ANY2API — Automated APlIfication
Generating APIs for Executables to Ease their Integration and Orchestration
for Cloud Application Deployment Automation

Johannes Wettinger, Uwe Breitenblicher and Frank Leymann
Institute of Architecture of Application Systems, University of Stuttgart, UniversitatsstralRe 38, Stuttgart, Germany

Keywords: Cloud Computing, DevOps, API, APlIfication, Service, Web, REST.

Abstract: APIs are a popular means to expose functionality provided by Cloud-based systems, which are utilized to
integrate and orchestrate application as well as management functionality in a programmatic manner. In the
domain of application management, they are used to fully automate management processes, for example, to
deploy Cloud-based Web applications or back-ends for mobile apps. However, as not all required functionality
is exposed through an API natively, such processes additionally involve a multitude of other heterogeneous
technologies such as scripting languages and deployment automation tooling. Consequently, combining
different technologies in an efficient manner is a complex integration challenge. In this paper, we present a
generic approach for automatically generating APl implementations for arbitrary executables such as scripts
and compiled programs, which are not natively exposed as APIls. This APlfication tackles the aforementioned
integration challenges by unifying the invocation of heterogeneous technologies while avoiding the costly and
manual wrapping of existing executables because it does not scale. We further present the modular and extensible
open-source framework ANY2API that implements our APIfication approach. Furthermore, we evaluate the
approach and the framework by measuring the overhead of generating and using APl implementations. In
addition, we conduct a detailed case study to confirm the technical feasibility of the approach.

1 INTRODUCTION

forms. Both (i) libraries that are bound to a particu-

A remarkable amount of today’s applications, espe-
cially Web applications as well as back-end systems
and platforms for mobile apps, provide application
programming interfaces (APIs) (Richardson et al.,
2013). The main purpose of an API is to provide
a well-defined and documented interface, which is ex-
posed to access and utilize application functionality
in a programmatic manner. APIs hide and abstract
from implementation-specific details such as invoca-
tion mechanisms and data models inherited from the
technology stack on which a particular application is
built upon. This is the foundation for integrating and
orchestrating different applications and application
components, enabling systematic development and re-
liable operations of distributed applications, mash-up
applications, and mobile apps. Furthermore, APIs
are used to integrate applications with business part-
ners, suppliers, and customers (Rudrakshi et al., 2014).
Even devices can be connected and interconnected to
enable the Web of things (Guinard et al., 2010). Tech-
nically, APIs can be exposed and utilized in different

Wettinger J., Breitenbiicher U. and Leymann F..

lar programming language and (ii) language-agnostic
Web services, e.g., Web-based RESTful APIs (Richard-
son et al., 2013; Masse, 2011) or WSDL/SOAP-based
services (W3C, 2007) are widespread forms of pro-
viding and using APIs. Popular providers such as
Twitter, GitHub, Facebook, and Google offer such li-
braries! and Web services?. However, libraries and
Web services are not mutually exclusive, meaning li-
braries often use Web services in the background, but
adding an additional layer of abstraction to seamlessly
integrate with the programming model of the corre-
sponding language. Consequently, Web APIs are a
platform-independent and language-agnostic means
for integration and orchestration purposes, optionally
enhanced by additional language-specific libraries. Re-
garding the terminology used in this paper, we consider
aWeb API as one particular kind of API. The use cases,
examples, and implementations discussed in this paper
mostly focus on Web APIs. However, the concepts

1Google APIs client libraries: http://goo.gl/uVvFf
2Google Compute Engine API: http://goo.gl/cjOBGI

ANY2API — Automated APlIfication - Generating APIs for Executables to Ease their Integration and Orchestration for Cloud Application Deployment 475

Automation.
DOI: 10.5220/0005472704750486

In Proceedings of the 5th International Conference on Cloud Computing and Services Science (CLOSER-2015), pages 475-486

ISBN: 978-989-758-104-5

Copyright ¢ 2015 SCITEPRESS (Science and Technology Publications, Lda.)

CLOSER 2015 - 5th International Conference on Cloud Computing and Services Science

and methods are suitably generic to be applied to other
kinds of APIs, too.

The number of publicly available Web APIs is con-
stantly growing®. As of today, the API directory Pro-
grammableWeb* lists more than 12000 APIs. Popular
providers such as Google, Facebook, and Twitter are
serving billions of API calls per day®. These statistics
underpin the importance and relevance of APIs. Exist-
ing literature (Masse, 2011; Richardson et al., 2013)
and frameworks such as Hapi® (Node.js) and Jersey’
(Java) provide holistic support, best practices, and tem-
plates for building Web APIs. While this is state of
the art for creating Web applications and back-ends for
mobile apps, Web APIs as a platform-independent and
language-agnostic means for integration and orches-
tration purposes are heavily utilized for automating
the deployment and management of Cloud applica-
tions (Mell and Grance, 2011; Wettinger et al., 2014a),
which leads to significant cost reductions and enables
applications to scale: Cloud providers offer manage-
ment APIs that can be programmatically used in a
self-service manner, e.g., to provision virtual servers,
deploy applications using platform services, or to con-
figure scaling and network properties.

However, because such management APIs typi-
cally provide basic functionality only, they have to
be combined with further configuration management
systems to realize non-trivial deployment scenarios: a
huge number of reusable artifacts such as scripts (e.g.,
Chef cookbooks (Nelson-Smith, 2013), Juju charms?,
Unix shell scripts) and templates like Docker container
images (Turnbull, 2014) are shared by open-source
communities to be reused in conjunction with provider-
supplied services. While APIs can be orchestrated
easily due to well-known and common protocols (e.g.,
HTTP), the technical integration with these different
artifacts and heterogeneous management systems is a
very error-prone, time-consuming, and complex chal-
lenge (Wettinger et al., 2014a). Thus, to build, deploy,
and manage non-trivial Web applications, it is of vi-
tal importance to handle the invocation of different
artifacts, technologies, and service providers in a tech-
nically uniform manner to focus on the orchestration
level, neglecting lower-level technical differences.

