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Abstract: PLCA is a framework for qualitative spatial reasoning. It provides a symbolic expression of spatial entities
and allows reasoning on this expression. A figure is represented using the objects used to construct it, that is,
points, lines, circuits and areas, as well as the relationships between them without numerical data. The figure
is identified by the patterns of connection between the objects. For a given PLCA expression, the conditions
for planarity, that is, an existence of the corresponding figure on a two-dimensional plane, have been shown;
however, the construction of such a PLCA expression has not been discussed. In this paper, we describe a
method of constructing such expressions inductively, and prove that the resulting class coincides with that of
the planar PCLA. The part of the proof is implemented using a proof assistant Coq.

1 INTRODUCTION

There are many areas in which spatial data are en-
countered, including image data and video data. As
part of image recognition or analysis, we typically
extract pertinent aspects of image data, such as di-
mensions, position, and direction, depending on our
purpose. For example, we may focus on the rel-
ative positional relationships of the objects, that is,
whether the objects are connected and the relative
spatial location, as well as changes in these relation-
ships for moving objects. Using this information, we
can create an abstract description of moving objects
or find a path that describes the trajectory. Qualita-
tive spatial reasoning is a method of representing spa-
tial data by extracting the topological, mereological,
or geometric properties without requiring numerical
data, which may depend on the application (Stock,
1997; Cohn and Renz, 2007; Ligozat, 2011; Haz-
arika, 2012). This reflects human cognition and rea-
soning of common-sense knowledge. Logical expres-
sions are typically adopted in such a representation.
Logical expressions for a figure enable us to perform
mechanical reasoning on symbols, which reduces the
computational complexity. There are various promis-
ing practical applications of qualitative spatial reason-
ing: simulation on Geographic Information System,
query-answering system on spatial database, naviga-
tion on mobile robots, and so on.

To certify a system on qualitative spatial reason-

ing, we must prove that an expression correctly repre-
sents the properties of the image data and that there is
a corresponding image for a given expression. Al-
though there have been lots of works of qualita-
tive spatial reasoning in the field of artificial intelli-
gence (Randell et al, 1992; Egenhofer, 1995; Freksa,
1991; Borgo, 2013), little work has been carried out
from the viewpoint of the computational model.

On representation, most research claim expres-
sive power for spatial knowledge but do not refer to
the class the expression stands for. We do not know
whether a proposed expression is valid or reliable. It
is necessary to clarify to what extent the expression is
effective, if we implement a system based on the ex-
pression. On reasoning, most research focus on con-
sistency check, that is, whether there exists a space
that can satisfy all the given relationships among spa-
tial objects, and efficient algorithms for solving this
problem (Renz, 2002). However, they do not discuss
how to construct such a consistent set.

In this paper, we describe a computational model
for a qualitative representation.

Takahashi et al. have proposed a framework for
qualitative spatial reasoning,PLCA1 (Takahashi and
Sumitomo, 2007; Takahashi, 2012), which focuses on
the patterns of connections between regions. This
method distinguishes patterns in which regions are

1The name of PLCA is originated from an acronym for
Point(P), Line(L), Circuit(C) and Area(A).
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connected in different ways, for example, by a sin-
gle point, by two points, by a line and so on. For
example, in Figure 1, (a),(b) and (c) are regarded as
the same, while (d),(e) and these figures are regarded
to be different.

PLCA expressions represent the properties of spa-
tial data by describing the constituent objects, and the
relationships between them, without considering at-
tributes such as the size, direction, or shape.

(a) (b) (c) (d) (e)

Figure 1: Classification of figures in PLCA. (a)-(c) Regions
connected by a line, (d) regions connected by a point, and
(e) regions that are not connected.

