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Abstract: We describe an Application Program Interface (API) that facilitates the use of GLSL shaders in 
computational design, interactive arts, and data visualization. This API was first introduced in the version 
2.0 of Processing, a programming language and environment widely used for teaching and production in the 
context of media arts and design, and has been recently completed in the 3.0 release. It aims to incorporate 
low-level shading programming into code-based design, by integrating traditional models of graphics 
programming with more expressive approaches afforded by the OpenGL pipeline on modern GPUs. We 
contrast Processing's shader API with similar interfaces available in other frameworks used in 
computational arts and design, in order to better understand its advantages and shortcomings. 

1 INTRODUCTION 

The fields of computational arts and design rely 
heavily on the use of interactive Computer Graphics 
(CG). Practitioners continuously push the 
boundaries of real-time rendering as a medium for 
visual expression. In order to respond to the need of 
teaching programming to artists and designers, as 
well as to integrate code-based practices into their 
artistic production, several open-source 
programming frameworks specifically geared 
towards this audience have been developed during 
the past decade (Orr, 2009), such as Processing 
(Processing Foundation I), OpenFrameworks (OF) 
(OF community), and Cinder (Bell et al.), and gave 
rise to a practice often identified as “creative 
coding”. The Processing project, conceived in 2001 
by Casey Reas and Ben Fry at the MIT Media Lab, 
is among the earliest of such initiatives (Reas and 
Fry, 2006) and perhaps the one with the strongest 
emphasis on the pedagogical aspects and the explicit 
goal to “increase computer literacy within the design 
and visual arts, and visual literacy within technology 
and engineering“ (Reas and Fry, 2014). 

As graphics hardware and APIs continue to 
evolve at rapid pace, the widespread availability of 
programmable Graphics Processing Units (GPUs) 
and shading languages such as GLSL (Rost, 2009) 

enables new and exciting possibilities in real-time 
rendering. However, this comes at the cost of 
increased demands in technical knowledge. With the 
introduction of OpenGL 3.0 on the desktop, 
OpenGL ES 2.0 on mobile devices, and WebGL 1.0 
on the browser, these demands became almost 
inescapable. One of Processing's main strengths is 
its minimal API (Processing Foundation II), which 
combined with a simplified development 
environment, allows beginners to obtain initial 
visual results quickly and then to refine their 
programs by “sketching“ progressively more 
complex versions of the code. Therefore, a key 
question is whether it is desirable to incorporate 
some level of shader programming into Processing's 
API, and if so, what would be the best way to do it 
while maintaining its simplicity. 

In order to answer this question, we first note 
that Processing is used to create data visualizations, 
interactive installations, and generative artworks that 
require smooth animation of complex geometries in 
high-resolution displays. This alone indicates the 
need of incorporating some extent of shader support 
into the language, since the most direct of achieving 
high performance graphics is through shader 
customization and optimization (2008). To address 
the “how” part of the question, we need to keep in 
mind that Processing's drawing API was first 
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introduced more than 10 years ago and it is strongly 
rooted in the model of immediate-mode rendering 
(Glazier, 1992). This mode is more intuitive for new 
users, helps minimizing boilerplate code, and 
accommodates sketching and generative graphics 
better than more structured models, such as scene 
graphs. It has served as the basis of numerous 
teaching curricula (Ascioglu) and other 
programming frameworks (McCarthy). Therefore, a 
guiding principle in the design of the shader API 
was to fit Processing's immediate-mode rendering in 
a reasonably performant and non-obtrusive way, and 
to follow the principles of simplicity and immediate 
output that are central to the project. Some of the 
elements of the API were first introduced in a 
Processing library (Colubri, 2008) that extended the 
capabilities of the OpenGL renderer in Processing 
1.0, and the API was consequently implemented in 
Processing 2.0 (Colubri and Fry, 2012). Its 
completion was reached in version 3.0, released on 
September 30 of 2015 (Palop, 2015). 

As the general question of how to properly 
integrate low-level shader programming with a 
higher-level drawing API has been addressed by 
other creative coding frameworks, we carried out an 
initial comparison between the shader APIs in 
Processing, OF, and Cinder. We decided to focus on 
these frameworks given their popularity among the 
computational arts and design community, their 
significant overlap as teaching and production tools, 
and finally because they are all based on traditional 
textual programming languages, Java in the case of 
Processing, C++ in the case of OF and Cinder. 

