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Abstract: The paper presents a new architecture for mini-satellites’ attitude control using a cluster consisting of four 
control moment gyros, in pyramidal configuration, and feedback from the quaternion and angular velocity 
vectors. The designed control law modifies the cluster’s equivalent gyroscopic moment, the equivalent kinetic 
moment and the angular velocities’ vector, this leading to the modification of the quaternion vector and to the 
change of the satellite‘s attitude. Matlab environment is used for the architecture’s software implementation 
and validation, this being achieved for a mini-satellite involved in a typical motion around its own axis. 

1 INTRODUCTION 

To have multiple capabilities (missiles’ tracking, land 
mobile targets’ tracking etc.), the satellites must have 
good rotational handling and agility. Such satellites 
need an automatic system for their attitude’s control 
(ASAC) by performing fast slewing maneu-vers; the 
fast repositioning maneuvers are influenced by the 
physical limitations of the sensors and actu-ators, by 
the structural rigidity of the satellites and by the 

mission’s type (Jovanovic, 2014; Bouwmeester and 
Guo, 2010; Lavet, 2010).  

The performances of the ASACs are limited by the 
satellites’ dimensions, especially in the case of small 
satellites’ usage. In these cases, the gyroscopic wheels 
can not assure good agility because their limited 
capability to create control couples (maximum 1.5 
Nm) (Wie et al., 2002; Berner, 2005; Lungu, 2008); 
therefore, in these cases, the control moment gyros 
(CMGs) are ideal because these can generate significant 
control couples (100-3000 Nm). As actuators, the 
CMGs have been used on large cosmic devices 
(Skylab, MIR, ISS) and, recently, on mini-satellites. 
The most important drawback of CMGs is related to 
the singularities’ appearance (Ford and Hall, 2000); 
for particular values of the gyroscopic frames’ angles, 
the CMGs do not produce big enough couples and the 
gyroscopic frames get stuck; therefore, special control 
laws must be designed to avoid such situations. 

The CMGs may be single-gimbals type (SGCMG) 
of double-gimbals type (DGCMG); for the DGCMGs, 

the control law can easily avoid the singularities, due 
to their extra degree of freedom, but the SGCMGs are 
simpler in terms of construction and hardware, having 
many other advantages related to their price, power 
and reliability (Berner, 2005). 

By CMGs grouping, the clusters are obtained; the 
most used clusters are the pyramidal ones, having four 
CMGs; such configuration is presented in our paper.  

In this paper, the authors propose a new archi-
tecture for the control of the mini-satellites’ attitude; it 
is based on a cluster consisting of four control moment 
gyros and uses feedback from the system’s quaternion 
vector (which gives information regarding the attitude 
of the satellite) and satellite’s angular rates. The 
control law to be designed will modify the equivalent 
gyroscopic moment of the cluster, the equivalent 
kinetic moment, and the angular rates’ vector, this 
leading to the modification of the quaternion and to the 
change of the satellite‘s attitude. The new architecture 
is implemented and validated through complex 
numerical simulations for the case of a mini-satellite 
involved in a typical maneuver around its own axis. 

2 PYRAMIDAL CONFIGURATION 
WITH FOUR CMGS 

We consider the motion of a mini-satellite which 
performs a typical maneuver (a complete cycle) 
around its own axis (with constrained angular speed); 
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the three phases of motion (the accelerated angular 
motion, the uniform angular motion and the braked 
motion) are described in detail in (Wie and Lu, 1995).  

To control the satellite, a gyro system (a cluster 
having pyramidal configuration), consisting of four 
control moment gyros, is used. The pyramidal confi-
guration is presented in Fig. 1. The gyros’ rotation 

axes (the kinetic moments 4,1, iKi


) are initially 

oriented parallel to the sides of the pyramid base, the 
axes of the gyroscopic frames (the angular velocities 

associated  to  the frames’  rotations  ,i

  4,1i ) are 
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Figure 1: Pyramidal configuration with four CMGs. 
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Figure 2: The rotations of the gyroscopic frames, angular 
variables, kinetic moments and gyroscopic couples. 

perpendicular to the side faces of the pyramid, while 
the transversal axes of the CMGs are perpendicular to 
the gyro axes and gyroscopic frames. In Fig. 2, one 
presents the rotations of the gyroscopic frames, the 
angular variables, the kinetic moments and the gyros-
copic couples. The frame S (satellite linked) is denoted 
with OXYZ. The gyroscopic tied frames are ,iiii zyxo   

;4,1i  initially (in the absence of the gyroscopic 

frames’ rotations, we have 0 i ); these frames are 

oriented towards the axes of the frames iiii zyxo . 