Unfortunately, many of these individual artifacts
are executables that cannot be utilized through an
API without a central middleware component (Wet-
tinger et al., 2014a) such as a service bus that (a) maps

3programmableWeb statistics: http://goo.gl/2eQ010
4ProgrammableWeb: http://www.programmableweb.com
SprogrammableWeb calls per day: http://goo.gliyhgyyW
Hapi: http://hapijs.com

7Jersey: http://jersey.java.net

8Juju charms: https://manage.jujucharms.com/charms

476

generic API calls into executable-specific invocations,
(b) translates inputs and results of the invocation, and
(c) makes them available through an API endpoint.
However, this central middleware approach comes
with three major drawbacks: (i) the individual artifacts
are not packaged with their API to be utilized at run-
time and, thus, they are not self-contained; (ii) in order
to utilize the executables through an API, a central mid-
dleware component is inevitably required in addition
to the individual artifacts to be invoked which results
in additional costs and maintenance effort; (iii) in case
a new kind of executable comes in, the central mid-
dleware has to be adapted, extended, and redeployed
accordingly with potential risks such as downtime,
functional failures, and unintended side effects. Today,
this is nothing exceptional because open-source com-
munities constantly share new kinds of artifacts such
as Chef cookbooks, Juju charms, and Docker container
images to name a few examples from the domain of
application deployment automation.

The main goal of our work is overcome these draw-
backs by introducing an automated approach to gener-
ate APl implementations (APIfication) that are packa-
ged including the corresponding artifacts such as the
executable and all its dependencies in a portable man-
ner. This makes them truly self-contained without de-
pending on a central middleware. The generated API
implementations simplify the orchestration of different
kinds of artifacts and their integration with existing
provider-hosted APIs. Therefore, the major contribu-
tions of this paper are as follows: (i) We present an
automated APlfication method, respecting the require-
ments we derived from a use case and motivating sce-
nario in the field of Cloud computing and deployment
automation. (ii) We introduce an APIfication frame-
work to implement the method we presented before
and provide a prototype implementation to demon-
strate the feasibility. (iii) We validate the proposed
APIfication approach using a prototype implementa-
tion and perform an evaluation to analyze the effi-
ciency of our approach. (iv) We conduct a case study
in the field of deployment automation and discuss fur-
ther use cases of the APIfication approach in other
fields such as e-science.

The remainder of this paper is structured as follows:
Section 2 describes the problem statement, including a
use case and motivating scenario in the field of deploy-
ment automation. Based on the generic APIfication
method presented in Section 3, we propose and discuss
an APlIfication framework in Section 4. Our prototype
implementation ANY2API as well as its validation and
evaluation are discussed in Section 5. Moreover, we
present a case study in that section. Section 6 outlines
further use cases to apply our APIfication approach.

ANY2API - Automated APIfication - Generating APIs for Executables to Ease their Integration and Orchestration for

Finally, Section 7 and Section 8 discuss related work,
future work, and conclude the paper.

2 PROBLEM STATEMENT & USE
CASE

As discussed in Section 1, APIs serve as a platform-
independent and language-agnostic means for inte-
gration and orchestration purposes. There are sev-
eral frameworks based on different programming lan-
guages and technology stacks established to develop
APIs, especially Web APIs. However, an individual
API still needs to be implemented manually using
these development frameworks. While this is state
of the art for creating new applications such as Web
applications or back-ends for mobile apps, for some
use cases the individual development of an APl is not
feasible or even impossible. This is due to scaling
issues (e.g., creating APIs for a huge amount of indi-
vidual executables) or missing expertise, meaning the
person, who needs to utilize certain functionality is
not able to develop a corresponding API. In the fol-
lowing we discuss an important use case that requires
API implementations to be generated in an automated
manner.

2.1 Use Case: Deployment Automation

A major use case originates in the DevOps community
(Huttermann, 2012), proposing the implementation
of fully automated deployment processes to enable
continuous delivery of software (Humble and Farley,
2010; Wettinger et al., 2014b). This is the founda-
tion for rapidly putting changes, new features, and
bug fixes into production. Especially users and cus-
tomers of Cloud-based Web applications and mobile
apps expect fast responses to their changing and grow-
ing requirements. Thus, it is a competitive advantage
to implement automated processes to enable fast and
frequent releases (Huttermann, 2012). As an exam-
ple, Flickr performs more than 10 deployments per
day®; HubSpot with 200-300 deployments per day
goes even further!®. This is impossible to achieve
without highly automated deployment processes. The
constantly growing DevOps community supports the
implementation of automated processes by providing a
huge variety of individual approaches such as tools and
artifacts to implement holistic deployment automation.
Reusable executables such as scripts, configuration
definitions, and templates are publicly available to

9Flickr deployments per day: http://goo.gl/VEmVqE
10HubSpot deployments per day: http://goo.gl/4AQy1h

Cloud Application Deployment Automation

Deployment
Automation Approach

Docker Chef i Amazon Stack API
Image Cookbook EC2 API

Google Stack API

Cloud API

Figure 1. Deployment automation classification.

be used for deployment automation. Juju charms and
Chef cookbooks are examples for these (Nelson-Smith,
2013; Sabharwal and Wadhwa, 2014). Such executa-
bles usually depend on certain tools. For instance,
Chef cookbooks require a Chef runtime, whereas Juju
charms need a Juju environment. This makes it chal-
lenging to reuse different kinds of heterogeneous ar-
tifacts in combination with others. Especially when
systems have to be deployed that consist of various
types of components, typically multiple tools have to
be combined because they focus on different kinds of
middleware and application components. Thus, there
is a variety of solutions and orchestrating the best of
them requires to integrate the corresponding tools, e.g.,
by writing scripts that handle the underlying lower-
level invocations, parameter passing, etc. However,
this is a difficult, costly, and error-prone task as many
of the executables cannot be utilized through an API
without relying on a central middleware component.
Consequently, all artifact- and tooling-specific details
(invocation mechanism, rendering input and output,
etc.) have to be known and considered when integrat-
ing and orchestrating different kinds of executables.
We tackle these issues with our work presented in this
paper by generating APIs for individual executables.
The generated APIs hide and abstract from artifact-
and tooling-specific details, thereby significantly sim-
plifying the integration and orchestration of very dif-
ferent kinds of artifacts.

Figure 1 shows an initial classification of deploy-
ment automation approaches. Executables are catego-
rized in compiled and interpreted artifacts. Examples
for compiled executables are pre-built virtual machine
snapshots and container images such as Amazon ma-
chine images (AM1)!! or Docker container images'2.