The article is organized as follows: we describe 
Processing's shader API in more detail in section 2, 
introduce the relevant elements of the corresponding 
APIs in OF and Cinder in section 3, present the 
results of the initial comparison between these APIs 
in section 4, and conclude by discussing our findings 
and prospects for future work in section 5. 

2 SHADER API IN PROCESSING 

Shader programs consist in several stages along the 
graphics pipeline of the GPU. Recent versions of the 
OpenGL and Direct3D APIs support vertex, 
geometry, tessellation, and fragment stages (Angel 
and Shreiner, 2012). The PShader class (Processing 
Foundation III) introduced in Processing 2.0 and 
completed in 3.0 allows users to encapsulate all 
these stages into a single entity that exposes basic 
methods to set the value of uniform variables 
declared in the shader source. The PShader class was 

designed giving priority to Processing's immediate-
mode rendering. The following program listing 
illustrates the basic use of PShader, as well as the 
state-based approach in Processing:  
 

PShader sh; 
void setup() { 
  size(640, 360, P3D); 
  sh = loadShader("frag.glsl", 
                  "vert.glsl"); 
  shader(sh); 
} 
void draw() { 
  background(180); 
  fill(140, 140, 190); 
  sh.set("noiseFactor", 0.1); 
  sphere(50); 
} 
 

The geometry needs to be re-drawn in each call of 
the draw() method, and the Processing renderer can 
be effectively abstracted out as a state machine, with 
functions allowing the user to set different state 
variables that are applied to subsequent drawing 
calls. The current shader, for example, is one of such 
variables set with the shader() function. 

The advantage of the immediate mode rendering 
is the increased flexibility to define highly dynamic 
geometries, a common situation in interactive and 
generative art projects Processing is typically used 
for. The geometry does not need to be stored in a 
scene graph structure, and can be recreated entirely 
in each frame. The main drawback of this approach 
is the performance impact associated with rebuilding 
the geometry on the CPU, and copying the data from 
CPU to GPU memory in every frame. The renderer 
tries to optimize these calculations as much as 
possible by batching vertices from separate objects 
into a single buffer, in order to minimize the 
overhead associated with CPU-GPU transfers. 
However, Processing also allows defining persistent 
geometry with the PShape class (Processing 
Foundation IV). This class is implemented internally 
using vertex buffers, which ensures high 
performance when rendering large static geometries. 
Shaders can be applied on PShape objects in exactly 
the same way as they are to immediate-mode 
geometry. 

Since Processing is primarily geared towards less 
technical users, we cannot make the assumption of 
the typical Processing user will be able to write her 
own shaders. To address this situation, the default 
state of the Processing renderer incorporates a 
complete set of shaders that covers all typical usage 
scenarios. In particular, 3-D rendering of textured lit 
scenes uses a simple Blinn-Phong shading model,
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Table 1: List of attribute creation/setting methods. 

Kind Create/set method Notes 
Positional attribPosition(name, x, y, z) xyz in world coordinates 
Normal attribNormal(name, nx, ny, nz) Also in word coords 
Color attribColor(name, c) c is an integer storing an ARGB value 

Generic attrib(name, v…) v is a list of float, integer, or Boolean values 
 

suitable for rapid sketching but that can also be 
customized by more sophisticated models if the user 
provides the appropriate shaders. To facilitate the 
writing of custom shaders, Processing automatically 
initializes all the uniform and attributes variables 
that correspond to the default vertex and scene 
information that the user can control with the 
standard drawing API, so she does not need to 
explicitly take care of them. The list of given 
uniforms and attributes is described in detail in 
(Colubri I). 

2.1 Custom Vertex Attributes 

The built-in vertex attributes in Processing include 
position in world space, diffuse, ambient, specular, 
and emissive colors, shininess factor, normal vector, 
and texture coordinates. These attributes are 
sufficient to define arbitrary lit geometry in the 
built-in Blinn-Phong model. However, more 
advanced shading models and effects (per-vertex 
displacement, bump mapping, etc.) often require 
additional attributes not included in this list. Users 
can define arbitrary attributes by simply calling the 
new attrib*() methods, passing the name of the 
attribute and the desired values. Distinction needs to 
be made between attributes that store position-like 
quantities, which need to be transformed by the 
modelview and projection matrix, color attributes 
that are specified as integers containing the four 
RGB components, normal attributes that have to be 
normalized and transformed with the normal matrix, 
and generic attributes. These distinctions are shown 
in table 2. A useful feature in the renderer is that 
tessellation is applied automatically to all attributes, 
not only the default ones, before pushing the 
geometry to the GPU. The next program listing 
shows how to initialize mesh tweening using custom 
positional attributes in a PShape object: 
 

