices computed from standard spectral analysis 
techniques (as the Fast Fourier Transform). Such 
methods have generated comparable results but 
cannot account for the unavoidable inter-individual 
variability that naturally occurs in the pupillary 
fluctuation signals. There are some crucial 
restrictions using these techniques:  the system must 
be linear and the data must be strictly stationary; 
otherwise, the features extracted via the Fourier 
Transform do not have any physiological significance 
(Boyina et al., 2012), (Cong, Z. 2009).  

Ephemeral nature of many physiological events 
indicates associated data are non-linear and non-
stationary waves. Even so, data being non-stationary 
has not received the proper attention and its effects 
are frequently disregarded. Serious consequences of 
such assumptions are inaccurate results or incorrect 
interpretation of the underlying physics.  

Even if under exceptionally general conditions, 
Fourier transform may be used by those methods, it 
exists some basic limitations: indeed the system has 
to be linear and the data must be strictly periodic or 
stationary. Hence, if conditions are not keep within 
such limits, then the resulting spectrum will not make 
any sense physically at all, and Fourier spectral 
analysis based methods will be considered of limited 
use. Having no alternatives, current works are still 
using Fourier spectral analysis to process such data 
(Huang, N., 2005).  (Faust and Bairy, 2012). At the 
end, methods which do not assume a stationary status 
(Cong , Z., 2009) are hardly desirable to have.  

In the light of such conditions, it is clear that 
computer methods using Fourier spectral analysis are 

of limited use. Shortly, both the indiscriminate use of 
Fourier spectral analysis and the acceptance of the 
stationary and linearity sates may give wrong results, 
some of them are described below. (Huang, N., 2005). 
(Faust and Bairy, 2012). It is desirable to employ 
quantitative methods which do not assume a 
stationary status (Cong, Z., 2009). The Hilbert Huang 
Transform (HHT) initially developed for natural and 
engineering sciences and now is applied to financial 
data (Huang et al., 2003). The HHT method is 
specially developed for analyzing non-linear and non-
stationary data.  

Nowadays, several methods are available for the 
time-frequency analysis of non-stationary signals. 
For instance, the short-time Fourier transformation 
(STFT) can be used when the signal is piece-wise 
stationary, whereas the wavelet transform can be used 
for linear non-stationary signals (Wu and Huang, 
(2005). One drawback of the wavelet transform is that 
a priori knowledge about the signal to analyze is 
needed in order to choose a suitable wavelet. Another 
drawback is that its time-frequency resolution is 
limited by the Heisenberg-Gabor uncertainty 
principle. In contrast, the HHT can be used to analyze 
non-linear and non-stationary signals with excellent 
resolution in both time and frequency (Barnhart and 
Eichinger 2011)  and (Barnhart, 2011).  

3 HILBERT HUANG 
TRANSFORM 

HHT’s development was motivated by the need to 
describe non-linear and non-stationary distorted 
waves in detail (Huang and Long, 2006). It was 
designated by the National Aeronautics and Space 
Administration (NASA) Goddard Space Flight 
Center (GSFC), and pioneered by (Huang, Long and 
Shen, 1996), (Huang et al., 1999), (Huang et al., 
1998), (Huang et al., 2003), (Huang and Shen, 2005) 
and (Huang et al., 2007). Since this new analysis 
technique was developed, it has shown the ability to 
analyze non-linear and non-stationary data in many 
areas of research (bio-signal, chemistry, chemical 
engineering, financial applications and others). 

Different from many of the previous transform 
methods, like Fourier-based techniques [wavelet and 
fast Fourier Transform], this remarkable method is 
intuitive, direct, a posteriori, and adaptive; and 
consequently, highly efficient. Mainly because its 
origin rise from the decomposition based on and 
derived from the physical signal. The bases so derived 
have no close analytic expressions, and they can only 
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be numerically approximated. (Huang, N. 2005). 
This decomposition method is adaptive, and 

therefore, highly efficient. As indicated by (Flandrin 
et al., 2004), one of the advantages of the HHT is that 
its data driven criteria is not fully dependent on 
theoretical input or formula. Also, the HHT analyzes 
non-stationary signals locally.  

