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Abstract: In this study, we have designed a GPGPU (General-Purpose Graphics Processing Unit)-based algorithm for 
determining the minimum distance from the tip of a CUSA (Cavitron Ultrasonic Surgical Aspirator) scalpel 
to the closest point around three types of blood vessel STLs (STereo-Lithographies). The algorithm consists 
of the following two functions: First, we use z-buffering (depth buffering) as the classic matured function of 
the GPU in order to effectively obtain depths corresponding to image pixels. Second, we use multiple cores 
of the GPU for parallel processing so as to calculate the minimum Euclidean distance from the scalpel tip to 
the closest z-values of the depths. Therefore, the complexity of the GPU-based algorithm does not depend on 
the shape complexity (e.g., patch, edge, and vertex numbers) of the blood vessels. 

1 INTRODUCTION 

We are currently developing simulators and 
navigators for liver surgery. In general, in liver 
surgery, the tissue around the affected area (for 
example, cancer tissue) is fractured or emulsified 
with the CUSA scalpel used for ultrasound surgery 
and extracted. Simultaneously, small blood vessels 
having a diameter of 0.5 mm or less can be severed 
while in hemostasis by cauterizing with an electric 
scalpel, but severing larger vessels will cause 
significant bleeding and threaten the life of the 
patient. To avoid such an issue, it is ideal for the 
doctors to perform actual liver surgery as planned 
beforehand by regularly confirming the position of 
the blood vessels. 
In general, DICOM (Digital Imaging and 
COmmunication in Medicine) data obtained by CT 
(Computed Tomography)/MRI (Magnetic Resonance 
Imaging) are used for recording the liver conditions. 
In this study, we first classify the cell tissue into the 
entire liver, portal veins, arteries, and veins through a 
special processing of the DICOM data. This is called 
liver segmentation (Zhang, 1994; Foruzan and Chen, 
2013). Here, we represent the three types of blood 
vessels in an STL-format polyhedron. Further, the 

CUSA, which is a device that incises the liver, is 
represented in the same STL with a 3D scanner.  

This is because a representation in the STL format 
accurately maintains the normal vector of the object 
surface and the texture and feel of the distance of the 
shape can be accurately felt. However, if these are 
represented with a polyhedron (such as B-reps), the 
basic processing of surgical simulations will be 
relatively time consuming, such as the calculation of 
the embedded distance between the polyhedra and the 
embedded region as well as the calculation of the 
shortest distance in all directions including the 
operational directions of the polyhedral, as listed in 
Table 1. 

To begin with, sensory information related to 
sight and touch is required for surgery. To obtain such 
information, we need to calculate the distance and/or 
the intersection between the CUSA and the liver or 
the three types of blood vessels. Since the 1980s, 
boundary structures (polyhedra such as B-reps [STL 
is a type of these structures] and set operations on 
primitives such as CSG [Constructive Solid 
Geometry]), volume representations such as voxel 
arrays and their hierarchical representations (such as 
Oct-Tree, OBB [Oriented Bounding Boxes], and 
AABB  [Axis-Aligned  Bounding  Box])  have  been 
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Table 1: Advantages and disadvantages of CPU-based models and GPU-based Z-buffer (BES: best, BET: better, NOR: 
normal, WOR: worst, *1: Normal vector, history, and shape convexity cannot be used. *2: Normal vector, history, and shape 
convexity can be used). 

 

processed. Simultaneously, their distance has been 
extracted by many CPU-based algorithms (Canny, 
1986; Gilbert et al., 1988; Quinlan, 1994; Noborio et 
al., 1989), and/or their intersection has been 
determined by other CPU-based algorithms (Noborio 
et al., 1989; Gottschalk et al., 1996; Bergen, 1997). 
However, irrespective of the method used, the 
computational time is proportional to (in the order of 
O(n) and O(log(n)) the degree of complexity of the 
shape of the polyhedron representing the organ 
operated on (with n being the number of surfaces). 