Takahashi et al. have described the conditions for
planarity of a given PLCA expression (Takahashi et
al, 2008), that is, an existence of the corresponding
figure on a two-dimensional plane, and given a proof
for this; however, they have not discussed the con-
struction of such a planar PLCA expression. In this
paper, we describe the construction of a planar PLCA
expression inductively, and prove that the resulting
class coincides with that of the planar PLCA. The part
of this proof is implemented using a proof assistant
Coq (Bertot and Castŕan, 1998).

The remainder of this paper is organized as fol-
lows. In Section 2, we describe a PLCA expression.
In Section 3, we describe the inductive construction of
a PLCA expression. In Section 4, we prove that the
constructed class coincides with that of planar PLCA.
In Section 5 we compare our work with the related
work, and Section 6 concludes the paper.

2 PLCA

2.1 Target Figure

The target figure of PLCA is considered as a region
segmentation of a finite space. In addition, PLCA ad-
mits regions with holes, and regards a hole itself to be
a region. It does not admit isolated lines or points, be-
cause a region cannot be properly defined. Here, we
describe a target figure using a simple closed curve
(Kosniowski, 1980).

Definition 2.1. (simple closed curve) A non-self-
intersecting continuous loop in a plane is called a
simple closed curveor a Jordan curve.

The following is the well-known theorem on Jor-
dan curve.

Theorem 2.1. Every Jordan curve divides the plane
into an interior region bounded by the curve and an
exterior region containing all of the nearby and far
away exterior points.

Formally, our target figure is a finite region on
a two-dimensional plane, divided into a finite set of
subregions of which each boundary is a simple closed
curve. In Figure 2, (a) and (b) are target figures,
whereas (c) and (d) are not.

(b) (c) (d)(a)

Figure 2: Examples of (a) and (b) target figures, and (c) and
(d) non-target figures.

2.2 PLCA Expression

A PLCA expression is defined as a five-tuple,
〈P,L,C,A,outermost〉, whereP is a set of points,L ⊆
P2, C⊆ Ln (n≥ 3), A⊆Cm (m≥ 1), outermost∈C.

In PLCA, there are four basic types of object:
pointsP, linesL, circuitsC and areasA. An element
l ∈ L is defined as a pair of pointsp1 and p2, and
denoted byl .points= [p1, p2], wherep1 and p2 are
distinct. Intuitively, a line is an edge between points.
No two lines are allowed to cross. A line has an in-
herent orientation. Whenl .points= [p1, p2], l+ and
l− mean[p1, p2] and[p2, p1], respectively. They are
calleddirected lines. l∗ denotes eitherl+ or l− and
l∗re denotes the line with the inverse orientation ofl∗.

An elementc ∈ C is defined as a list of directed
lines and denoted byc.lines= [l∗1, . . . , l

∗
n], wherel∗i 6=

l∗j if i 6= j (0 ≤ i, j ≤ n), l∗i = [pi−1, pi ](1 ≤ i ≤ n)
and pn = p0. If p ∈ l .points∧ l∗ ∈ c.lines, it is said
that p is on c. A circuit has a cyclic structure, that
is, [l∗0, . . . , l

∗
n] and[l∗j , . . . , l

∗
n, l

∗
0, . . . , l

∗
j−1] represent the

same circuit for anyj (1 ≤ j ≤ n). Intuitively, a cir-
cuit is the boundary between an area and its adjacent
areas.

An elementa∈ A is defined as a set of circuits and
denoted bya.circuits= {c0, . . . ,cn}, where any pair
of circuits ci andc j (0 ≤ i 6= j ≤ n) cannot share a
point. Intuitively, an area is a connected region which
consists of exactly one piece.

In addition,outermostis a specific circuit in the
outermost side of the figure.

Example 2.1. (PLCA Expression)

A PLCA expression〈P,L,C,A,outermost〉 corre-
sponding to the example target figure shown in Fig-
ure 3 is given below.
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Figure 3: An example of a target figure.