L AMIs: http://goo.gl/S1Zx8Q
12Docker Hub Registry: https://registry.hub.docker.com

477

CLOSER 2015 - 5th International Conference on Cloud Computing and Services Science

In contrast to those, scripts and configuration defini-
tions such as Chef cookbooks and Juju charms are in-
terpreted at runtime. Beside executables, existing APIs
can be utilized in two flavors: (i) provider-hosted APIs
are offered by Cloud providers to provision virtual
servers, storage, and other resources; (ii) self-hosted
APIs are offered, e.g., by open-source Cloud man-
agement platforms such as OpenStack (Pepple, 2011).
Our work focuses on transforming existing individ-
ual executables into self-hosted APIs by generating
corresponding APl implementations. As a result, full
deployment automation can be achieved by integrating
and orchestrating provider-hosted and self-hosted APIs
without considering the tooling- and artifact-specific
details of different kinds of executables. Moreover,
this approach broadens the potential variety of tools
and artifacts because their implementation-specific dif-
ferences are completely hidden by using the generated
APl implementations.

Technically, the integration and orchestration of
generated and existing APIs can be implemented us-
ing arbitrary scripting languages such as JavaScript,
Ruby, or Python; alternatively, service composition
languages such as BPMN (OMG, 2011) or BPEL (OA-
SIS, 2007) may be used. For scripting languages,
provider-independent and provider-specific toolkits are
available to implement deployment plans that orches-
trate and integrate different APIs. Examples are fog'®
and Google’s API libraries!*. Furthermore, general-
purpose libraries to interact with different kinds of Web
APIs are available for all major scripting languages:
restler (JavaScript)'®, node-soap (JavaScript)®6, rest-
client (Ruby)’, Savon (Ruby)?®, etc.

2.2 Motivating Scenario: Facebook App

Considering the deployment automation use case dis-
cussed before, this section presents a comprehensive
example as motivating scenario: the automated de-
ployment of a Cloud-based Facebook application. The
structure and parts of the application are shown in Fig-
ure 2. A canvas frame!? is used to create and embed a
corresponding application on the Facebook platform.
The canvas URL points to an externally hosted Web
application that is run based on a PHP runtime en-
vironment. It provides both the user interface and
the underlying application logic. The PHP runtime

Bfog: http://fog.io

14Google APIs Client Libraries: http://goo.gl/uVvFf
B5restler: https://github.com/danwrong/restler
Bnode-soap: https://github.com/vpulim/node-soap
Trest-client: https://github.com/rest-client/rest-client
18savon: http://savonrb.com

19Facebook canvas frame: http://goo.gl/5guKas

478

Facebook App

(Facebook Canvas)
@ Installation & o PHP-based
Configuration | —— Web Application
Management using Unix —
using Facebook Shell Scripts
(SSH/Shell) hosted on

Installation &
Configuration | —— ro

App Dashboard
using Chef f—
hosted on

for Developers
Cookbook
(SSH/Chef)
e
."\ Ubuntu 14.04 VM
w.l (Infrastructure)

Provisioning
using Amazon
EC2 API
(HTTP/RPC)

Figure 2: Facebook application stack.

Apache HTTP Server
(Middleware)

Amazon EC2
(Cloud Provider)

itself is provided by an Apache HTTP server. in con-
junction with a PHP module. Both are deployed on
a virtual machine, running Ubuntu 14.04 as operat-
ing system, which itself runs in the Cloud, hosted on
Amazon’s public infrastructure (EC2%°). The scenario
covers a typical setting used to deploy and run Web-
based social applications as it employs and combines
modern social media platforms such as Facebook as
well as Cloud infrastructures such as Amazon EC2.
It could be further refined, e.g., by connecting the
Web application to a database that is provided by a
database-as-a-service offering hosted on a different
Cloud infrastructure.

To provision the complete application stack in an
automated manner, different types of interfaces and
invocation mechanisms have to be integrated. The
virtual machine with its operating system is acquired
by using the HTTP/RPC API provided by Amazon
EC2. A Chef cookbook is executed on the virtual ma-
chine through an SSH connection to install the middle-
ware of the application stack (Apache HTTP server).
Furthermore, SSH is used to run custom Unix shell
scripts to install and configure the actual Web appli-
cation. However, remotely running executables such
as Chef cookbooks and Unix shell scripts is not as
straightforward as calling a well-defined API endpoint:
(i) an executable needs to be placed on the virtual ma-
chine, e.g., using file transport protocols such as FTP
and SCP. Moreover, (ii) the executable may require
a particular runtime environment to be installed on
the virtual machine such as a Chef runtime for Chef
cookbooks. An SSH connection can be used to drive

20 Amazon EC2: http://aws.amazon.com/ec2

ANY2API - Automated APIfication - Generating APIs for Executables to Ease their Integration and Orchestration for

the installation. Afterward, (iii) the execution of the
scripts needs to be parameterized, which may be done
by setting environment variables or storing configu-
ration files. The final challenge is (iv) retrieving the
results of the invocation, e.g., by reading, parsing, and
potentially transforming the console output or files
that were written to disk. In comparison to a simple
API call, these steps are more complex and error-prone
because lower-level implementation details such as dif-
ferent transport protocols and invocation mechanisms
have to be considered and combined with each other.
The overarching provisioning logic orchestrating all
API calls as well as the preparation and invocation
of the executables could be implemented by a script
using a general-purpose scripting language such as
Ruby or Python. However, such a script would be
polluted with lower-level implementation details such
as establishing SSH connections and placing files on
the virtual machine. Furthermore, service composi-
tion languages such as BPEL or BPMN cannot be
used without manually creating wrapping logic for the
different executables involved. This is due to their
focus on Web service orchestration. Consequently,
the implementation details of the underlying APIs and
executables directly influence which orchestration ap-
proaches can be used. This clearly contradicts with
the idea of loose coupling, i.e., selecting an orches-
tration approach and implementing the orchestration
logic without considering the implementation details
of the underlying, lower-level technologies.

To tackle these challenges we propose an auto-
mated approach to generate APIs for arbitrary executa-
bles. The approach is based on the APlIfication method
we present in Section 3. In the context of our motivat-
ing scenario discussed in this section, the approach can
be used to completely wrap the script invocation by
generating an API that hides the (i) placement, (ii) in-
stallation of required runtime environments, (iii) pa-
rameterization and execution of the executable, as well
as (iv) transforming and returning the results. Conse-
quently, the orchestration logic deals with API calls
only, without getting polluted, error-prone, or unnec-
essarily complex because of implementation details of
the underlying executables.