As contrasted with the above CPU-based high-
speed algorithms, GPGPU (General-Purpose GPU) 
has been recently used for accelerating algorithms of 
computer vision, 3D structure modeling, 3D 
simulators, sorting, databases, and so on (Hubert, 
2007; Miura et al., 2013; Pelletier, 2008; Cederman, 
2008; Green et al., 2012; Yasuda, 2008; Taylor et al., 
2008; Lee et al., 2014; Modat et al., 2010). With 
respect to the calculation of the distance and the 
intersection between a point and an object or multiple 
objects, the GPGPU has two advantages. One is fast 
digitalization (to digitalize all the objects) by z-
buffering, which is the classic matured function of a 
GPU. The other is the fast parallel calculation (to 
calculate the minimum Euclidean distance or volume 
intersection between a point and an object and/or 
multiple objects) by using multicores of a GPU in 
parallel. 

When an STL is to be processed by z-buffering, a 
z-value is calculated for each pixel that lies within the 
boundary of the STL. If the z-value at a pixel indicates 
that the STL is closer to the viewer than the z-value in 
the z-buffer, the z-value recorded in the buffer is 
replaced by the STL’s value (Joy, 1996). Further, the 
Z value of the fastest patch can be preserved through 
the GPU background removal function. Therefore, a 
cuboid can be obtained with the width and pixilation 
calculated using the Z value of the surface and the 

reverse side of the polyhedron, resulting in a cuboid 
digital approximation of the polyhedra.  

Furthermore, we calculate Euclidean distances 
from the tip of the scalpel to rectangular 
parallelpipeds in parallel by using multicores of the 
GPU in order to select the minimum value as the 
shortest distance. Therefore, the computational time 
is basically in inverse proportion to the core count. 
Note that the GPU core count is still enormous and 
increases rapidly. However, the conversion time will 
no longer depend on the number of surfaces of the 
polyhedron. 

Therefore, the superimposition calculation of the 
liver and the three types of blood vessel cuboids and 
the CUSA scalpel cuboids can be performed instantly 
by the GPU, and this enables a rapid calculation, by 
the GPU, of the embedded distance and the embedded 
regions. From this embedding, for example, an 
artificial sense of touch is constructed with the 
Kelvin–Voigt model, and this can be experienced 
through a tactile feedback device. Further, the 
polyhedra can be rapidly transformed in response to 
the embedded region, and the concave region 
becomes visible (Noborio et al., 2013; Onishi et al., 
2014; Onishi et al., 2015).  

On the basis of the abovementioned pre-
processing, in this study, we calculate the shortest 
distance from the CUSA tip to the three types of blood 
vessels (portal veins, arteries, and veins). Herein, we 
design a GPU-based algorithm and, by using a CPU, 
compare it with a CPU-based algorithm that 
calculates the shortest distance from the CUSA tip to 
the three types of blood vessel STLs. 

The rest of this paper is organized as follows: 
Section 2 describes the classic CPU-based algorithm 
and the proposed GPU-based algorithm for 
calculating the shortest distance from the CUSA tip 
to the three types of blood vessels. With respect to the 
advantages and disadvantages of GPU-based and 
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CPU-based algorithms, Section 3 investigates the 
effects of the required bit count for a parallel 
processing approach, not using the increasing trends 
of the computational time when the surface count 
increases, actual time shifts in certain liver incision 
simulations, and distance errors. Finally, Section 4 
summarizes this study. 

 

Figure 1: (a) Minimum distance between a point T and a 
patch P in CPU, and (b) minimum distance between a point 
T and a set of rectangular parallelepipeds of P in GPU. 

2 ALGORITHM TO CALCULATE 
THE SHORTEST DISTANCE 

In this section, we discuss the CPU-based and GPU-
based algorithms to calculate the shortest 
(Euclidean) distance from the CUSA tip to the three 
types of blood vessel STLs.  

2.1 CPU-based Algorithm 

First, we have the tip of the scalpel and the three types 
of blood vessel (portal veins, arteries, and veins) 
STLs. Next, patch Ps are sequentially chosen from the 
three types of blood vessels, and the Euclidean 
distance to these is calculated. Finally, the minimum 
distance to all the patches is selected, and this is 
considered to be the shortest distance to the three 
types of blood vessel STLs.  

In general, the minimum values of the Euclidean 
distance of T and P are obtained from any of the 
distances of an infinite plane including Tip T and 
Patch P, an infinite straight line including side E of P 
and the distance of T, as well as the top V of both tips 
of side E and the distance of T. Accordingly, if the leg 
of a perpendicular line from coordinate T to a plane 
including Patch P falls within Patch P, the length of 
the perpendicular line is the shortest distance (Figure 

1(a)). Otherwise, the distance to the side including the 
top is the shortest distance (Figure 1(a)). Therefore, 
the algorithm to calculate the shortest distance is as 
follows:  
[Step1] Calculate the normal vector n (size 
normalized at 1) from the three top points of the blood 
vessel’s STL triangular surface (Patch) Pi. 