P= {p0, p1, p2, p3, p4, p5, p5}
L = {l0, l1, l2, l3, l4, l5, l6}
C= {c0,c1,c2}
A= {a0,a1}
outermost= c2
l0.points= [p0, p1]
l1.points= [p1, p2]
l2.points= [p2, p3]
l3.points= [p3, p4]
l4.points= [p4, p5]
l5.points= [p5, p0]
l6.points= [p1, p4]
c0.lines= [l−0 , l

−
5 , l−4 , l

−
6 ]

c1.lines= [l−1 , l
+
6 , l−3 , l

−
2 ]

c2.lines= [l+0 , l
+
1 , l+2 , l

+
3 , l+4 , l

+
5 ]

a0.circuits= {c0}
a1.circuits= {c1}

2.3 Basic Concepts of PLCA
Expressions

For c1,c2 ∈ C, we introduce two new predicateslc
and pc to indicate that two circuits share line(s) and
point(s), respectively.

lc(c1,c2)
def
= ∃l ∈ L;(l∗ ∈ c1.lines) ∧ (l∗re ∈

c2.lines)

pc(c1,c2)
def
= ∃p ∈ P;(p ∈ l1.points) ∧ (p ∈

l2.points)∧ (l+1 ∈ c1.lines)∧ (l−2 ∈
c2.lines).

If lc(c1,c2), then eitherpc(c1,c2) or pc(c2,c1)
holds. For any pair of circuitsc1,c2 ∈ C, if c1,c2 ∈
a.circuits, then¬pc(c1,c2) holds from the definition
of Area.

For a circuitc, we define a corresponding circuit-
segment.

Definition 2.2. (circuit-segment) Let c.lines =
[l∗0, . . . , l

∗
n]. A sequence cs= [m∗

0, . . . ,m
∗
k] (0≤ k ≤ n),

where m∗i = l∗(i+ j) mod n(0≤ j ≤ n−1) is said to bea
circuit-segment ofc, and denoted by cs⊑ c.

For a circuit-segmentcs= [m∗
0, . . . ,m

∗
k], we define

its inverse asinv(cs) = [m∗re
k , . . . ,m∗re

0 ].

Example 2.2. (circuit-segments) In Example 2.1,
[l−0 , l

−
5 ], [l−4 , l−6 , l

−
0 ], [l

−
0 , l

−
5 , l−4 , l

−
6 ] are some circuit-

segments of c0. Furthermore, inv([l−0 , l
−
5 ]) is [l+5 , l

+
0 ].

For a pair of circuitsc1 and c2, Sscs(c1,c2) rep-
resents a set of their shared circuit-segments, that is,
Sscs(c1,c2) = {cs |cs⊑ c1, inv(cs) ⊑ c2}. For any
cs∈ Sscs(c1,c2), inv(cs) ∈ Sscs(c2,c1) holds.

Definition 2.3. (MSCS) An element cs∈ Sscs(c1,c2)
is said to be amaximal shared circuit-segment ofc1
and c2 if there does not exist cs′ ∈ Sscs(c1,c2) such
that cs is a subsequence of cs′. A set of maximal
shared circuit-segments of c1 and c2 is denoted by
SMSCS(c1,c2).

Whenc.lines is contained inSMSCS(c1,c2), c1 and
c2 are the inner and the outer circuits of a simple
closed curve, respectively.

Example 2.3. (shared circuit-segments) In Figure 4,
Sscs(c0,c1)= {[], [l+0 ], [l

+
1 ], [l

+
2 ], [l

+
3 ], [l+0 , l

+
1 ], [l+2 , l

+
3 ]}.

Furthermore, SMSCS(c0,c1) = {[l+0 , l
+
1 ], [l

+
2 , l+3 ]} and

SMSCS(c1,c0) = {[l−1 , l
−
0 ], [l−3 , l

−
2 ]}.

l3l2

l1

l0
0c

1c

Figure 4: Shared circuit-segments ofc0 andc1.