For the beginning, let us consider that the pyramid 
base is fixed  0


 and, by rotation of the gyroscopic 

frames with the angular velocities ,4,1,  ii


  the 

gyros react by gyroscopic couples (Wie et al., 2002): 

.d/d, tKKKKM iiiiigi











  (1)

In figs. 1 and 2, there are highlighted the rotations 
of the gyroscopic trihedrals with respect to the initial 
positions ,iiii zyxo  the angular variables ( i  and i ), 

the directions of the kinetic moments iK


 after the 

rotations of the gyroscopic frames characterized by the 
rotation angles i  and the gyroscopic couples – 

;giM


 ,4,1,,, ikji iii


 represents the axes’ versors 

of the trihedrals .iiii zyxo  By means of Fig. 1 and 

equation (1), one can obtain the four gyroscopic 
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The component 
11ygM


acts upon the gyroscopic 

frame without rotate it and, thus, it acts on the base (S), 

while the component 
11zgM


 acts upon the gyro-frame 

ensemble and, thus, on the base. The component 

22xgM


 acts on the gyroscopic frame, while 
22 zgM


 acts 

on the gyro-frame ensemble and, thus, both com-
ponents act on the base (S). Same conclusion can be 

drawn regarding the components 
33ygM


 and 

33zgM


 

third gyro and for the components 
44 ygM


 and 

44zgM


 

fourth gyro. 
According to Fig. 1a, the projections of the 

gyroscopic couple 1gM


 (first CMG) on the axes of 

the frame S (OXYZ – satellite linked) are: 

.sincossin

,sin

,coscoscos

11111

11111

11111

1

1

1













KMM

KMM

KMM

zZ

yY

zX

gg

gg

gg

 (6)

Similarly, the projections of the gyroscopic couples 

32 , gg MM


 and 4gM


 on the same axes are deduced 

as: 
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We denote with K and Mg – the equivalent 
kinetic and gyroscopic moments, respectively; these 
can be expressed as vectors having the components 
upon the three axes and verifying the equations: 

    ;, T
ggg

T
ZYX ZYX

MMMKKK  gMK  (10)

putting together the equations (1)-(5), we get: 

gMK   (11)

or     ,T
ggg

T

ZYX ZYX
MMMKKK   where 

.

,

,
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Replacing (6)-(9) in (12), the equation (11) becomes: 

, QK  (13)

with (Haruhisa, 1997)  T
4321    and  

,

cγsβcγsβcγsβcγsβ

cγcβsγcγcβsγ

sγcγcβsγcγcβ

4321

4321

4321



















 gJQ  (14)

where gJ  (Jg – the inertia moment and   the 

vector of the gyros’ angular velocities) is the module of 
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the gyros’ kinetic moments (of the gyroscopic wheels), 
.γsinγs,γcosγc,βsinβs,βcosβc iiii   

Furthermore, taking into account the base’s 
rotation with the angular velocity ,


 the equation of 

the pyramidal cluster (containing 4 CMGs – Fig. 1) 

becomes (Wie et al., 2002): gMKK


    or, 

under an algebraic form, 

,gMKK    (15)

with K and gM  of forms (10) and (Lungu, 2008): 

,

0

0

0

12
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


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


  (16)

where 321 ,,   are the components of the satellite’s 

angular velocity upon the axes of the OXYZ frame. 