[Step2] Calculate the vector v from any top point of 
the triangular surface to the scalpel point T. 

[Step3] Get the inner product of normal vector n and 
vector v to find the size of the perpendicular vector 
from scalpel tip T to the plane.  

[Step4] Only for the distance found in [Step3], find 
the point going (on the infinite plane) in the opposite 
direction of the normal vector from the scalpel tip. 

[Step5] Since the intersection in [Step4] is the 
intersection with the infinite plane crossing the three 
top points, use an outer product for deciding whether 
this intersection is within (including sides and top 
points) the triangular surface Pi.  

[Step6] If the perpendicular line intersects with the 
infinite plane outside of the triangular surface Pi, it is 
not the shortest distance from the scalpel tip to the 
triangular surface Pi. Therefore, reject the 
perpendicular line distance to the plane and proceed 
to [Step7]. Otherwise, keep it as the shortest distance 
candidate di and proceed to [Step8].  

[Step7] Of the distances from the tip of the scalpel to 
the three sides, keep the shortest distance as the 
shortest distance candidate di.  

[Step8] Select the smallest value from all triangular 
surfaces (Patch) Pi (i: from 1 to n, n: total surface 
count) as di. This is the shortest distance to the three 
types of blood vessel STLs from the CUSA tip T.  

Here, the distance calculation of “points and 
surfaces,” “points and sides,” and “points and tops” 
in the existing algorithm is checked in a likely order 
(Lin and Canny, 1991). 

2.2 GPU-based Algorithm 

First, using the z-buffering (depth buffering), we 
obtain a set of rectangular parallelepipeds along the Z 
(depth) axis (Figures 1(b) and 2) in a two-dimensional 
XY array. This is a useful function of the GPU, and 
therefore, we can obtain the set of rectangular 
parallelepipeds very rapidly. For the three types of 
blood vessel STLs, we obtain three sets of rectangular 
parallelepipeds around the tip T. A large rectangular 
region where a doctor operates on the liver by using 
CUSA can be freely selected in the world coordinate 
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system. In other words, the coordinate system of 
depth buffering is defined as a rectangular region, 
which implies that rectangular parallelepipeds and the 
tip T are transformed into the camera coordinate 
system of the depth buffering (Figure 2). 

 

Figure 2: Z-buffer for visible ability and several Z-buffers 
for cutting the liver are independently allocated in the world 
coordinate (3-D) system. 

Next, in the camera coordinate system, we can 
calculate the minimum Euclidean distance from the 
tip T to the rectangular parallelepipeds in parallel as 
the shortest distance by using the many cores of the 
GPU (Figure 3). In the assignment to the parallel 
processing GPU calculation unit, the thread count is 
16 × 16 and the block count is width/16 × height/16. 
That is, when the image resolution is 2048 × 2048, a 
parallel calculation is performed with a thread count 
of 16 × 16 and a block count of 128 × 128. 

Finally, in the proposed GPU-based algorithm, we 
calculate the distance precision by using two types of 
image and depth quantization methods. First, a cuboid 
region of X: 106 mm × Y: 106 mm × Z: 213 mm is 
established around the scalpel tip to obtain the Z value 
of the three types of blood vessel STL surfaces. In 
such cases, a 32-bit variable records the Z value, and 
the XY image resolution is 2048 × 2048 (Figure 3). 
As a result, the quantization error for the Z axis is 
about 0.05 nm (=213 mm/232), and the quantization 
error for the XY image is about 52 μm (=106 
mm/2048). Therefore, the maximum quantization 
error of the Euclidean distance used for calculating 
the XYZ value by using the three squares theorem is 
73.5 μm. From the perspective of a doctor’s 
requirements, this error can be sufficiently ignored. 
Moreover, the minimum distance to all pixels is the 
shortest distance between the scalpel tip T and the 
three types of blood vessel STLs (Figure 3). 

 

Figure 3: Many depths (2 values) in the XY image (many 
pixels), which are converted from STL blood vessels. 