Here, we introduce a new typePath. An instance
path of type Path is defined as a list of directed
lines and used to construct a new circuit. Forpath,
start(path), end(path) and inner lines(path) show
the starting point, ending point and list of directed
lines, respectively. The length ofinner lines(path),
which may be 0, is said to be thelength of the path.
Clearly, any circuit-segment is aPath.

2.4 Consistency

A consistent PLCA expression does not allow an iso-
lated point or an isolated line, and all of the objects
should be correctly defined by the incidence relations.
For any point, there exists at least one line that con-
tains it. For any line, there exist exactly two distinct
circuits that contain it and its inverse direction, re-
spectively. For any circuit, there exists exactly one
area that contains it. Theoutermostis not included
in any area. The consistency is formally defined as
follows.
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Definition 2.4. (PLCA consistency)

• [Consistency of Point-Line]
∀p∈ P(∃l ∈ L; p∈ l .points)
∀l ∈ L(∀p∈ l .points; p∈ P)

• [Consistency of Line-Circuit]
∀l ∈ L(∃c,c′ ∈C; l+ ∈ c.lines∧ l− ∈ c′.lines)
∀c∈C(∀l∗ ∈ c.lines; l ∈ L)
∀l ∈ L(l∗ ∈ c1.lines, l∗ ∈ c2.lines→ c1 = c2)

• [Consistency of Circuit-Area]
∀c∈C(∃a∈ A;c∈ a.circuits)
∀a∈ A(∀c∈ a.areas;c∈C)
∀c ∈ C(c ∈ a1.circuits,c ∈ a2.circuits → a1 =
a2)

• [Independence of outermost]
¬∃a∈ A;outermost∈ a.cuicuit.

2.5 PLCA-connectedness

Intuitively, PLCA-connectedness guarantees that no
objects are separated, including theoutermost. In
other words, for any pair of objects, there exists a trail
from one object to the other via further objects.

Definition 2.5. (d-pcon) Let e =
〈P,L,C,A,outermost〉 be a PLCA expression.
For a pair of objects of e, the binary relation d-pcon
on P∪L∪C∪A is defined as follows.

1. d-pcon(p, l) iff p ∈ l .points.
2. d-pcon(l ,c) iff l ∈ c.lines.
3. d-pcon(c,a) iff c ∈ a.circuits.

Definition 2.6. (pcon) Letα, β andγ be objects of a
PLCA expression.

1. If d-pcon(α,β), then pcon(α,β).
2. If pcon(α,β), then pcon(β,α).
3. If pcon(α,β) and pcon(β,γ), then pcon(α,γ).
Definition 2.7. (PLCA-connected) A PLCA expres-
sion e is said to be PLCA-connected iff pcon(α,β)
holds for any pair of objectsα andβ of e.

2.6 Planar PLCA Expression

Intuitively, PLCA-Euler guarantees that a PLCA ex-
pression can be embedded in a two-dimensional plane
so that the orientation of each circuit can be correctly
defined.

Definition 2.8. (PLCA-Euler) For a PLCA expression
〈P,L,C,A,outermost〉, if |P| − |L| − |C|+ 2|A| = 0,
then it is said to bePLCA-Euler.

Takahashi et al. have given a proof of the follow-
ing theorem on the planarity of a PLCA expression
(Takahashi et al, 2008).

Theorem 2.2. For a consistent, connected PLCA ex-
pression, it is PLCA-Euler iff there exists a corre-
sponding target figure on a two-dimensional plane.

Planar PLCA is defined as follows.

Definition 2.9. (planar PLCA) For a PLCA expres-
sion, if it is consistent, PLCA-connected and PLCA-
Euler, then it is said to beplanar PLCA2.

For example, the PLCA expression in Exam-
ple 2.1 is planar.

The following lemmas hold for a planer PLCA ex-
pression, and are used in the subsequent proof for the
realizability of an inductively constructed PLCA.

Lemma 2.1. For a planar PLCA expression, there ex-
ists an area that has a single circuit.

