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Abstract: PLCAIs a framework for qualitative spatial reasoning. It provides a symbolic expression of spatial entities
and allows reasoning on this expression. A figure is represented using the objects used to construct it, that is,
points, lines, circuits and areas, as well as the relationships between them without numerical data. The figure
is identified by the patterns of connection between the objects. For a given PLCA expression, the conditions
for planarity, that is, an existence of the corresponding figure on a two-dimensional plane, have been shown;
however, the construction of such a PLCA expression has not been discussed. In this paper, we describe a
method of constructing such expressions inductively, and prove that the resulting class coincides with that of
the planar PCLA. The part of the proof is implemented using a proof assistant Coq.

1 INTRODUCTION ing, we must prove that an expression correctly repre-
sents the properties of the image data and that there is
There are many areas in which spatial data are en-2 corresponding image for a given expression. Al-
countered, including image data and video data. As though there have been lots of works of qualita-
part of image recognition or analysis, we typically tive spatial reasoning in the field of artificial intelli-
extract pertinent aspects of image data, such as di-gence (Randell et al, 1992; Egenhofer, 1995; Freksa,
mensions, position, and direction, depending on our 1991; Borgo, 2013), little work has been carried out
purpose. For example, we may focus on the rel- from the viewpoint of the computational model.
ative positional relationships of the objects, that is, ~ On representation, most research claim expres-
whether the objects are connected and the relativesive power for spatial knowledge but do not refer to
spatial location, as well as changes in these relation-the class the expression stands for. We do not know
ships for moving objects. Using this information, we whether a proposed expression is valid or reliable. It
can create an abstract description of moving objectsis necessary to clarify to what extent the expression is
or find a path that describes the trajectory. Qualita- effective, if we implement a system based on the ex-
tive spatial reasoning is a method of representing spa-pression. On reasoning, most research focus on con-
tial data by extracting the topological, mereological, Sistency check, that is, whether there exists a space
or geometric properties without requiring numerical that can satisfy all the given relationships among spa-
data, which may depend on the application (Stock, tial objects, and efficient algorithms for solving this
1997; Cohn and Renz, 2007; Ligozat, 2011; Haz- problem (Renz, 2002). However, they do not discuss
arika, 2012). This reflects human cognition and rea- how to construct such a consistent set.
soning of common-sense knowledge. Logical expres-  In this paper, we describe a computational model
sions are typically adopted in such a representation.for a qualitative representation.
Logical expressions for a figure enable us to perform  Takahashi et al. have proposed a framework for
mechanical reasoning on symbols, which reduces thequalitative spatial reasoninLCA! (Takahashi and
computational complexity. There are various promis- Sumitomo, 2007; Takahashi, 2012), which focuses on
ing practical applications of qualitative spatial reason- the patterns of connections between regions. This
ing: simulation on Geographic Information System, method distinguishes patterns in which regions are
guery-answering system on spatial database, naviga-

tion on mobile robots, and so on. 1The name of PLCA is originated from an acronym for
To certify a system on qualitative spatial reason- Point(P), Line(L), Circuit(C) and Area(A).
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connected in different ways, for example, by a sin-
gle point, by two points, by a line and so on. For

The following is the well-known theorem on Jor-
dan curve.

example, in Figure 1, (a),(b) and (c) are regarded astpeorem 2.1. Every Jordan curve divides the plane
the same, while (d),(e) and these figures are regardedng 4 interior region bounded by the curve and an

to be different.

PLCA expressions represent the properties of spa-
tial data by describing the constituent objects, and the

relationships between them, without considering at-
tributes such as the size, direction, or shape.

ORI

(a) (b) (¢) (d) (e)
Figure 1: Classification of figures in PLCA. (a)-(c) Regions

connected by a line, (d) regions connected by a point, and
(e) regions that are not connected.

Takahashi et al. have described the conditions for
planarity of a given PLCA expression (Takahashi et
al, 2008), that is, an existence of the corresponding
figure on a two-dimensional plane, and given a proof
for this; however, they have not discussed the con-
struction of such a planar PLCA expression. In this
paper, we describe the construction of a planar PLCA
expression inductively, and prove that the resulting
class coincides with that of the planar PLCA. The part
of this proof is implemented using a proof assistant
Coq (Bertot and Castfan, 1998).

The remainder of this paper is organized as fol-
lows. In Section 2, we describe a PLCA expression.
In Section 3, we describe the inductive construction of
a PLCA expression. In Section 4, we prove that the
constructed class coincides with that of planar PLCA.
In Section 5 we compare our work with the related
work, and Section 6 concludes the paper.

2 PLCA

2.1 Target Figure

The target figure of PLCA is considered as a region
segmentation of a finite space. In addition, PLCA ad-
mits regions with holes, and regards a hole itself to be
aregion. It does not admit isolated lines or points, be-

exterior region containing all of the nearby and far
away exterior points.

Formally, our target figure is a finite region on
a two-dimensional plane, divided into a finite set of
subregions of which each boundary is a simple closed
curve. In Figure 2, (a) and (b) are target figures,
whereas (c) and (d) are not.

I

(a) (b) (c) (d)
Figure 2: Examples of (a) and (b) target figures, and (c) and
(d) non-target figures.