3 APlfication METHOD

The APIfication approach presented in this section is
based on the assumption that each executable has some
metadata associated with it. These metadata are either
natively attached and/or they are explicitly specified
and additionally attached to the executable. Metadata
indicate which input parameters are expected, where

Cloud Application Deployment Automation

results are put, which dependencies have to be resolved
before the invocation, etc. The main purpose of a gen-
erated APl implementation is to enable the invocation
of the corresponding executable through a well-defined
interface, independent from the underlying technology
stack. Furthermore, a generated APl implementation
enables the invocation of the corresponding executable
not only locally in the same environment (e.g., same
server), but enables the execution using remote access
mechanisms such as SSH and PowerShell in remote
environments. This is to decouple the environment of
an APl implementation instance from the environment
of the actual executable that is exposed by the API. Dis-
tributed environments as they are, for instance, used
in the field of Cloud computing are thereby supported.
An API call could be-made from a workstation (run-
ning a script that orchestrates multiple APIs) to an API
implementation instance that is hosted on premises
(e.g., a local server); the actual executable (e.g., a Chef
cookbook to install a middleware component) runs on
a Cloud infrastructure. However, one could also run all
parts on a single machine, e.g., a developer’s laptop.

Figure 3 shows an overview of the APlIfication
method, outlining the individual steps and their order-
ing to generate APl implementations in an automated
manner. In the first step, the executable targeted for
the APIfication is selected. Then, the interface type
(e.g., RESTful API) and the API implementation type
(e.g., Node.js or Java) is selected (step 2 & 3). The
type of interface including the communication proto-
col (HTTP, WebSocket, etc.) and the communication
paradigm (RPC, REST, etc.) can be chosen when
generating an APl implementation. This choice may
be driven by existing expertise, alignment with ex-
isting APIs, or personal preferences. Similarly moti-
vated, the type of the underlying implementation (Java,
Node.js, etc.) for the generated API can be chosen
when generating an APl implementation. A generated
API should be language-agnostic to allow the usage of
arbitrary languages (scripting languages, programming
languages, service composition languages, etc.) to or-
chestrate and integrate different APIs. Thus, Web APIs
are the preferred and universal type of APIs because
they can be utilized in nearly any kind of language.

After the selection part, the executable including
its metadata is scanned to discover input and output
parameters (step 4). If the scan did not discover all
parameters, the following (optional) step can be used
to refine the input and output parameters for the gener-
ated API (step 5). However, this is not required if the
metadata associated with the executable are sufficient
as this is, e.g., the case for many open-source deploy-
ment automation artifacts such as Chef cookbooks and
Juju charms. Consequently, the method can be applied

479

CLOSER 2015 - 5th International Conference on Cloud Computing and Services Science

Select executable
1

Select type of
interface
2

S.elect type of.API Scan executable
implementation
3 4

Optional, manual

Test & use
packaged API

implementation

Package API
implementation
implementation with executable

H Specify & H
refine in-/output
parameters

Generate API

64

Figure 3: APIfication method.

to a huge amount and variety of such artifacts in an
automated manner. Then, the APl implementation is
generated (step 6). To enable an API implementation
to be hosted in different environments, it must be pa-
ckaged in a portable manner (step 7). Thus, the imple-
mentation must be self-contained without depending
on central middleware components, which dynami-
cally provide data format transformations, parameter
mappings, etc. at runtime. All these and related func-
tionality are incorporated in the APl implementation
when it is generated at build time. The portability
aspect is key for automated deployment processes be-
cause they need to run in very different environments
(development, test, production, etc.). These environ-
ments may be hosted on different infrastructures (de-
veloper laptop, test cloud, etc.), so portability of the
generated APl implementations is key in this context.
Technically, containerization technology (Scheepers,
2014; Turnbull, 2014) may be utilized for this purpose:
each APl implementation gets packaged as a portable
container image that can be instantiated in different
environments.

Later, the generated implementation may be re-
fined or updated by going back to the selection steps
for the interface type and the API implementation type.
The APIfication method presented in this section ad-
dresses the challenges we identified in Section 2, in-
cluding the deployment automation use case and the
motivating scenario. However, the method itself is still
abstract and can be implemented in various ways. The
following section presents a modular and extensible
framework to implement the APIfication method.

4 APlIfication FRAMEWORK

In order to implement the APIfication method intro-
duced in Section 3, we present a modular, plugin-
based, and extensible framework in this chapter to
support the individual steps of the method. Figure 4
shows several artifacts organized in multiple registries
that are linked to the steps of the method, associated
with certain actions (check, use, create). When se-

480

lecting an executable for its APIfication, the available
invokers are checked (action A) if there is at least
one invoker available that is capable of running the
given type of executable (e.g., a Chef cookbook). Fig-
ure 5 outlines the registry, in which the invokers are
stored: each invoker supports at least one executable
type. For instance, the Cookbook Invoker can be used
to run Chef cookbooks. The generator registry (Fig-
ure 6) is checked (action B) when selecting the inter-
face type and the APl implementation type. As an
example, a Chef cookbook may be selected in conjunc-
tion with-HTTP+REST as interface type and-Node . js
as implementation type. In this case all checks would
succeed because the Cookbook Invoker is available
and the REST API Generator can be used to gener-
ate an HTTP+REST interface; this is possible because
the chosen generator can deal with Node. js as imple-
mentation type. Consequently, the generator uses the
invoker to provide an APl implementation that can run
the given Chef cookbook.

Next, the given executable with its metadata is an-
alyzed by a corresponding scanner (action C) from
the scanner registry (structured similarly as invoker
registry) to create an API 1/O specification (action D).
A scanner is a specialized module in the framework
that is able to scan executables of a certain type such
as a Chef cookbook scanner to scan cookbooks. Fig-
ure 7 shows an example for a specification (produced
by a scanner) for a MySQL cookbook: it contains the
input and output parameter names, their data types,
and the mapping information to properly map between
API parameters to the executable parameters at run-
time. The mode of a parameter indicates whether this
parameter is used as input or it is used to return some
output of an invocation. Optionally, a default value
can be associated with a parameter, which is used
in case no value is defined at runtime for the corre-
sponding parameter. In case the data type is object,
a schema definition, e.g., XML schema (World Wide
Web Consortium (W3C), 2012) or JSON schema (In-
ternet Engineering Task Force, 2013) can be attached
to the parameter. This is to specify the expected data
structure for values (objects) of a particular parame-
ter in more detail. The mapping of parameters spec-

ANY2API - Automated APIfication - Generating APIs for Executables to Ease their Integration and Orchestration for

Select executable
)
1

\
(A) check'\
\

Select type of
interface
\
Y
<

Invokers

o S
_\£B) chefl; -
(i

Cloud Application Deployment Automation

Select type of API
implementation
1

7

‘

~ Scanners
- S/
AP,
CheiCoekb ook | APl Impl. W SUOEEEIN chef cookbook
Invoker (F) use Generators N Scanner
Packaged \
APl Impl. Smm——— REST API Java \
. Impl. Generator | \
™ 4
| (G) create 3
': Optional
N
Test & use Package API if
" E o Generate API H .SP.ECI P d
packaged API implementation . X ¢ refine in-/output
. X . implementation H -
implementation with executable parameters

Figure 4: APlIfication framework with technical examples.