Proof. Let 〈P,L,C,A,outermost〉 be a planar PLCA
expression. Assume that for any areaa ∈ A,
|a.circuits| ≥ 2 holds. Setk= 0 andc0 beoutermost.
Take c such thatlc(ck,c) holds. Take an areaak
such thatc ∈ ak.circuits holds. Letak.circuits be
{c,ck1, . . . ,ckn}. Note that¬pc(c,cki ) holds for all
i from the definition of Area. Take an arbitrarycki

(cki 6= c) and letck+1 be cki Incrementk and repeat
this procedure, then we can take an infinite sequence
of circuitsSeqC= c0,c1, . . ..

Figure 5 illustrates each step of this procedure.
Takec0 as an outermost andcsuch thatlc(c0,c) holds.
Take an areaa0 such thatc ∈ a0.circuits holds (Fig-
ure 5(a)). There are three circuits ina0.circuits other
thanc. Take an arbitrary circuit among them and set it
asc1; takec such thatlc(c1,c) holds. Take an areaa1
such thatc ∈ a1.circuits holds. (Figure 5(b)). There
is one circuit ina1.circuitsother thanc. Take this cir-
cuit and set it asc2; takec such thatlc(c2,c) holds.
Take an areaa2 such thatc∈ a2.circuits holds. (Fig-
ure 5(c)). We continue this procedure.

Each circuit is a simple closed curve.
¬pc(ci ,ci+2) holds for eachi, from Theorem 2.1,
sinceci andci+2 are circuits in the exterior region and
interior region ofci , respectively. On the other hand,
the number of circuits is finite. Therefore, we cannot
take an infinite sequence of circuitsSeqC. Hence,
there exists an areaa∈ A such that|a.circuits|= 1.

Lemma 2.2. For any circuit c of a planar PLCA ex-
pression, there exists a circuit that has only one max-
imal shared circuit-segment with c.

2Strictly, the original PLCA admits a curved line, and
multiple lines between the same pair of points. If we admit
only straight lines, we convert a PLCA expression in the
original definition by adding the same number of points and
lines, and this conversion does not affect the condition for
planarity or the proof thereof.
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(a) step1: takea0
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(b) step2: takea1

a2
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(c) step3: takea2

Figure 5: Existence of an area with a single circuit.

Proof. Let 〈P,L,C,A,outermost〉 be a planar PLCA,
and c ∈ C be an arbitrary circuit. Assume that for
all circuits c′ ∈ C, |SMSCS(c,c′)| 6= 1 holds. For a
circuit c′ such that¬lc(c,c′) holds, |SMSCS(c,c′)| =
0 holds. Therefore, we take a circuitc′ such that
lc(c,c′) holds. LetSMSCS(c,c′) = {cs1,cs2}. Circuit-
segmentscs1 and cs2 do not share a point. Since
cs1 andcs2 are considered to be paths, we can take
their starting points and ending points:start(cs1) =
p,end(cs1) = q, start(cs2) = r,end(cs2) = s. Then
there existscs⊑ c such thatstart(cs) = q,end(cs) =
r, and each line incs is not included inc′.lines. Since
c′ is a circuit, there existscs′; cs′ ⊑ c′, start(cs′) =
r,end(cs′) = q. On the other hand, from the consis-
tency of Line-Circuit, there existsc0; inv(cs) ⊑ c0,
start(inv(cs)) = r,end(inv(cs)) = q. Then, circuitc0
is defined by appending two circuit-segmentsinv(cs′)
and inv(cs). Therefore,Sscs(c,c0) = {cs}. It follows
that |SMSCS(c,c0)| = 1, which is a contradiction (Fig-
ure 6).

cs

p
q

r

s

cs’

c
c’

c0cs1

cs2

Figure 6: Existence of an area with a single maximal
shared circuit-segments. (Relationships of circuit-
segments: cs1,cs2,cs ⊑ c, inv(cs1), inv(cs2),cs′ ⊑ c′

inv(cs), inv(cs′) ⊑ c0, start(cs1) = p,end(cs1) = q,
start(cs2) = r,end(cs2) = s. start(cs) = q,end(cs) = r,
start(cs′) = r,end(cs′) = q.)