PShader sh; 
PShape grid; 
void setup() { 
  size(640, 360, P3D); 
  sh = loadShader("frag.glsl",  
                  "vert.glsl"); 
  shader(sh); 
  grid = createShape(); 
  grid.beginShape(QUADS); 

  grid.noStroke();   
  grid.fill(150);   
  float d = 10; 
  for (int x=-width;x<width;x+= d){ 
    for (int y=-width;y<width;y+=d){ 
      for (int i=0; i<=1; i++){ 
        for (int j=0; j<=1; j++){ 
          int ij = j * (1-i) + 1 –  
                   i*j; 
          float n = noise(x + d * 
                    ij, y + d * i); 

grid.fill(255 * n); 
grid.attribPosition( 
  "tweened", x + d * ij,  
  y + d * i, 100 * n); 

          grid.vertex(x + d * ij,  
            y + d * i, 0); 
        } 
      } 
    } 
  } 
  grid.endShape();   
} 
 

 

Figure 1: Output of the mesh tweening code above. 

Table 1 lists all the new custom vertex attribute 
functions introduced in Processing 3. 

2.2 Extending Pshader: Geometry and 
Tessellation Shaders 

The OpenGL-based renderers in Processing 3 –P2D 
for 2-D rendering, and P3D for 3-D rendering– 
create an OpenGL 3.1 context on the desktop, and a 
GLES 2.0 context on mobile. In order to ensure 
compatibility across desktop, mobile and web 
platforms, the PShader class only exposes 
functionality to set the vertex and fragment stages,
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Figure 2: Sphere tessellation shader, adapted to run in Processing from the demo by Philip Rideout 
(http://prideout.net/blog/?p=48). 

since geometry and tessellation shaders are not part 
of GLES 2 or WebGL 1. In order to relax this 
restriction, desktop users can subclass PShader and 
implement fully featured GPU pipelines including 
geometry and tessellation stages, as long as long as 
the underlying graphics hardware supports versions 
of OpenGL 3.1+ for geometry shaders and OpenGL 
4.1 for tesselation shaders. Sample Processing 
sketches including geometry and tessellation shaders 
are available online (Colubri III), and Figure 2 
shows the output of one of them. More examples can 
be found using the ShaderBase tool (Gomez et al., 
2015). 

3 SHADER API COMPARISON: 
OF AND CINDER 

Most quantitative API comparisons involve some 
sort of usability study. For instance, (Stylos and 
Myers, 2008) performed a usability study to show 
that method placement can have large impact in 
object-oriented APIs. Another case study (Watson, 
2009) describes how the application of technical 
communication skills and tools helped improve the 
usability and clarity of API by performing text 
analysis of the API elements. A rather simpler, but 
still meaningful approach requiring no usability 
study would be to assess API simplicity and 
flexibility from well-implemented tasks over a given 
domain (Kanat-Alexander et al., 2012). While API 
simplicity may be evaluated from the set of 
instructions needed to accomplish a standard task 
over a given domain, API flexibility is related to as 
whether or not an advanced task can be 
accomplished by the framework and if so, how. 

As mentioned in the introduction, we will 
conduct our comparison by contrasting the shader 
APIs in Processing (Colubri I), OF (Karluk et al., 

2013), and Cinder (Bell), due to the popularity of 
these frameworks among the creative coding 
community. Both OF and Cinder are based on the 
C++ programming language, and define an API 
encapsulating several high-performance, cross-
platform libraries (OpenGL, FreeType, GLFW, etc.). 
Processing and OF were inspired respectively by the 
Design By Numbers project and the ACU C++ 
library, both developed at the Aesthetics and 
Computation group in the MIT Media Lab in the late 
90s and early 2000s (OF community, 2015). In this 
sense, Processing and OF share a common origin, 
while Cinder is a more recent project started 
completely from scratch specifically to address the 
needs of high-performance interactive graphics 
using the most recent OpenGL features. In terms of 
difficulty, it is typically recognized that Processing 
is the most accessible of the three, followed by OF, 
and with Cinder being the harder to learn and closer 
to low-level APIs, most notably OpenGL (Brewis, 
2014). It is also worth stating that Processing 
includes its own development environment and 
debugger, while OF and Cinder relying on third-
party IDEs, such as Xcode, Microsoft Visual Studio, 
or Code::Blocks. 