Invoker Executable Type

Cookbook Invoker Chef Cookbook

Charm Invoker Juju Charm

Docker Invoker Docker Image

Generator Interface Type Implementation Type
REST API Generator HTTP+REST Java

HTTP+REST Node js

HTTP+REST Ruby

Dockerfile

SOAP/WSDL API Gen. HTTP+WSDL+SOAP Java

HTTP+WSDL+SOAP Node js

Figure 5: Invoker registry.

ifies the target for input parameters and the source
for output parameters at runtime. To refer to Fig-
ure 7: the API parameter version is mapped to the
Chef attribute mysql/version, whereas the console
output of the executable (STDOUT) is mapped to the
API parameter logs. Optionally, the specification can
be refined manually in the following step, which is
not required if the executable’s metadata is sufficient.
The invoker_config parameter (mapped to the envi-
ronment variable INVOKER_CONFIG) is a special one,
provided by the framework; it cannot be modified
or deleted during the (optional) manual refinement
step. The parameter is used to configure the under-
lying invoker itself when using the generated API
to run the executable. This is, for instance, needed
to support remote access mechanisms, enabling the
execution in remote environments. As an example
the invoker_config parameter can hold the follow-
ing JSON object to use SSH to run the executable
remotely:

"remote_access': ''ssh",

"remote_host': "173.194.44.88",

"'ssh_user": "ubuntu",

"'ssh_key": "-—--- BEGIN RSA PRIVATE KEY ..."

}

This sample configuration (given at runtime and
transparently forwarded to the invoker) triggers the in-
vocation of the underlying executable on the machine

JSON-RPC API Gen. HTTP+JSONRPC Java

Node.js JSON-RPC API Gen.

HTTP+JSONRPC Node.js

Figure 6: Generator registry.

Param. Name Mode DataType Default = Param. Mapping

version in string “5.1" CHEF_ATTR:mysql/version
port in number 3306 CHEF_ATTR:mysql/port
logs out string - STDOUT

invoker_config in object - ENV:INVOKER_CONFIG

Figure 7: API 1/O spec for MySQL cookbook.

associated with the given IP address (remote_host)
through SSH. Beside the special invoker_config pa-
rameter, the API I/O specification tells the correspond-
ing generator how to create a proper APl implemen-
tation (action E). A generator is a specialized mod-
ule that performs the actual work to generate an API
implementation. One part of the generation process
is to put the corresponding invoker into the gener-
ated APl implementation. The invoker is provided
by the invoker registry to run the given executable
(action F). Finally, the APl implementation is packa-
ged with the executable in a self-contained manner
(action G). With this, the APIfication procedure for
the given executable is finished, so the generated and
packaged APl implementation can be tested and used
(action H). Figure 8 outlines the structure of a gener-
ated and packaged API implementation: the invoker
(e.g., the cookbook invoker) is retrieved from the in-

481

CLOSER 2015 - 5th International Conference on Cloud Computing and Services Science

; API Endpoint Generated by
.
o (e.g, HTTP4REST) AP Impl
l Generator
Invoker
(e.g., Cookbook Invoker) Included from
Generated by Invoker Registry
Scanner l
Executable
(e.g., MySQL Cookbook) Selected
Executable

API Impl. Package
(e.g., Docker Container Image)

Figure 8: Generated APl implementation package.

voker registry to invoke the selected executable such
as the MySQL cookbook at runtime. The API end-
point is specified by the API 1/O specification, which
itself is generated by a scanner module provided by the
framework. A generator module uses the specification
to generate the implementation of the API endpoint.
Finally, all parts are packaged in a self-contained man-
ner, e.g., in a Docker container image. The following
Section 5 presents the validation and evaluation of
the APlIfication method and framework we discussed
in Section 3 and this section, based on a prototype
implementation we provide.

5 VALIDATION & EVALUATION

In order to evaluate our APIfication method and frame-
work, we developed ANY2API1?! as a prototype imple-
mentation. The following Section 5.1 presents and
discusses the implementation. We performed experi-
ments to measure the overhead both at build time and
runtime (Section 5.2). Finally, Section 5.3 presents a
comprehensive case study in the field of deployment
automation.

5.1 ANY2API Implementation

ANY2API is a modular and extensible implementation
of the APIfication framework presented in Section 4.
Technically, it is based on Node.js, so most parts of it
are implemented in JavaScript. Therefore, we use the
Node Package Manager (NPM)?? and the associated
NPM registry to manage and publish Node.js modules.
However, this does not imply that all parts of the frame-
work have to be implemented in JavaScript. As an
example, invoker modules expose several scripts that
can (but do not have to) be implemented in JavaScript.
Technically, these are specified as NPM scripts? in

2L ANY2API: http:/fany2api.org
22NPM: https://www.npmijs.org
23NPM scripts: http://goo.gl/0ss4NL

482

the package. json file of a module:

"scripts": {
"prepare-executable": "node ./prep-exec.js",
"prepare-runtime": "sh ./prep-runtime.sh”,
"start": "java -jar ./invoke.jar"

}

Such a script can then be called using the npm run
command, e.g., to trigger an invocation of an exe-
cutable that is packaged with a generated APl imple-
mentation: npm run start. This command is exe-
cuted by the generated API implementation, which
itself can be of an arbitrary implementation type such
as a JAR file (Java) or a Node.js module (JavaScript).
Moreover, the APl implementation needs to set prede-
fined environment variables before running the script
such as PARAMETERS to parameterize the invocation ac-
cordingly. These environment variables contain JSON
objects that are parsed and processed by the invoker.
As an example, the input parameters for invoking a
MySQL cookbook may be rendered as follows:

{ "version": "5.1", "port": 3306 }

At build time (i.e., when generating an /APl imple-
mentation) the prepare-executable script is trig-
gered to prepare the packaged executable. Such
preparations may include resolving all dependencies
of a particular executable to package the executable
in a truly self-contained manner. At runtime (i.e.,
when an invocation of the executable is triggered) the
prepare-executable script is executed before the
start script to install prerequisites required for the
invoker to run such as a Java runtime environment.