3 CONSTRUCTION OF PLCA

Theorem 2.2 gives the conditions for planarity of a
given PLCA expression. The next issue to address is
how to construct such an expression.

We can construct a PLCA expression of elements
P, L, C andA in this order, for example. In this ap-
proach, we must check all of the constraints on the
objects carefully during each stage. For example, we
must make a circuit so that there exist exactly two dis-
tinct circuits: one that contains a line, and one the
line in the inverse direction. If this is not satisfied, we
must backtrack to construct these lines. This not only
requires time, but it is also very difficult to prove that
the resulting structure is a planar PLCA expression.

Therefore, we take a different approach, in which
we begin withoutermostand construct a PLCA ex-
pression inductively.

We define a class for PLCA expressions using the
following three constructors:single loop, add loop
andadd path. A constructorsingle loop corresponds
to the base case, and the other two correspond to op-
erations that construct a new PLCA expression by di-
viding an existing area in a current PLCA expression
using a path. An arbitrary path, the length of which is
more than one is introduced, makes a new circuit us-
ing it. Points and lines contained in the path are added
simultaneously, and the area is divided into two areas.

We must add objects of four different types simul-
taneously during an induction step because the objects
of a PLCA expression are mutually related. We take
the number of areas as a measure of induction, and
the number of other objects increases following the
application of each constructor. We cannot take the
number of points or lines as such a measure, because
the expression that is obtained as a result of adding
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a single point or a single line to a PLCA expression
may not be a PLCA expression.

An alternative method of generating a new area
is to add a path to the outer part of theoutermost.
That is, we take two points on the currentoutermost
and combine these with a path in the exterior region
of outermost. In this case,outermostchanges during
each step where a constructor is applied. Because the
construction of a newoutermostis the base case in
an inductive definition, we cannot succeed in a proof
if we change the definition ofoutermostduring each
step. Therefore, we do not adopt this method.

We now describe the construction. The idea of
construction is based on drawing a figure. Although
we demonstrate the construction process on a figure to
provide an intuitive discussion, the construction itself
is performed symbolically.

A constructor single loop is for a base case,
and corresponds to the simplest target figure with
one area. There are only two circuits: the outer-
most circuit and the inner side thereof. Consider
an arbitrary pathpath, such thatstart(path) = x,
end(path) = y, andinner lines(path) = [l+0 , . . . , l

+
n ].

Then we create new circuitsoutermostsuch that
outermost.lines = [l+, l+0 , . . . , l

+
n ] and c such that

c.lines= [l−n , . . . , l
−
0 , l−], wherel .points= [y,x] (Fig-

ure 7).

x y

c

outermost

a

l

Figure 7: The constructorsingle loop.

We now defineadd loop. Consider an arbi-
trary areaa (Figure 8(a)). Take an arbitrary path
path, such thatstart(path) = x, end(path) = y and
inner lines(path) = [l+0 , . . . , l

+
n ]. Make a linel such

that l .points= [y,x] (Figure 8(b)). Then make new
circuitsc1 andc2 such thatc1.lines= [l+, l+0 , . . . , l

+
n ],

andc2.lines= [l−n , . . . , l
−
0 , l−]. Add c1 to a1.circuits

andc2 to a2.circuits (Figure 8(c)). As a result,a is
divided into two areas,a1 anda2 (the hatched part).
The points and lines contained inpathare added ac-
cordingly. If a contains more than one circuit, all of
them remain ina1, anda2 contains none.