An array z-buffer[x,y] initialized to ∞ 

begin /* z-buffering in GPU 
  for each patch P of three types of vessels do { 
    for each pixel (x,y) that intersects P do { 
      calculate z-depth of P at (x,y) 
      if z-depth < z-buffer[x,y] then { 
          z-buffer[x,y] = z-depth 
      } 
    } 
  } 

A vector d-bits[z] initialized to 0 

begin  /* many cores in GPU  
parallel for all pairs of pixels (x,y) and  

their z-depth do{ 
  calculate Euclidean distance D between (x,y, z-
buffer[x,y]) and (xP,yP,zP) of tip T of CUSA scalpel 

  raise a flag at d-bits[z] by D 
} 

scan d-bits[z] sequentially from left to right in order 
to find an initial bit 

calculate the distance corresponding to the bit 

As shown in Figure 4, even if multiple parallel 
processing tasks simultaneously change specific bits, 
the existence of their distances is established. In such 
cases, if the bit set and the closest XYZ value are 
recorded at the same time, multiple proximate vectors 
(vectors expressed at the proximity point with the 
scalpel tip), which achieve this distance, are 
separately recorded. Because all the bits are 
initialized, a bit value of 0 implies that a distance 
could not be found within the scope corresponding to 
any parallel process. 
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Figure 4: Parallel processing the shortest distance by using 
many of the cores in the GPU. 

Here, we discuss the relationship between the bit 
number and the distance precision in the proposed 
algorithm. On the basis of the opinions of doctors, the 
ranging scope is set to 0–50 mm, and this is divided 
to the extent of 16 × i (variable i is arbitrarily set). 
Further, there is a bit for each division, and if there 
are any pixels in which the distance from the scalpel 
tip to the three types of blood vessels fits within the 
bounds of the divisions, this bit is set to 1 (Figure 4). 
For example, if i = 1, and the distance error from this 
division is 50 mm/16 = about 3 mm, i = 16, then the 
distance error from the division is 50 mm/256 = about 
0.2 mm. Further, if all arrays are initialized at 0 before 
starting the parallel processing for all pixels, when 
searching the arrays from 0 after the parallel 
processing is finished, in the array in which 1 is first 
located, we find the shortest distance by the following 
calculation: shortest distance = intermediate value of 
the distance range corresponding to the array number 
(Figure 4).  

Lastly, errors related to this parallel processing are 
added to the quantization errors from when the 
polyhedra are transformed into Z-buffers. Of course, 
in CPU-based algorithms, for parallel processing 
errors, there are no quantization errors when the 
polyhedra are converted into Z-buffers; there are only 
limitations of floating-point numbers (single 
precision and double precision). Accordingly, 
compared to GPU-based algorithms, there are 
relatively few mistakes (Table 2). 

Table 2: Comparison of calculation time and distance 
precision of CPU- and GPU-based algorithms. 

 

3 EXPERIMENTAL 
COMPARISON OF CPU-BASED 
ALGORITHMS AND  
GPU-BASED ALGORITHM 

In this section, we investigate the accuracy of and the 
required time for measuring the shortest distance 
between the scalpel tip and the three types of blood 
vessels. First, we evaluate the computational time for 
the two algorithms by monotonically adding the item 
count of polyhedral patches that constitute the three 
types of blood vessels. Next, we compare the 
computational time and the measurement accuracy 
when the liver is virtually incised by CUSA. 

3.1 PC and Development 
Environments 

Here, the PC environment and the development 
environment related to the CPU and the GPU are 
explained in detail.  
CPU-related specifications: 
(1) PC 
 OS Windows 8.1 Professional 64-bit 
 CPU Intel Core i5-2500K CPU 3.30 GHz 
 Memory 16 GB 
(2) Development environment 
 IDE Microsoft Visual Studio 2012 
 Renderer Direct 3D 11.0 
GPU-related specifications: 
 (1) PC 
VGA GeForce GTX480 CUDA processor core count 
480 
 Graphics clock 700 MHz 
 Processor clock 1401 MHz 
 Memory 1536 MB GDDR5 
(2) Development environment 
 Language C++/HLSL 
 GPGPU Direct Compute 
Since the development environments of CPU-based 
and GPU-based algorithms are different, the 
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following comparisons may not be precisely fair. 
However, our computer has sufficient memory and 
the STL’s data size is not very large. Therefore, the 
comparisons are practically useful for designing a 
surgical simulator/navigator in the future. 