There are two processes involved in the HHT: the 
Empirical Mode Decomposition (EMD) and the 
Hilbert Spectral Analysis (HSA). The key part of the 
method is the pre-processing step, the EMD, in which 
any complicated data set can be decomposed into a 
finite and often small number of Intrinsic Mode 
Functions (IMF). With the Hilbert transform, the IMF 
yields instantaneous frequencies as functions of time 
that give sharp identifications of imbedded structures 
(Huang et al., 2003). The final presentation of the 
results is a time-frequency-energy distribution, which 
was designated as the Hilbert Spectrum. Comparisons 
with the Wavelet and Fourier analyses showing that 
the HHT method offers much better temporal and 
frequency resolutions. 

The Hilbert transform, , of any function or 
signal  is given by: 

≡
1

 (1)

where PV denotes the Cauchy’s principle value 
integral.  

An analytic representation of the signal can be 
formed with the Hilbert transform pair as: 

 (2)

where 
/ , 

(3)
,	 

and 

√ 1 
 

 and  are the instantaneous amplitudes and 
phase functions, respectively (Huang et al., 2001). 
The instantaneous frequency can be computed by 
means of: 

 (4)

In order to apply the Hilbert transform to a signal, it 
must first be converted to a symmetric signal with 
mean zero and no negative maxima and no positive 
minima. The Empirical Mode Decomposition (EMD) 

is a method to reduce a signal into a collection of 
intrinsic mode functions with “well-behaved” Hilbert 
transforms. Unlike the Fourier series or transform, 
this representation allows a simultaneous 
understanding of the signal in both frequency and 
time. 

3.1 Empirical Mode Decomposition 

Empirical Mode Decomposition (EMD) is a tool 
which provides a signal-adaptive decomposition 
useful for the analysis of non-stationary and non-
linear data and shows a strong capability to precisely 
adjust to the spectral content of the analyzed data. It 
is based on the concept that any complicated set of 
data can be decomposed into a finite and often small 
number of mono-component signals called the 
Intrinsic Mode Functions (IMF) which are associated 
with different spectral contributions and then 
applicable to compute the physical meaning of the 
complex signal. Decomposition of a signal is made 
through an iterative process to cancel out the local 
means from the signal. The sifting process is as 
follows: 
1. Compute all the local extrema (maxima and 

minima). 

2. Obtain the upper envelope by connecting all the 
local maxima with a cubic spline. 

3. Repeat for all the minima to obtain the lower 
envelope. 

Then, the mean of the splines is subtracted from the 
original signal. The sifting process is repeated with 
the resulting residual signal until the mean and 
standard deviation of the average spline is near zero. 
The resulting residual signal meets the definition of 
an IMF. An IMF is therefore defined as a signal with 
zero-mean, and number of extrema and zero-
crossings differing by at most one (Huang et al., 
1998), (Huang et al., 1999) and (Huang et al., 2003). 
This first IMF is subtracted from the original signal 
and the whole sifting process is repeated with this 
new residual signal. The decomposition process stops 
when the residue is a monotonic function which not 
an IMF. The last extracted IMF corresponds to the 
trend which is the lowest frequency component of the 
signal.  

As a result, the original signal  can be written in 
terms of the IMFs and the final residue as: 

 (5)
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Using equations 2 and 3, the analytic function can be 
written as: 

 (6)

This function has a similar form to the Fourier 
decomposition of a signal : 

 (7)

Thus, the EMD decomposition can be regarded as a 
generalized Fourier decomposition. Unlike the 
Fourier transform, which is predicated on a priori 
selection of basic functions that are either of infinite 
length or have fixed finite widths, this empirical 
decomposition method is adaptive, and, therefore, 
highly efficient (Cong, Z., 2009). Since the 
decomposition is based on the local characteristic 
data time scale, it is applicable to non-linear and non-
stationary processes. The EMD is also useful as a 
filter to extract variability of different scales. At a 
signal time instance, only a single frequency 
component exists. The EMD method is a necessary 
data pre-processing before the Hilbert transform can 
be applied (Huang, N.E., 2003).  