Now we defineadd path. Consider a circuitc
such thatc ∈ a.circuits, and two pointsy,z on c.
Here y and z may be identical. Because a circuit-
segment is a path, consider a circuit-segmentcs⊑ c
such thatstart(cs) = y, end(cs) = z. Then c is
divided into two circuit-segments:cs and cs′. Let
c.lines= [ll+0 . . . , ll+m], cs= [ll+0 . . . , ll+k ] (0≤ k ≤ m)

and cs′ = [ll+k+1 . . . , ll
+
m] (Figure 9(a)). Take an

arbitrary path path, such that start(path) = s,
end(path) = e and inner lines(path) = [l+0 , . . . , l

+
n ].

Make lines ls and le such that ls.points= [s,y]
and le.points = [z,e], respectively (Figure 9(b)).
Then make new circuitsc1 and c2 such that
c1.lines = [l−s , l+0 , . . . , l

+
n , l

−
e , ll+k+1 . . . , ll

+
m] and

c2.lines= [l+e , l
−
n , . . . , l−0 , l+s , ll

+
0 . . . , ll+k ]. Add c1 to

a1.circuitsand addc2 to a2.circuits (Figure 8(c)). As
a result,a is divided into two areas,a1 and a2 (the
hatched part),c is eliminated, and two new circuits
are created. The points and lines contained inpath
are added and the objects are changed. Ifa contains
circuits other thanc, all of them remain ina1, anda2
contains none.

Note thatadd loop is applied to a specific area,
whereasadd path is applied to a specific circuit and
two points on it.

Definition 3.1. (IPLCA) PLCA expressions con-
structed by the above three constructors are said to
beInductive PLCA (IPLCA).

4 PROOF OF FORMALIZATION

Here we prove that IPLCA coincides with planar
PLCA.

4.1 Proof of Planarity

We first prove that IPLCA is planar. From Theo-
rem 2.2, we prove the following theorem.

Theorem 4.1. (planarity for IPLCA) If e is IPLCA, e
is (i) consistent, (ii) PLCA-connected, and (iii) PLCA-
Euler.

We implement IPLCA and prove these three prop-
erties using the proof assistant Coq (Bertot and
Castŕan, 1998). Coq is based on typed logic adopted
for higher-order functions. The data types and func-
tions are defined in recursive form, and the proof pro-
ceeds by connecting suitable tactics. The definition
of IPLCA and the proof of Theorem 4.1 required ap-
proximately 5500 lines of code in total The advantage
of using Coq is to certify the correctness of the for-
malization. We do not show the detail of the proof
here, since it is out of the focus of this paper. The
entire code is shown in (Goto, 2014).

4.2 Proof of Realizability

We prove that a planar PLCA is IPLCA. This means
that any target figure can be drawn by applying the
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Figure 8: The constructoradd loop.
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Figure 9: The constructoradd path.

constructors of IPLCA in a suitable order. For ex-
ample, consider Figure 10. If we applyadd loop
first, we cannot successively apply constructors, be-
cause any intermediate figure is not the target figure
(Figure 10(a)). However, if we applyadd pathfirst,
we can successively add areas by applyingadd path
again (Figure 10(b)).

(a)

(b)

add_loop

add_path

Figure 10: Constructing figures (a) by first applying
add loop, and (b) by first applyingadd path.

Theorem 4.2. (Realizability for IPLCA) A planar
PLCA is IPLCA.

Proof. Let F be a target figure. We prove the theorem
using induction on the number of areas ofF.

(Base case) The number of areas is 1.
F consists of only a simple closed curve. This is

clearly a base case of IPLCA, and is constructed by
applyingsingle loop.

(Induction step) The number of areas isn+1.
The principle of our proof via induction is as fol-

lows. For a planar PLCAe, of which the number of
areas isn+1, we remove a suitable areaa such that
we can form a planar PLCAe′, where the number of
areas isn. Becausee′ is IPLCA from the induction
hypothesis, we can applyadd loop or add path to
obtaine. We proceed the proof based on this princi-
ple.