For our initial API comparison, we selected two 
standard tasks that involve the use of shaders: 
rendering of a simple geometric primitive using 
cartoon lighting (toon task), and rendering of a 
simple textured geometric primitive using standard 
per-pixel Blinn-Phong shading with a single light 
source (texlight task). Since all three frameworks 
share a similar setup/draw application structure, 
where the one-time initialization operations are 
performed inside the setup() function, and all 
rendering operations that need to be executed in 
every frame are placed inside the draw() function. 
Processing is notable for the absence of any other 
initialization/boilerplate code due to its pre- 
processor that simplifies the underlying Java code.
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Table 2: Toon task in Processing and OF. 

Processing OF 

void setup() { 
  size(640, 360, P3D); 
  noStroke(); 
  fill(204); 
  toon = loadShader("frag.glsl",  
                    "vert.glsl"); 
  toon.set("fraction", 1.0); 
} 
 
void draw() { 
  shader(toon); 
  background(0);  
  float dirY = (mouseY / float(height) – 
               0.5) * 2; 
  float dirX = (mouseX / float(width) – 
               0.5) * 2; 
  directionalLight(204, 204, 204,  
                   -dirX, -dirY, -1); 
  translate(width/2, height/2); 
  sphere(120); 
} 

 

void ofApp::setup(){ 
    ofBackground(0); 
    shader.load("shaders/vert.glsl", 
                "shaders/frag.glsl"); 
    cam.setupPerspective();     
    ofFill(); 
    ofSetColor(204); 
    ofEnableDepthTest(); 
} 
 
void ofApp::draw(){ 
    cam.begin(); 
    shader.begin(); 
    shader.setUniform1f("fraction", 1.0); 
    ofMatrix4x4 mv=ofGetCurrentMatrix( 
                     

OF_MATRIX_MODELVIEW); 
    ofMatrix4x4 normMat = 
                ofMatrix4x4:: 
         

getTransposedOf(mv.getInverse()); 
       shader.setUniformMatrix4f( 
                    "normalMatrix", 
normMat); 

    float dirY = (mouseY / 
          float(ofGetHeight()) - 0.5) * 

2; 
    float dirX = (mouseX / 
          float(ofGetWidth()) - 0.5) * 2; 
    lightDir.set(-dirX, -dirY, -1); 
    ofVec3f lightNorm = 
            ofMatrix4x4::transform3x3( 
            normMat, lightDir); 
    lightNorm.normalize(); 
    shader.setUniform3f("lightNormal", 
   lightNorm.x, lightNorm.y, 

lightNorm.z); 
    ofTranslate(ofGetWidth()/2, 
                ofGetHeight()/2); 
    ofDrawSphere(0, 0, 120); 
    shader.end(); 
    cam.end(); 
} 

 
 

OF and Cinder code invariably contains additional 
code that is not relevant to the rendering task, in the 
form of header files and class declarations. For the 
sake of the comparison, we ignored this extra code, 
and focused only on the body of the setup() and 
draw() functions. 

For reasons of space we only show the program 
listings comparing the toon task between Processing 

and OF (Table 2), and the texlight task between 
Processing and Cinder (Table 3). The GLSL code is 
not included, because it is essentially identical for 
Processing, OF, and Cinder. The complete code of 
all these tasks in the three frameworks is available 
online (Colubri II). 
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Table 3: Texlight task in Processing and Cinder. 

Processing Cinder 

void setup() { 
  size(640, 360, P3D);   
  label = loadImage("lachoy.jpg"); 
  can = createCan(100, 200, 32, label); 
  texlightShader = 

loadShader("frag.glsl", 
                              

"vert.glsl"); 
} 
 
void draw() {     
  background(0);   
  shader(texlightShader); 
  pointLight(255, 255, 255, 
             width/2, height, 200);       
  translate(width/2, height/2); 
  rotateY(angle);   
  shape(can);   
  angle += 0.01; 
} 

void Ex_7_2_texpixlightApp::setup() { 
    setWindowSize(640, 360); 
    cameraFOV = 60; 
    cameraZ = 0.125f * getWindowHeight()  
    /tan(0.5f * 