3 SATELLITE’S ATTITUDE 
CONTROL BY USING THE 
PYRAMIDAL STUCTURE 

In this section of the paper, the control of the 
satellite’s attitude will be achieved by means of the 
complex system presented in Fig. 3a; the system is 
mainly based on a control law with 2 components: a 
proportional-integrator component with respect to the 
quaternion vector (q) and a proportional component 
with respect to the satellite’s angular velocity vector 
 .  As the actuators’ system, we will use the cluster 

(pyramidal configuration with four CMGs) presented 
in the previous section; the actuators’ saturation will 
be considered both from the generated gyroscopic 
couples’ point of view and from the gyroscopic frame 
angular velocities’ point of view. The structure of the 
system for the calculation of the vector   (the vector 

containing the angular velocities of the CMGs’ frames) 
is presented in Fig. 3b. 

The command cM  (the command couple of the 

system) may be associated to the gyroscopic couple 

gM  from equation (15); this equation becomes:  

,KMK  c
  (17)

modelled within the pyramidal cluster (Fig. 3b); for 
the calculation of the angular velocity vector ,c we 

use the equations (17) and (13); we get: ,K Qc  

with Q  the pseudo-inverse of  matrix  .QQ   

The signal c  is applied to the gyroscopic frames’ 

drive motors by means of the dynamic correction 
filter having the transfer matrix: 

  .
s2s

s 442
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2
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

 IH f  (18)

The vector of the satellite’s command moments is 
.Qg M  For satellite’s attitude control system 

in Fig. 3, the following design equations are used: 

,,, JkKkJJPkPKJkK ddpppp   (19)

with (Lungu, 2008; Wie and Lu, 1995): 
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0
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dpi
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q
kkkkkk 

q
 (21)

From (19), one yields: 

.1JkKP p
  (22)

For   ,sat *Pq
L

 with   ,321
TLLLL   the limits 

,3,1, iLi  are calculated from the stabilized regime 

condition (uc=0). i.e.:  
max

dp KLK   or 

,
max

dp kLk   (23)

equation equivalent with the following one: 

 
  .3,1,
0

0)21(

max
 i

qk

k
L

i
i

pi

d
i

q
 (24)

The satellite’s attitude (Euler angles –  ,  and 

 ) may be defined by means of two quaternion 

vectors (  Tqqq 321q  and  Tqqqq 4321
ˆ q ); 

the significances of these angles are similar to the 
ones expressing the attitude of an aircraft with respect 
to the Earth tied frame: φ is associated to the roll 
angle, θ – associated to the pitch angle and ψ – 
associated to the direction angle. The differential 
equations of the quaternions are (Heiberg et al., 2000): 

;
2

1
,

2

1

2

1
44 qqq Tqq      (25)

the correlation formulas between the components of 
the quarternion vector q̂  and the satellite’s attitude 

angles are (Wen and Delgado, 1991): 

Determination�and�Control�of�the�Satellites'�Attitude�by�using�a�Pyramidal�Configuration�of�Four�Control�Moment�Gyros

451



 

  
 

.
2

atan

,2asin

,
2

atan

2
4

2
3

2
2

2
1

4321

3241

2
4

2
3

2
2

2
1

4231

qqqq

qqqq

qqqq

qqqq

qqqq












 (26)

For the calculation of the angular velocities’ vector 
  ,c  the pseudo-inverse of matrix Q must be obtained 

first. From the methods for the calculation of the 
pseudo-inverse, we can choose the robust type inverse 

and the equation:   ,
1  IQQQQ TT  with I – the 

identity matrix. This formula does not always guarantee 
the avoidance of single frame CMGs’ singularities. 
Such a CMG can get into the singularity zone in the 
presence of sensor noise. Furthermore, if the system is 
controlled such that it goes into the singularity zone, it 
can not escape from this state. Therefore, to remove 
this drawback, we will use a simple but effective 
equation for the calculation of the pseudo-inverse of 
matrix Q (Wie et al., 2002; Haruhisa, 1997); it is 
designed especially for reorientation maneuvers, stage 
in which it is not necessary to achieve certain accuracy.  