Generators and scanners are implemented as
Node.js modules, too. Each generator module ex-
poses a generate function to produce an APl im-
plementation based on the given API I/O specifica-
tion. Each scanner module exposes a scan function,
which analyzes the given executable to generate an API
1/0 specification. This specification (after optional,
manual refinement) can then be used in conjunction
with a generator to produce an APl implementation.
To actually use and interact with the framework, the
any2api-cli?* module provides a command-line in-
terface (CL1I) to scan executables as well as to generate
packaged APl implementations:

any2api -o ./mysql_spec scan ./mysql_cookbook
any2api -o ./api_impl gen ./mysql_spec

The first command scans an existing Chef cook-
book, generating an API 1/O specification. Based on
this specification, the second command generates a
corresponding API implementation. By default, a
Node.js-based API implementation exposing a REST-
ful interface is generated. A Dockerfile® (build plan

Z4any2api-cli: https://github.com/any2api/any2api-cli
2pockerfile reference: http://goo.gl/p5Tfdz

ANY2API - Automated APIfication - Generating APIs for Executables to Ease their Integration and Orchestration for

to create a self-contained and portable container im-
age) is included in each generated API implementation.
Consequently, Docker can be used to create APl im-
plementation packages. Moreover, public and private
Docker registries?® can be utilized to store, manage,
and retrieve potentially different versions of pre-built
APl implementations. Following this approach, a huge
variety of existing tools that are part of the Docker
ecosystem can be used to manage instances of gener-
ated APl implementations. As an example, CoreOS?’
may be utilized to host APl implementations in a man-
aged cluster of Docker containers.

Currently, two scanner modules are implemented
for analyzing Chef cookbooks and Juju charms. The
Chef invoker module enables the invocation of Chef
cookbooks, both in local and remote environments
using SSH transparently. Using the REST generator
module, Node.js-based RESTful APl implementations
can be generated. Further modules are currently being
developed such as a Juju invoker, a Docker invoker,
a Docker scanner, as well as alternative generators
to support different type of interfaces (SOAP/WSDL,
JSON-RPC, XML-RPC, etc.) and alternative imple-
mentation types (Java, Ruby, etc.).

5.2 Measurements

In order to evaluate the efficiency of our approach
compared to the plain usage of the corresponding exe-
cutable, we measured the overhead of the APIfication.
Therefore, we generated APl implementations for a se-
lection of the most downloaded Chef cookbooks?,
covering the automated installation and configura-
tion of very common and widely used middleware
components, including mysql, apache2, php, nginx,
postgresql, and others. As an example, apache2
and php are required for the automated deployment
of the Facebook application we outlined in the mo-
tivating scenario (Section 2.2). First, we measured
the overall duration it takes to scan the executable
(Chef cookbook) and to generate a corresponding API
implementation (Node.js-based RESTful API). Sec-
ond, we check the additional size of the generated
API implementation without the corresponding exe-
cutable. This is to estimate the disk space that is ad-
ditionally required at runtime when using an instance
of an API implementation. Third, we measured the
execution duration and memory usage for running the
corresponding executable both with and without using
the generated API implementation. The evaluation
was run on a clean virtual machine (4 virtual CPUs

28Docker registry: http:/goo.gl/2lgohL
27Core0S: https://coreos.com
28\ost downloaded cookbooks: http://goo.gl/8xZUCT

Cloud Application Deployment Automation

clocked at 2.8 GHz, 64-bit, 4 GB of memory) on top
of the VirtualBox hypervisor, running a minimalist
Linux system including Docker. The processing and
invocation of a particular Chef cookbook was done in
a clean Docker-based Ubuntu 14.04 container, with
exactly one container running on the virtual machine
at a time. We did all measurements at container level
to completely focus on the workload that is linked to
the executable and the API implementation.

Table 1 shows the results of our evaluation. The
measured average duration to scan and generate an API
implementation is in the range from 7 to 90 seconds.
This duration is the overhead at build time, including
the retrieval of the executable and all its dependencies.
The additional size of the generated API implementa-
tion leads to slightly more disk space usage at runtime.
Moreover, there is a minor overhead in terms of exe-
cution duration and memory consumption at runtime.
In most of today’s environments this overhead should
be acceptable, considering the significant simplifica-
tion of using the generated APIs compared to the plain
executables. In addition, when using the plain executa-
bles directly, much of the complexity hidden by the
generated APl implementation has to be covered at
the orchestration level. So, the overall consumption of
resources may be the same or even worse, depending
on the selected means for orchestration. Furthermore,
instances of APl implementations can be reused to
run an executable multiple times and potentially in
different remote environments. Through this reuse, the
overhead can be quickly compensated in large-scale
environments.

5.3 Deployment Automation Case Study

We used the presented APIfication approach to ease im-
plementing and generating workflows for the deploy-
ment of Cloud applications based on the OpenTOSCA
ecosystem (Binz et al., 2013; Kopp et al., 2013). This
ecosystem is based on the TOSCA standard (Binz
et al., 2014), which enables describing Cloud applica-
tions and their management in a portable fashion. To
define management tasks imperatively, e.g., to migrate
application components, the ecosystem employs man-
agement plans based on the workflow language BPEL
(OASIS, 2007). Therefore, the orchestration of man-
agement scripts, APIs, and other executables is a major
challenge. The presented APIfication approach eases
developing management workflows significantly as it
reduces the required effort and complexity of integrat-
ing different technologies. Using our approach, model-
ing management workflows requires the orchestration
of APIs only, which is much more straightforward
compared to the former integration of various hetero-

483

CLOSER 2015 - 5th International Conference on Cloud Computing and Services Science

Table 1: Measurements regarding generated API implementations for Chef cookbooks.

mysql apache2 java nginx zabbix glassfish postgresqgl php
Avg. duration to scan 13s 14s 7s 90s 17s 16s 29s
and generate API impl.
Add. size of generated 25M 25M 25M 25M 25M 25M 25M
API implementation
Avg. execution duration 54s 48s 84s 47s 153s 60s 123s
with API impl.
Avg. execution duration 54s 39s 82s 42s 140s 59s 110s
without API impl.
Max. memory usage 556M 471M 507M 461M 429M 674M 510M 614M
with API impl.
Max. memory usage 343M 258M 402M 270M 212M 456M 310M 426M

without API impl.

geneous technologies. Combined with the generated
APIs for Chef cookbooks as discussed in Section 5.2,
the integration of both the ecosystem and our APlIfica-
tion approach provides a powerful means to enable a
fast development of management workflows for Cloud
applications.