We can take an areaa with a single circuitc
from Lemma 2.1. Then, there existsc′ such that
|SMSCS(c,c′)| = 1, from Lemma 2.2. Assume that
c′ = outermost. Since the number of areas is more
than one,a contains more than one circuit, which is a
contradiction. Therefore,c′ 6= outermost.
Case 1.SMSCS(c,c′) = {c.lines}.

In this case, we removea, c, c′, and all objects
on c and c′ to obtain a planar PLCAe′ such that
|e′.areas|= n. Note that sincec′ 6= outermost, e′ has
an outermost. Heree′ is IPLCA from the induction
hypothesis. Then we can constructe by applying the
constructoradd loopona′ (Figure 11).
Case 2.SMSCS(c,c′) 6= {c.lines}.

Let SMSCS(c,c′) = {cs}. In this case,c is divided
into two circuit-segmentscsandcs1, andc′ is divided
into two circuit-segmentsinv(cs) andcs2 (Figure 12).
We removea, c, c′, and all objects oncandc′, and add
a circuitnewCby appendingcs1 andcs2. We obtain
a planar PLCA expressione′ such that|e′.areas|= n.
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Figure 12: Circuit-segments in case 2. Circuitc is divided
into csandcs1, and circuitc′ is divided intoinv(cs) andcs2.
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Figure 13: Removing an area with case 2.

e′ is IPLCA from the induction hypothesis. Then we
can constructeby applying the constructoradd path
onnewC, start(cs1) andend(cs1) (Figure 13).

5 RELATED WORK

There exist several symbolic expressions other than
qualitative spatial representations for a figure on
a two-dimensional plane, including computational
geometry (de Berg et al, 1997) and graph the-
ory (Harary, 1969). Different from qualitative spatial
representations, the main objective of computational
geometry is to analyze the complexity of algorithms
for problems expressed in terms of geometry and to
develop efficient ones, rather than to recognize or to
analyze the characteristics of a figure. Graph theory
can be used to provide symbolic expressions of spa-
tial data. The topological structure of spatial data can
be represented as a graph by treating spatial objects,
such as points and lines, as nodes and the relation-
ships between them as edges. There exists a condition
to determine the planarity of a given graph; however,
in general, a graph does not contain any information
on an area, and therefore we only know that we can
embed a graph by locating areas properly. In contrast,

a PLCA expression places constraints on the locations
of areas. In this respect, a PLCA expression is more
specific than a graph.

One of the challenges for symbolic expressions of
a figure on a two-dimensional plane is the concept
of a hypermap. A hypermap is an algebraic struc-
ture that represents objects and relationships between
them, and can be used to distinguish the topological
and geometric aspects. There are several works that
use a hypermap and give a formalization and a proof
of the properties of these aspects using proof assis-
tants. Gonthier et al. formalized and proved the four-
color theorem and showed a proof (Gonthier, 2008).
In this work, planar subdivisions are described by a
hypermap. Dufourd applied a hypermap to formal-
ize and to prove a Jordan curve theorem (Dufourd,
2009). He also showed a treatment of surface subdi-
vision and planarity based on a hypermap (Dufourd,
2010). Brun et al. showed a derivation of a program
to compute a convex-hull for a given set of points
from their specification using a hypermap (Brun et al,
2012). They specified the algorithm and proved its
correctness using a structural induction. Hypermap is
a strong method for providing a mechanical proof of
the topological or geometric properties in a symbolic
form; however, the representation is too complicated
to understand intuitively.

6 CONCLUSION

We have described a method of constructing a PLCA
expression inductively, and have proved that the de-
fined class coincides with that of planar PCLA. For-
malization and part of the proof was implemented us-
ing the proof assistant Coq. Our main contribution
is giving a computational model to a qualitative spa-
tial representation, which is the first attempt in the re-
search field on qualitative spatial reasoning.

Mechanical proof using a proof assistant provides
a rigorous proof of correctness of the formalization.
In future, we will complete the mechanical proof of
the part currently done manually.
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