4 DATA PROCESSING AND 
ANALYSIS  

A data set of 44 documented pupillary records of 
healthy university students has been analyzed. Length 
of signals are one minute at a rate of 30 fps. Details 
of the collected data are: an IR video camera was used 
for recording one eye only, typically the left eye, and 
they were done under constant luminance level (40 
cd/m2). Frame by frame, pupil images were recorded 
and transferred by means of a video capture board 
providing real-time digitizing besides the video 
sequences. The video-capture board was fitted by 
USB on a Pentium® Dual-Core T4200 @ 2 GHz and 
4 GB of internal memory; MATLAB 7.10 (R2013a) 
was used to obtain real time recordings of the movie. 
The video sequences were collected from subjects in 
a resting condition, that is, they were seated on a 
comfortable chair. Experiment facilities were located 
in a quiet usability laboratory. For readers going into 
details about the infrared video Pupillography system 
and the image processing method, please refer to 
(Villalobos and Suaste, 2013). 

Following the procedure described above (EMD 
algorithm) the SPO signals were decomposed into 
their IMF components. To exemplify the results 
obtained from EMD, in Figure 1 a segment of the IMF 
components obtained from a selected SPO signal 
(black line) are shown. In this example, the algorithm 
yielded 8 components (blue lines) plus a residue R 
(red line). Each IMF has a distinctive amplitude and 
frequency content.  For the whole data set (44 
pupillograms), the number of IMFs needed to 
decompose the signals fluctuates from 4 to 10 modes 
(plus the non-linear trend or residue R) Huang et al., 
indicated that the broad number of modes extracted 
from a signal is approximately equal to log2 (N), 
where N is the number of points per signal (Huang et 
al., 2003). The values obtained in this study fall 
within the limits set by that expression.  

The intra signals variations could be due to the 
informative nature of the IMFs, and is evidence of the 
numerous and different factors that direct each 
subject’s response. A remarkable advantage of the 
decomposition is that the local variation of the pupil 
area can be observed directly, the intrinsic 
oscillations emerge naturally and, based on 
knowledge of the monitored phenomena, solid 
conclusions can be obtained about the meaning of 
each mode and its relationship to particular behaviors.  

Even the residue has a sounded meaning; it keeps 
the mean pupil diameter without fast and short lasting 
pupil oscillations. The non-linear trend, hallmark of a 
non-stationary process, is negative because it slowly 
decays through the time scale (Papoulis and 
Saunders, 1989). Concerning the frequency and 
energy levels involved in the residual component, 
from now on, in the IMFs analysis they will be 
excluded. 

Once the signals were decomposed into their 
IMFs, a numerical proof of completeness is 
necessary. The numerical reconstruction of the 
selected example is as follow: 
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Figure 1: EMD processing of a typical SPF signal. The top 
panes is the original signal, imf1 to imf8 are the modes and 
res is the residue. 

Adding R to each component, starting from the 
longest period component to the shortest (IMF1), the 
original signal is recreated. When the procedure has 
reached the IMF2 the original series has been 
practically recovered (total energy contained in the 
original SPO data). The latest component (IMF1) 
does not contribute significantly to reassemble the 
signal, actually it can be seen as noise. The 
completeness was numerically verified for the whole 
data set. The IMFs pertinence was proved through 
null differences between the original signals and the 
sum of the components. 

4.1 IMF Statistics  

In order to clarify the meaning of the IMFs and to use 
them adequately to describe the studied phenomena, 

the modes are characterized by well-known statistics 
metrics. 

4.1.1 Period 

Based on the definition of the IMF function which 
established that the frequency of an IMF can change 
continuously with time, the signal period is assumed 
as not constant (Huang et al., 2003). The IMF period 
can be calculated by dividing the number of data 
points by the number of peaks (local maxima). So, if 
T is the length of the IMF component and s the 
number of peaks, then, the IMF period is equal to T/s. 
A boxplot for the mean period versus IMFs is 
depicted in Figure 2.  