The pseudo-inverse is obtained by using the 
formula (Wie et al., 2002; Haruhisa, 1997): 

  ,E
1  TT QQQQ (27) 
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where i  is continuously modulated: 

  ;3,1,sin0  it iii  (29)

this guarantees that .0  Ku QQ k  This solution 

does not ensure the avoidance of singularity, but 
rather its proximity and transit. 
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Figure 3: Satellite’s attitude control system using a pyramidal cluster with four CMGs (a) and a subsystem for the 
calculation of the vector  (b). 

4 NUMERICAL SIMULATION 
RESULTS 

In this section, the satellite’s attitude control system 

(Fig. 3), using a cluster consisting of four CMGs (Fig. 
1), is software implemented and validated in 
Matlab/Simulink environment, for the case of a mini-
satellite. The attitude of the satellite (the angles  ,  

and  ) will be controlled by means of the quaternion 

vectors (  Tqqq 321q  and  Tqqqq 4321
ˆ q ) 

and of the gyroscopic moment gM  (the output signal 

of the pyramidal cluster – Fig. 3b); gM  modifies the 

vector of angular velocities    and the equivalent 

kinetic moment vector K; according to (11) and (13), 
the modification of K leads to the actualization of the 
vectors  ,  and of the matrix  ;Q  according to 

(25), the modification of the vector   leads to other 
expressions of the quaternion vectors (q and q̂ ); the 

modification of the quaternions is equivalent with the 
change of the satellite’s attitude (see eq. (26)). 

Let us consider the matrix of the satellite’s inertia 
moments (Wie et al., 2002): 

2mkg
50005001800

5001.202100

180021004.21
















J  (30)

and the values: .s12,8.0,rad/s3  in T  With 

these, we obtain ;88.4,8.18  dkk  pik  is 

calculated with (21) for 

rad/s174.0deg/s10
max

i  and the quaternion 

vector             Tqqqq 00000ˆ
4321q  

  .5454.05.05.045.0 T  

Using (26) and (28), it results: 

    .

,

677.1677.1862.1

36.56690.4770-0.0049-

3.871341.49230.0460

0.06030.070336.9765

321
TTLLLL

P




















 (31)

The nonlinearity  *sat qP
L

 is described by the 

equation      












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,
~

,

,,
~

,
~

,
~

,
~

satsat *

iii

iiii

iii

i
LL

LPL

LLPP

LPL

PPq  

with ,3,1, iLi  having the values in (31).  

The limits of the saturation zone are chosen as: 
    .rad/s11114321

TT
ccccc LLLLL   For the 

transfer matrix Hf(s) of form (18), we choose the 
values: ,7.0,rad/s50 00   while, for the 

cluster in Fig. 1, we consider deg55  and the 

initial vector             T00000 4321  

  .2/2/2/2/ T  The matrix Q has the 

form (23), with 4,1,Nms1000  iJK gi  and 

           ;Nms11110000000 TT
ZYX KKK K  

           .deg/s0000000 321
TT   
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For the system presented in Fig. 3, we choose 
(Wie et al., 2002):  

  .det10exp01.0

;,
2

,0,
2

sin01.0 321

T

ii

QQ

t












 


  (32)

In Fig. 4a we present the time histories of the 
satellite’s attitude angles (  ,, ), angular velocities 

 321 ,,  , angular accelerations   ,,, 321    

components of the command couple of the system – 
  ,,, 321 cccc MMMM  components of the gyroscopic 

moment  –  321 ,, gggg MMMM  and components of 

the kinetic moment vector –  ;,, ZYX KKKK  in 

Fig. 4b we present the time histories associated to the 
components of the quaternions   ,,,,ˆ

4321 qqqqq  to 

the components of the vector  4321 ,,,   and 

the components of its derivative  .,,, 4321    

As one can see in Fig. 3a, the control of the 
satellite’s atitude is achieved by controlling the 
quaternion vector q and the satellite’s vector  .  