3.2 Evaluation of Computational times 
of CPU-based and GPU-based 
Algorithms 

Here, we investigated how the computational time for 
each algorithm increases depending on the polyhedra 
patch count. First, we place a number of patches for 
the three types of blood vessels on the horizontal axis 
and monotonically increase the patch count while 
increasing the approximate accuracy of the blood 
vessel shape to 357992. The computational time for 
the CPU- and GPU-based algorithms is shown on the 
vertical axis of the graph (unit: milliseconds) (Figure 
5). 

 

Figure 5: Computational time of CPU- and GPU-based 
algorithms in proportion to the number of patches. 

From these results, we found that the computational 
time order for algorithms using CPU is O(n) for 
surface count n; further, we confirmed that the 
computational time increases in proportion to n 
(Since this is the shortest distance from the tip of the 
scalpel, it is not dependent on the degree of 
complexity of the scalpel shape.). This is the same 
characteristic as that of conventional algorithms using 
CPUs (Lin 1991). 

Further, if the accuracy of the polyhedra shape is 
increased, the actual computational time will exceed 
40 ms. Hence, it will be difficult to obtain not only 
the sense of touch but also the reality of sight (The 
normal video rate is exceeded.). On the other hand, 
the calculation time order of algorithms using the 
GPU is O(1), which is a fixed value irrespective of an 
increase in n. In the future, since improvement in the 
liver segmentation function will allow the recognition 
of smaller blood vessels and more accurate shapes, 
the polyhedra patch count representing the three types 

of blood vessels is expected to increase. 
Accordingly, we can state that the computational 

time of the GPU-based algorithm, which is 
independent of the degree of complexity of the 
subject shape, is more desirable than that of the CPU-
based algorithm, which is dependent on the degree of 
complexity of the subject shape. 

3.3 Changes in Computational Time 
for the Shortest Distance between 
the Scalpel Tip and the Blood 
Vessels in Actual Surgery 

Here, we show the computational time required to 
derive the shortest distance from the scalpel tip to the 
three types of blood vessels when a virtual liver is 
actually incised by using a virtual CUSA scalpel. 
Figure 6 shows a strobe shot of such an instance, and 
Figure 7 shows the time changes exclusively for the 
distance calculation of the CPU- and GPU-based 
algorithms for each of the motions (the cycle of 
moving the scalpel, incising the liver, and measuring 
the distance to the three types of blood vessels). Here, 
the computational time for the CPU-based algorithm 
is more than 40 ms. However, the computational time 
for GPU-based algorithms is usually about 3 ms. 

 

Figure 6: Surgery for polyhedral liver and its three types of 
blood vessels by using a polyhedron of the CUSA scalpel. 

A simulation/navigation of liver surgery needs many 
calculation functions such as liver deformation and 
real liver sensing and following. The calculation of 
the shortest distance is one of them. Therefore, if the 
calculation (40 ms) is over the video rate, the surgical 
animation of simulation/navigation is sometimes 
frozen. Therefore, a faster calculation (2–3 ms) using 
a GPU is suitable for real-time simulation/navigation. 
A doctor can comfortably follow the instructions for 
the surgery when they are provided using smooth 
animation. As a result, this real-time animation 
reduces the possibility of mistakes made by the 
doctor, such as blood vessel injuries in surgery 
performed using augmented reality. 
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Figure 7: Computational time of CPU- and GPU-based 
algorithms in the surgery described in Figure 6. 

These results were obtained with the regular-edition 
GPU (core count: 480). The current business-use 
GPU with thousands of cores will probably be about 
five times faster. In contrast, the CPU operating 
frequency has hit a plateau since 2007 (around 3 
GHz), and Moore’s Law (a three-fold increase in 
speed every 2 years) is no longer applicable to the 
calculation of computing power. As a 
countermeasure, the CPU operating unit counts have 
been increased to boost computing power, but the 
GPU computing power has improved to a far greater 
extent. Therefore, we believe that the GPU-based 
algorithm has more of a future than the CPU-based 
version. 