 
Figure 2: Boxplot for the period content according to the 
IMF index. 

The first mode has the smallest mean period (~3), and 
for the successive components the mean period 
doubling is followed. For the last mode, the period 
variability is evident going from values near zero to 
the maximum that almost reaches 600 which is 
indicative of very slow pupillary oscillations. About 
the period doubling, it is more evident in the first 
modes and not clearly verified for the last 2 modes; 
this may be due to the increasingly noticeable 
presence of noisy components as the decomposition 
process approaches the residue. 

As observed in the graph, there are not significant 
period differences in the whole data set when 
analyzing each mode separately. It is important to 
note that the period significantly changes in the 8th 
IMF. 

4.1.2 Variance 

The mean variance contribution  from  each  IMF  was 
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also computed. The variance is used as a simple and 
intuitively benchmark to determine the significance 
of each component (IMF) of the original signal. Thus, 
components with larger variance are more significant.  

It was found that the contribution of each IMF to 
the total variance also changes from signal to signal 
Figure 3 illustrates the boxplot for the variance 
contribution (%) depending on the IMF component 
number. 

 

Figure 3: Boxplot for the variance content according to the 
IMF index. 

Table 1: Variance content for a selected subject. 

IMF VAR VAR (%) ∑ (%) 

1 0.0479 31.7013 31.7013 

2 0.0305 20.1545 51.8559 
3 0.0219 14.4560 66.3119 

4 0.0124 8.2111 74.5230 
5 0.0089 5.9113 80.4344 

6 0.0068 4.4731 84.9074 
7 0.0061 4.0455 88.9529 

8 0.0167 11.0471 100.0000 

Table 1 gives the contribution of each IMF to the total 
sum of variances for a selected subject in absolute 
terms, % of total variance and cumulative % variance 
contribution.  

In this table it is possible to see the large 
differences in the variance contribution from each 
IMF to the total variance within the selected signals. 
Based on the variance content reported in Table 1, it 
is concluded for this specific subject, that the most 
important components are the highest frequency 
modes (IMF1, 2 and 3); the sum of variances for these 

important components contribute 66.31% of the total 
variance, but the low frequency components have less 
effect on the whole change of this SPO signal. The 
variance intervals of the first components are wide 
and grow as the mode index increases. 

Conversely to the last case, in the SPO wave 
presented in Table 2, the most important IMF 
components are the lowest frequency modes (IMF4, 
5 and 6), and their variance sum contributes 
86.5874% of the total variance. Therefore, the high 
frequency components have less effect on the total 
variance of the signal. The interval of the higher 
frequency components is narrow while the interval of 
the lower frequency modes becomes wider.  

Table 2: Variance content of another selected subject. 

IMF VAR VAR (%) ∑ (%) 
1 0.0007 3.7769 3.7769 
2 0.0004 1.9960 5.7729 
3 0.0014 7.6397 13.4126 
4 0.0038 21.4697 34.8822 
5 0.0083 46.6456 81.5279 
6 0.0033 18.4721 100.000 

As can be concluded, the frequency at which the 
highest variance contribution occurs changes from 
signal to signal, so the highest variance content for 
each signal is present on different IMFs. 

4.2 Instant Amplitude and Frequency 
Analysis 

Having obtained the IMF components, it is not 
difficult to apply the Hilbert transform to each IMF 
component in order to compute the instantaneous 
amplitude and frequency according to equation 3 and 
4. The combination of the EMD and the Hilbert 
Spectral Analysis is designated as the Hilbert–Huang 
Transform (HHT).  

4.2.1 Instant Amplitude 

Figure 4 shows the boxplot of the amplitude 
contribution according to the number of IMFs. As can 
be seen, there is a large variation between 
components and they are highly intermittent through 
the time span. The amplitude variation between 
modes leads to the conclusion that for the studied 
phenomenon and analyzed population a particular 
IMF cannot be selected as the one that contains the 
higher energy levels. The mean amplitude 
contribution of all components is in the 0.1-0.2 mm 
interval. 