Actually, the first component of the designed control 
law  cM  is proportional-integrator type and assures 

the convergence of the quaternion vector q to the 

desired quaternion   T000q  (see Fig. 4b); the 

second component of the control law cancels the 
deviation of the angular velocity vector from the one 
associated to the reference frame (see Fig. 4a). The 
closed loop control system has good convergence, 
global asymptotically stability and     ;0,0ˆ  tt q  

on the other hand, as one can notice from Fig. 4, the 
cancel of the vectors q̂  and   leads to the cancel of 

other variables: the components of the command 
couple –   ,,, 321 cccc MMMM  the components of the 

gyroscopic moment – gM   321 ,, ggg MMM  and of 

the kinetic moment vector –  .,, ZYX KKKK  

 

ICINCO�2015�-�12th�International�Conference�on�Informatics�in�Control,�Automation�and�Robotics

454



0 20 40 60
-50

0

50

Time [s]
0 20 40 60

-100

0

100

Time [s]
0 20 40 60

-50

0

50

Time [s]

0 20 40
-20

0

20

Time [s]
0 20 40

-20

0

20

Time [s]
0 20 40

-20

0

20

Time [s]

0 20 40
-50

0

50

Time [s]

0 20 40
-50

0

50

Time [s]

0 20 40
-50

0

50

Time [s]

0 20 40
-2000

0

2000

Time [s]

0 20 40
-2000

0

2000

Time [s]

0 20 40
-5000

0

5000

Time [s]

0 20 40
-1000

0

1000

Time [s]

0 20 40
-2000

0

2000

Time [s]

0 20 40
-2000

0

2000

Time [s]

0 20 40
-2000

0

2000

Time [s]

0 20 40
1000

1500

2000

Time [s]

0 20 40
-2000

0

2000

Time [s]

]
d[
eg



[d
eg

]


]
d[

eg


]
de

g/
s

[
3



]
m

N[
1c

M
]

de
g/

s
[

2
1



]
m

N[
2c

M

]
m

N[
3c

M

]
m

N[
gX

M

]
m

N[
gY

M

]
m

N[
gZ

M

]s
m

N[
X

K

]s
m

N[
Y

K

]s
m

N[
Z

K

]
de

g/
s

[
2



]
de

g/
s

[
1



]
de

g/
s

[
2

2


]
de

g/
s

[
2

3


 
a. 

0 50 800 50 800 50 80

0 50
-0.2

0

0.2

0.4

0.6

Time [s]

0 50
-0.2

0

0.2

0.4

0.6

Time [s]

0 50
-0.6

-0.4

-0.2

0

0.2

Time [s]

0 50
0.4

0.6

0.8

1

Time [s]

-100

-50

0

50

100

Time [s]

-100

-80

-60

-40

-20

Time [s]

-150

-100

-50

0

50

Time [s]

0

50

100

Time [s]

0 20 40
-100

-50

0

50

100

Time [s]

0 20 40
-100

-50

0

50

100

Time [s]

0 20 40
-100

-50

0

50

100

Time [s]

0 20 40
-100

-50

0

50

100

Time [s]

80 80 80 80

1q 2q 3q 4q
]

de
g

[
4

]
de

g/
s

[
1

0 50 80

]
de

g
[

3

]
de

g
[

2

]
de

g
[

1

]
de

g/
s

[
2

]
de

g/
s

[
3

]
de

g/
s

[
4

 
b. 

Figure 4: Time histories of the main variables associated to the satellite’s attitude control system. 

 

Determination�and�Control�of�the�Satellites'�Attitude�by�using�a�Pyramidal�Configuration�of�Four�Control�Moment�Gyros

455



5 CONCLUSIONS 

The purpose of this study was to design a new 
architecture for mini-satellites’ attitude control using a 
cluster consisting of four CMGs and feedback from 
the quaternion and angular velocity vectors; the 
equivalent gyroscopic moment modifies the satellite’s 
equivalent kinetic moment and the vector of angular 
velocities, this leading to the modification of the 
satellite’s quaternion vector and of its attitude. The 
new architecture has been software implemented and 
validated through complex numerical simulations for 
the case of a mini-satellite involved in a typical 
motion around its own axis; the closed loop control 
system has been proved to be characterized by con-
vergence and global asymptotically stability.  
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