3.4 Comparison of the Shortest 
Distance from the Tip of the Scalpel 
to the Three Types of Blood Vessels 
Calculated by CPU- and 
GPU-based Algorithms in Actual 
Surgery 

As explained in Section 2 (particularly, the final 
paragraph of Section 2.2), GPU-based algorithms 
realize parallel processing and maintain its speed. As 
a result, certain distance measurement ranges can 
only be measured with a certain degree of accuracy 
for the distance. On the other hand, in the case of 
CPU-based algorithms, no special consideration is 
needed for distance measurement ranges or distance 
accuracy (naturally, this is still conditioned by the 
calculation accuracy of floating-point numbers) 
(Table 2).  

Here, we actually validated these characteristics. 
To begin with, Figure 8 shows the scalpel motion in 
a validation experiment, and Figure 9 shows the 
trends in distance measurement ranges and distance 
accuracy for CPU- and GPU-based algorithms in such 
cases. Here, CPU-based algorithms calculated all the 
shortest distances without any restrictions, but GPU-

based algorithms calculated the shortest distances for 
fixed distance measurement ranges (0–50 mm) with 
fixed distance accuracy (50/(16 × i) mm, i: optional). 

 

Figure 8: Motion example in which the CUSA scalpel 
accesses three types of blood vessels. In this figure, as long 
as the distance decreases monotonously, the color of the 
CUSA scalpel changes from white to light gray, dark gray, 
and then blue (black). From this color change, a doctor 
understands the present state of danger. 

 

Figure 9: Range and precision of distances change when the 
CUSA is close to the blood vessels along the sequence of 
motions shown in Figure 8. 

As compared to the CPU-based algorithm, the GPU-
based algorithm is very fast and its complexity does 
not depend on the shape of the blood vessels. On the 
other hand, the CPU-based algorithm deals with a 
continuous boundary, and therefore, its distance 
precision is very good. Unfortunately, the GPU-based 
algorithm always digitalizes the shape of blood 
vessels by image pixels and their z-buffering. 
Consequently, it decreases the distance precision. 
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4 CONCLUSIONS 

In this paper, we proposed an algorithm to calculate 
the shortest distance from the scalpel tip to the blood 
vessels independent of the degree of complexity of 
the shape of the three types of blood vessels. This 
satisfies the specifications required by doctors (with 
respect to the distance measurement range, distance 
accuracy, and computational time). 

To begin with, the opinion among liver surgeons 
(as opposed to cerebrovascular and cardiovascular 
surgeons) is that a positioning accuracy of about 0.5 
cm is sufficient for liver surgery (conversely, human 
behavioral functions cannot adjust to any higher 
degree of accuracy). It is reportedly the case that the 
direction of distance measurement, movement of the 
scalpel (incision mistakes only occur in this 
direction), and distance measurement range are 
acceptable at about 10 cm from the tip of the scalpel 
(only around the liver cancer to be cut out; the size of 
the entire liver is about 20 cm). Moreover, the 
surgeons voiced their desire for a real-time nature 
(within a range of several milliseconds in all 
situations) that calculates the senses of vision and 
touch to be emphasized. The algorithm proposed in 
this paper meets this request even when the shapes of 
the three types of blood vessels inside the liver are 
complex.  

Currently, the number of cores in a GPU is 
increasing every year. The proposed algorithm can 
keep pace with this increase. Further, the technology 
for blood vessel imaging and its segmentation is 
improving every year, with smaller blood vessels as 
well as their more detailed shapes being recognized. 
Since this results in an enormous surface count for the 
STL expressing the three types of blood vessels, the 
value of the GPU-based algorithm proposed here that 
calculates the shortest distance to the blood vessels is 
expected to increase. 

Lastly, an issue to consider in the future is the 
development of an algorithm with the guidance 
control of the scalpel tip to incise about 0.5 cm around 
cancer cells in order to remove them. Toward this 
end, it is necessary to enable the calculation of the 
shortest distance from all directions of the scalpel tip 
and calculate the proximity vector from the scalpel tip 
to the closest point on the cancer tissue surface in 
order to calculate the operational vector of the scalpel. 
Further, we developed a CUSA tip for the cutting 
region, but if the kidneys or the other organs, and not 
the liver, were the target, then CUSA cannot be used; 
blades or scissors would have to be employed to make 
the incision. In such cases, we would need to 
represent the cutting area with a line and not a point. 

In the future, we would like to consider expanding the 
proposed algorithm to such instances.  
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