The amplitude has a slight tendency to decrease as 
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the number of IMFs increases. However, in the first 
and last modes (8th IMF, which is the most 
representative before reaching R) the fluctuations of 
the pupil area are wider (~0 - 0.3mm). The amplitude 
intervals of in-between modes become high and are 
mainly concentrated below the ~0.25 mm range. It is 
evident that there is a wide inter-subject variation and 
no major modes are detected, i.e. the highest 
amplitude values for each signal (subject) are on 
different IMFs.  While for some subjects the 
amplitude is higher at the first modes, for others the 
maximum values are present at superior. 

 

Figure 4: Boxplot for the amplitude content according to the 
IMF index. 

There are interesting responses to be noted:  
 

a) Where amplitude levels are almost equally 
distributed in all modes,  

b) Where amplitude values different from zero are 
only present in the first modes, 1st to 4th IMFs and, 

c) Where the amplitude concentration cannot be 
referred to trends a) nor b). 

4.2.2 Frequency 

Figure 5 illustrates the boxplot of the frequency 
variation according to number of IMFs. As can be 
observed, the frequency value progressively falls as 
the mode number increases. The frequency range of 
each IMF is well defined and independent of others. 
There are marked differences between the limits of 
the frequency characteristic of each mode. It is 
verified that the highest frequencies are contained in 
the first components and, consequently, the latest 
modes have the lower frequency levels. The variation 

intervals become narrower as the IMF index is higher. 
The first mode has the highest frequency content 

(~ 9 Hz to ~11 Hz), the 2nd IMF frequency is around 
5 Hz while from the 3rd to 8th modes the activated 
frequencies go from ~3 Hz to ~ 0.01 Hz. Observing 
the response trends defined concerning amplitude 
behavior, interesting relationships can be 
pronounced. 

There are subjects with strong pupillary 
oscillations at the first modes; at the highest 
frequency levels, others present them at the higher 
modes and at the lower frequency levels. 

 

Figure 5: Boxplot for the frequency content according to the 
IMF index. 

With regard to the highlighted responses:  

a) Some subjects respond with similar amplitude 
levels at every frequency detected,   

b) The behavior of the subjects having zero 
amplitudes in the higher modes must be 
interpreted as responses only in the highest 
frequency levels  and, 

c) Some individuals have reactions that activate 
frequencies below 1 Hz.  
 

The differences in the frequency content and their 
association with the amplitude has an clear effect on 
the conclusions about the studied phenomenon, the 
stationary statement (signals) and even on the 
classification system that generates the data as  
nonlinear. 

4.3 Spectral Analysis 

Having obtained  the  IMF  components, the  next  step 
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in the proposed method is to apply the Hilbert 
Transform to each component and generate the 
Hilbert Spectrum (HS). Having the Hilbert Spectrum 
defined, we can compute the Marginal Spectrum 
(MS) that offers a measure of total amplitude (or 
energy) contribution from each frequency value. In 
other words, the MS represents the cumulated 
amplitude over the entire data spam. So the MS is the 
HS that was integrated through all time. In this 
simplification, the time coordination is lost as in the 
Fourier spectral analysis, which leave a summary of 
the frequency content of the event.  

The frequency in either HS or MS has a 
completely different meaning from results generated 
by applying Fourier spectral analysis. The existence 
of energy at a particular frequency in the Fourier 
representation, means a component of a sine or a 
cosine wave persisted through the time span of the 
data. So the existence of energy at the particular 
frequency, means only that, in the whole time span of 
the data, that there is a higher like hood for such a 
wave to have appeared locally.  

In order to try to compare the proposed spectral 
representation method against Fourier conventional 
method, we performed a standard FT analysis. In 
Figure 6 we directly compare the obtained MS (solid 
line) against the conventional Fourier technique 
(dotted line) of the SPO data from the Figure 1. 

 

Figure 6: Power spectra of SPF data. 