6 FURTHER USE CASES

Beside the deployment automation use case (Section 2)
we were focusing so far, we identified further use cases
to apply our APlIfication approach presented in this
paper. In the cyberinfrastructure & e-science com-
munity (Yang et al., 2011) scientific applications are
utilized, orchestrated, and run in Grid and Cloud en-
vironments to perform complex and CPU-intensive
calculations such as scientific simulations and other
experiments. These applications are implemented in
arbitrary programming or scripting languages; they
are usually run as executables directly. Consequently,
they cannot be directly utilized through APIls. Ex-
isting works focus on the usage of scientific appli-
cations through Web APIs (Afanasiev et al., 2013;
Sukhoroslov and Afanasiev, 2014) to ease their inte-
gration and orchestration for more sophisticated ex-
periments, where multiple scientific applications are
involved. As an example, Opal (Krishnan et al., 2009)
is a framework for wrapping scientific applications,
so they can be used through a Web API, abstracting
from the application-specific details and differences
such as invocation mechanisms and parameter pass-
ing. We tackle these challenges with our work by
generating APl implementations and packaging them
together with the actual scientific application, i.e., the
executable. This eases the integration and orchestra-

484

tion of different scientific application through Web
APIs, without having to create API wrappers manu-
ally from scratch. As a result, running complex ex-
periments that involve several scientific applications
becomes easier.

In the previously described use cases of deploy-
ment automation and e-science, we implicitly assumed
an executable to be an individual file or a collection
of files (scripts, compiled executables, scientific ap-
plications, etc.). However, existing API endpoints as
they are, e.g., exposed by provider-hosted Cloud APIs
and social media APIs (Facebook?®, Twitter®, etc.)
can be considered as executables, too. This is moti-
vated by the need for wrapping existing API endpoints
to make them available through different communi-
cation protocols (e.g., wrap WebSocket by HTTP) or
communication paradigms (e.g., wrap RPC by REST).
As an example, Twitter provides the users/show end-
point3! to retrieve a variety of information about a
particular Twitter user. If this API endpoint needs to
be utilized in a deployment workflow implemented
in BPEL, a wrapper has to be implemented to make
the endpoint accessible through a WSDL/SOAP-based
interface (Wettinger et al., 2014a). By treating API
endpoints as executables, APl implementations could
potentially be generated for existing endpoints to make
them accessible through different protocols and com-
munication paradigms, without relying on central mid-
dleware components such as a service bus.

2Facebook Graph API: http://goo.gl/HKGpZG
30Twitter REST API: https://dev.twitter.com/rest
31Twitter users/show API endpoint: http://goo.gl/dmsJ22

ANY2API - Automated APIfication - Generating APIs for Executables to Ease their Integration and Orchestration for

7 RELATED WORK

As discussed in Section 1 and Section 2, using and
creating APIs is of utmost importance today (Rudrak-
shi et al., 2014). Consequently, a huge variety of
approaches is available to simplify the creation and
development of APIs. Beside API development frame-
works to create APl implementations manually (e.g.,
Hapi®? and LoopBack3?), there are solutions to semi-
automatically create Web APIs. As an example, API
specifications defined using the RESTful APl Model-
ing Language (RAML)3* can be utilized to generate an
APl implementation skeleton based on Jersey®®, a Java
framework to develop RESTful APIs (Masse, 2011;
Richardson et al., 2013). These generated skeletons
have to be refined by adding application-specific logic.
Consequently, such approaches can be immediately
used to develop generator modules for our APIfication
framework: the generator produces a skeleton, which
is then automatically refined by adding the logic to
call a corresponding invoker to run the selected exe-
cutable. Moreover, solutions such as Kimono®® and
Import.io®” can be used to generate Web APIs for ex-
isting Web sites. These approaches provide interactive
ways to extract content from HTML pages (e.g., us-
ing CSS selectors) to make them available in more
machine-readable formats such as JSON. Thus, such
Web page-centric approaches focus on extracting and
re-formatting content, whereas our approach tackles
the issue of managing the invocation of arbitrary ex-
ecutables. In contrast to service providers such as
Kimono, our approach aims to generate self-contained,
portable, and packaged APl implementations that can
be hosted anywhere, so they do not depend on specific
provider offerings.

RPC frameworks such as Apache Thrift3® and
Google’s Protocol Buffers®® aim to ease the integra-
tion of application logic and executables that are imple-
mented based on different technology stacks. For effi-
ciency reasons, they typically do not rely on Web APIs
but use lower-level TCP connection-based protocols.
Such RPC frameworks can be perfectly combined with
our APIfication approach by implementing generator
modules. In this case, a module generates an APl im-
plementation, e.g., exposing a Thrift interface instead
of an HTTP-based RESTful interface. Some of these

32Hapi: http://hapijs.com

33_oopBack: http://loopback.io

34RAML: http://raml.org

35RAML to JAX-RS (Jersey): http://goo.gl/E39jun
36Kimono: https://www.kimonolabs.com
371mport.io: https://import.io

38 Apache Thrift: http://thrift.apache.org
39protocol Buffers: http://goo.gl/ug69p

Cloud Application Deployment Automation

frameworks offer support to generate code skeletons
based on interface descriptions. This functionality can
be reused to ease the implementation of a correspond-
ing generator module. However, by sticking to such
non-standard communication protocols there are lim-
itations on the orchestration level, meaning the same
framework has to be used instead of interacting with a
standards-based interface such as HTTP/REST. This is
a trade-off between efficiency and interoperability that
needs to be made individually based on concrete use
cases. Since our framework supports both approaches,
different APl implementations (e.g., Thrift-based and
HTTP/REST-based) can be generated and exchanged
for a particular executable as needed. In the field of
Web APIs, approaches such as websockify*? and web-
socketd*! can be used to expose the functionality of
executables through the standards-based WebSocket
protocol (IETF, 2011). Corresponding generator mod-
ules can be implemented to reuse these approaches in
the context of our APIfication framework.