glm::radians(cameraFOV)); 
    cam.lookAt(vec3(0, 0, cameraZ), 
               vec3(0));     
    auto img = 
     loadImage(loadAsset("lachoy.jpg")); 
    label = gl::Texture2d::create(img); 
    pointLight[0] = 0;  
    pointLight[1] = -getWindowHeight(); 
    pointLight[2] = 0; 
    shader = gl::GlslProg::create( 
      loadAsset("vert.glsl"),  
      loadAsset("frag.glsl")); 
    shader->uniform("texMap", 0); 
    can = createCan(100, 200, 32); 
    gl::enableDepthWrite(); 
    gl::enableDepthRead(); 
} 
 

void Ex_7_2_texpixlightApp::draw() { 
    gl::clear(Color(0, 0, 0));     
    gl::setMatrices(cam); 
    gl::ScopedModelMatrix modelScope;    
    mat4 tm = mat4(1.0); 
    tm[1][1] = -1; tm[3][1] = 1; 
    shader->uniform("textureMatrix", 

tm);     
    mat4 mv = gl::getModelMatrix(); 
    vec4 lightPos = mv *  
                  vec4(pointLight, 

1.0f); 
    shader->uniform("lightPosition", 
                    lightPos);     
    gl::translate(0, -100, -3 * 

cameraZ); 
    gl::rotate(angle, 0, 1, 0); 
    gl::color(1, 1, 1); 
    gl::ScopedTextureBind tex0(label, 

0); 
    can->draw(); 
} 

 

4 RESULTS 

From a quick inspection of the code listings for toon 
and texlight, we can see that the Processing versions 
are consistently shorter, approximately by half. 
Since each line corresponds to one function call or 
variable assignment (separate vector component 
assignments in Cinder are considered one call), we 
can summarize the call counts in the table below: 

Table 4: Call counts in the studied frameworks. 

Task Processing OF Cinder 
Toon 12 22 17 

TexLight 11 25 26 

Further examination of the code reveals the 
reasons for the lower counts in Processing: first, 
some settings such as perspective projection and 
depth masking are enabled by default in Processing, 
while they need to be explicitly enabled in OF and 
Cinder. Secondly, OF and Cinder do not 
automatically send some uniforms to the shader 
(Castro, 2014) (Bell, 2015), specifically the light 
position and normal matrix in the case of OF, and 
the light position and the texture matrix in the case 
of Cinder. OF also requires explicit 
binding/unbinding of shader and texture, while 
Cinder needs a more careful setup of the 
transformation matrices. OF and Cinder online 
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references indicate that neither handles lighting 
uniforms automatically. Processing re-implemented 
in its default shaders the standard lighting from the 
fixed pipeline in OpenGL 1.1 (Woo et al., 1997), 
where up to 8 lights could be defined 
simultaneously. 

5 CONCLUSIONS 

We described a shader API currently implemented in 
the Processing programming language. This API is 
publicly available, as it was first introduced in the 
version 2.0 of Processing in 2013, and refined and 
completed in version 3.0, released in late 2015. 
From the responses observed in several online 
forums, we infer that the API is being used by a 
fraction of the Processing users, but we do not know 
how large this group of users is, or how expert they 
are in OpenGL and GLSL shaders. We aim at 
quantifying these parameters in the near future, in 
order to better characterize the adoption of shader 
programming within the creative coding community. 

We also compared the shader APIs in 
Processing, OF, and Cinder, and observed that they 
follow a similar structure where shader information 
is encapsulated in classes, and several uniform and 
attribute variables are automatically passed down to 
the pipeline. Processing sends a few additional 
uniforms, normal and texture matrices, as well as 
detailed lighting information. This, together with the 
automatic tessellation of custom vertex attributes, 
suggests a closer integration in Processing of the 
standard drawing API with the new shader 
functionality. However, this closer integration might 
come at the expense of API flexibility that is 
possible, and in fact sought after, in more advanced 
frameworks such as OF and Cinder. Future work 
will include in-depth study of API complexity and 
precise quantification of API flexibility using 
standard methodologies. 

Our overarching goal is to propose new answers 
to the question of how to effectively incorporate 
shader programming into computational arts and 
design. This question could be answered in two 
stages. First, by creating mechanisms that 
incorporate shaders into the rendering paths of high-
level frameworks, and second, by moving shader 
code writing and testing closer to the framework so 
that not only CPU/GPU code can be written side-by-
side, but also high-level calls can be directly mapped 
onto the shader functions and variables. In this 
article, we addressed the first stage, and we plan to 
study the second stage in upcoming work. 
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