It can be seen that the Marginal spectrum differs from 
the Fourier based spectrum in two main issues. 
Although the spectral density at the low-frequency 

portion is higher in the Hilbert spectra, the Fourier 
spectrum is dominated by the DC term due to the non-
zero mean pupil area, this is also meaningless because 
of the non-stationary of the data. The spectral density 
is lower than the Fourier analysis at higher 
frequencies, which was expected because of the 
different interpretation of the HHT’s and the Fourier-
based method of data non-linearity. Most of the 
Fourier-based techniques always decompose a 
nonlinear signal into its base frequency and higher 
harmonics; because of this some spectral energy in 
the higher frequencies is leaked from their lower 
frequency sub harmonics. The HHT interprets signal 
non-linearity in terms of frequency modulation, and 
the spectral energy of a nonlinear signal remains at 
the neighborhood of the base frequency (see Figure 
6). 

These findings coincided with the ones reported 
by (Nowak et al.2008), where by the application of 
fast pupillometry for recording and extended spectral 
analysis in examining SPO signals, they found 
interesting frequency components in some subjects in 
the range above 1 Hz. They also reported the 
existence of several harmonics even up to 20 Hz 
frequency range. The analysis they carried out 
showed that the distribution of the PSD amplitude 
peaks was different for different frequencies. 

Contrary to their proposed method where they 
considered the computed numerical parameters as 
global, we represent the pupil area fluctuation tacking 
advantage of the instantaneous frequency approach, 
which even under the worst conditions, is still 
consistent with the physics of the system being 
studied and could represent it much more accurately 
than previous techniques based on Fourier analysis.  

5 CONCLUSIONS 

This paper has addressed to the possibility of 
characterizing the natural behavior of Spontaneous 
Pupillary Oscillation SPO records by the time-
frequency signal variations.  The objective of 
describing data from non-traditional perspectives 
(time-frequency-intensity domain) and for finding 
specific and indicative behavior patterns is addressed 
by applying the HHT to the SPO waves. Non-linear 
and non-stationary intrinsic characteristics of these 
signals are discovered and reported in this paper using 
the advantageous non-traditional signal processing 
technique.  

The EMD was implemented to decompose the 
original SPO signals; the obtained IMF modes 
varying from 4-10 plus a non-linear trend which also 
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showed a clear non-stationary behavior. The fact that 
the EMD analysis decomposed the spatially 
distributed SPO data into a set of natural oscillations 
(Khademul, 2006), showed the IMFs are more 
effective in isolating physical processes of various 
time scales and are also statistically significant. 

The obtained results, lead us to observe that the 
SPO signals present local and intermittent pupil area 
variations in time. The EMD successively extracts the 
IMFs starting with the highest local spatial 
frequencies in a recursively way, which is effectively 
a set of successive low-pass spatial filters based 
entirely on the properties exhibited by the data 
(Khademul, 2006). It is also observed that there are 
wide inter-subject differences in the variance, period, 
amplitude, and frequency contribution from each 
mode to the total signal. These inter-mode variations, 
lead us to the conclusion that for the studied 
phenomenon and analyzed population, a particular 
IMF cannot be selected as the one that contains the 
higher amplitude level or dominant frequencies.  

Our characterized analysis is of a preliminary 
nature and many issues have to be addressed and 
investigated rigorously, and from the obtained results, 
the HHT seems to have much more potential for this 
initial approach. Applying non-traditional 
alternatives to the study of the pupillograms presents 
a great opportunity to understand behaviors and to 
mitigate diseases or specific medical conditions, for 
example: discern between well and diseased states, 
explore if SPF records could provide information for 
the evaluation of the psychophysiological response of 
ANS to affective triggering events or as a quantitative 
way in the assessment of alertness. 

As the SPO signals are not stationary, the Fourier 
spectrum is meaningless physically, in contrast, we 
have demonstrated that with the HHT as analytic 
method, the resulting frequency-energy spectrum 
provides a physical meaningful interpretation of the 
signal. 
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