8 CONCLUSION

In this paper we introduced an automated APlIfication
approach to ease the integration and orchestration of
arbitrary executables. To fulfill the requirements de-
rived from the deployment automation use case and
the motivating scenario, we presented a generic API-
fication method and a corresponding framework to
automatically generate APl implementations. In order
to confirm the practical feasibility of the presented
method and framework, we published ANY2API as
a modular and extensible implementation. To ana-
lyze the efficiency of our approach, we conducted an
evaluation with comprehensive measurements. The
measured results show a small overhead when follow-
ing the APIfication approach, which is acceptable for
most use cases, considering the significant simplifica-
tion and convenience that our approach provides. In
addition, we did a case study in the field of deployment
automation to confirm the actual applicability of our
approach in practice. Finally, we outlined additional
use cases in different fields to apply the proposed API-
fication approach.

In terms of future work, we are going to extend
the APIfication framework to support an additional but
optional step to refine the parameter mapping (e.g., ag-
gregating, splitting, or transforming parameter values).
For this reason we intend to enable the definition of
JavaScript functions that are executed in a sandboxed

4Owebsockify: https://github.com/kanaka/websockify
4lyebsocketd: https://github.com/joewalnes/websocketd

485

CLOSER 2015 - 5th International Conference on Cloud Computing and Services Science

environment at runtime. Moreover, we plan to extend
and refine the ANY2API implementation. Existing
scanners, generators, and invokers will be refined, and
additional ones will be implemented. As an example,
refinement may include authentication and authoriza-
tion mechanisms for generated API implementations.
The currently implemented generators can be used to
create APl implementations that expose Web APIs
such as HTTP/REST. In future, we plan to implement
generators in conjunction with alternative packaging
formats to generate API libraries that can be directly
used in certain programming and scripting languages
such as Java and Python.

ACKNOWLEDGEMENTS

This work was partially funded by the BMWi project
CloudCycle (01MD11023) and the DFG project
SitOPT (610872).

REFERENCES

Afanasiev, A., Sukhoroslov, O., and Voloshinov, V. (2013).
MathCloud: Publication and Reuse of Scientific Appli-
cations as RESTful Web Services. In Parallel Comput-
ing Technologies. Springer.

Binz, T., Breitenbiicher, U., Haupt, F., Kopp, O., Leymann,
F., Nowak, A., and Wagner, S. (2013). OpenTOSCA —
A Runtime for TOSCA-based Cloud Applications. In
Proceedings of the 11th International Conference on
Service-Oriented Computing, LNCS. Springer.

Binz, T., Breitenbiicher, U., Kopp, O., and Leymann, F.
(2014). TOSCA: Portable Automated Deployment and
Management of Cloud Applications, pages 527-549.
Advanced Web Services. Springer.

Guinard, D., Trifa, V., and Wilde, E. (2010). A Resource Ori-
ented Architecture for the Web of Things. In Internet
of Things (I0T), 2010. IEEE.

Humble, J. and Farley, D. (2010). Continuous Delivery: Re-
liable Software Releases through Build, Test, and De-
ployment Automation. Addison-Wesley Professional.

Hittermann, M. (2012). DevOps for Developers. Apress.

IETF (2011). The WebSocket Protocol.

Internet Engineering Task Force (2013). JSON Schema.

Kopp, O., Binz, T., Breitenbiicher, U., and Leymann, F.
(2013). Winery - A Modeling Tool for TOSCA-based
Cloud Applications. In Proceedings of the 11th Inter-
national Conference on Service-Oriented Computing,
volume 8274 of LNCS. Springer Berlin Heidelberg.

Krishnan, S., Clementi, L., Ren, J., Papadopoulos, P., and
Li, W. (2009). Design and Evaluation of Opal2: A
Toolkit for Scientific Software as a Service. In World
Conference on Services I. IEEE.

Masse, M. (2011). REST API Design Rulebook. O’Reilly
Media, Inc.

486

Mell, P. and Grance, T. (2011). The NIST Definition of
Cloud Computing. National Institute of Standards and
Technology.

Nelson-Smith, S. (2013). Test-Driven Infrastructure with
Chef. O’Reilly Media, Inc.

OASIS (2007). Web Services Business Process Execution
Language (BPEL) Version 2.0.

OMG (2011). Business Process Model and Notation
(BPMN) Version 2.0.

Pepple, K. (2011). Deploying OpenStack. O’Reilly Media.

Richardson, L., Amundsen, M., and Ruby, S. (2013). REST-
ful Web APIs. O’Reilly Media, Inc.

Rudrakshi, C., Varshney, A., Yadla, B., Kanneganti, R., and
Somalwar, K. (2014). API-fication - Core Building
Block of the Digital Enterprise. Technical report, HCL
Technologies.

Sabharwal, N. and Wadhwa, M. (2014). Automation through
Chef Opscode: A Hands-on Approach to Chef. Apress.

Scheepers, M. J. (2014). Virtualization and Containerization
of Application Infrastructure: A Comparison.

Sukhoroslov, O. and Afanasiev, A. (2014). Everest: A Cloud
Platform for Computational Web Services. In Pro-
ceedings of the 4th International Conference on Cloud
Computing and Services Science. SciTePress.

Turnbull, J. (2014). The Docker Book. James Turnbull.

W3C (2007). SOAP Specification, Version 1.2.

Wettinger, J., Binz, T., Breitenbiicher, U., Kopp, O., Ley-
mann, F., and Zimmermann, M. (2014a). Unified Invo-
cation of Scripts and Services for Provisioning, Deploy-
ment, and Management of Cloud Applications Based
on TOSCA. In Proceedings of the 4th International
Conference on Cloud Computing and Services Science.
SciTePress.

Wettinger, J., Breitenbiicher, U., and Leymann, F. (2014b).
Standards-based DevOps Automation and Integration
Using TOSCA. In Proceedings of the 7th International
Conference on Utility and Cloud Computing (UCC).

World Wide Web Consortium (W3C) (2012). XML Schema.

Yang, X., Wang, L., and Jie, W. (2011). Guide to e-Science.
Springer.