2.2 PLCA Expression

A PLCA expression is defined as a five-tuple,
(P.L,C, A outermos}, whereP is a set of points, C
P2,CCL"(n>3),ACC™(m> 1), outermost C.

In PLCA, there are four basic types of object:
pointsP, linesL, circuitsC and areag\. An element
| € L is defined as a pair of poings; and p2, and
denoted byl.points= [p1, p2], wherep; and p; are
distinct. Intuitively, a line is an edge between points.
No two lines are allowed to cross. A line has an in-
herent orientation. Whehpoints= [pz, p2], T and
I~ mean|p1, p2] and[pz, p1], respectively. They are
called directed lines 1* denotes eithel™ or |~ and
|*"® denotes the line with the inverse orientatior ‘of

An elementc € C is defined as a list of directed
lines and denoted bylines= [I3,...,I;], wherel #
FifiZjO<ij<n),lf=[p-1pl(l<i<n
and p, = po. If p € l.pointsal* € c.lines it is said
that p is on ¢ A circuit has a cyclic structure, that
is, [Ig,---,15] and[ljﬁ...,I;;,Ig,...’I]Lﬂ represent the
same circuit for anyj (1 < j < n). Intuitively, a cir-
cuit is the boundary between an area and its adjacent
areas.

An elementa € Ais defined as a set of circuits and
denoted bya.circuits = {c,...,Cn}, where any pair
of circuits ¢ andc;j (0 <i # j < n) cannot share a
point. Intuitively, an area is a connected region which

cause a region cannot be properly defined. Here, weconsists of exactly one piece.

describe a target figure using a simple closed curve

(Kosniowski, 1980).

Definition 2.1. (simple closed curve) A non-self-
intersecting continuous loop in a plane is called a
simple closed curver a Jordan curve

In addition,outermostis a specific circuit in the
outermost side of the figure.

Example 2.1. (PLCA Expression)

A PLCA expression(P,L,C,A outermost corre-
sponding to the example target figure shown in Fig-
ure 3 is given below.
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Figure 3: An example of a target figure.

P = {po, p1, P2, P3, P4, Ps, Ps }
L = {lo,l1,12,13,14,15,l6}
C={co,c1,C2}

A= {ag,a1}

outermost= ¢

lo. points= [po, P1]
[1.points= [p1, p2]
[2.points= [p2, p3]
3. points= [ps, pa]
l4.points= [pa, ps]
I5. points= [ps, Po
l6.points= [p1, p4]
co.lines=[ly, 1z ,1, 5]
cilines=[I,1¢,15,15]
C2.lines= [larvlfvlzrvlgrvljlrvlg]
ap.circuits= {co}
aj.circuits= {c1}

2.3 Basic Concepts of PLCA
Expressions

For c1,cp € C, we introduce two new predicatés
and pc to indicate that two circuits share line(s) and
point(s), respectively.

lc(cy, o) ® g e L;(I* € cai.lines) A (I*'¢ €
co.lines)

pc(cy,cy) gef dp € P;(p € li.pointg A (p
l2.pointgA (1] € cilines) A (15
co.lines).

If lc(ca,c2), then eitherpc(cy,cz) or pc(cy,c1)
holds. For any pair of circuits;,c; € C, if ¢1,¢; €
a.circuits, then—pc(cy,c) holds from the definition
of Area.

For a circuitc, we define a corresponding circuit-
segment.

Definition 2.2. (circuit-segment) Let .tines =
(g,---,13]. A sequence cs [my,...,m¢] (0<k<n),
where i = I(*iﬂ.) mod n(0< ] <n-—1)is said to bea
circuit-segment o€, and denoted by ¢s c.

S
S

For a circuit-segmerts= [y, ..., m], we define
its inverse asnv(cs) = [y, ..., my"®].
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Example 2.2. (circuit-segments) In Example 2.1,
Uools ] IIau1g.10 0 [Ig 15 514,16 ] are some circuit-
segments of,c Furthermore, iny(ly,15]) is [I4,15].
For a pair of circuitsc; and ¢y, Ssed(C1,C2) rep-
resents a set of their shared circuit-segments, that is,
Ssed€1,C2) = {cs |cSC cy,inv(cs) C cp}. For any
€S€E SsedC1,C2), INV(CS) € SsedC2, €1) holds.
Definition 2.3. (MSCS) An element €5 Sscq(C1,Cp)
is said to be anaximal shared circuit-segment of
andc; if there does not exist t& S;cqc1,C2) such
that cs is a subsequence of.csA set of maximal
shared circuit-segments of @and ¢ is denoted by

SvscdC1,C2).

Whenc.linesis contained irSyscd ¢, €2), ¢1 and
¢y are the inner and the outer circuits of a simple
closed curve, respectively.

Example 2.3. (shared circuit-segments) In Figure 4,
SSCS(CO’Cl) = {[]’ [lg]v ['f]a “;]7 [';]7 ['a_vlf]a “;_a ';]}
Furthermore, %iscq¢o,c1) = {[l5,1;].[15,13]} and
S\/ISCicl,CO) = {[|I7|a]a [l?:alg]}

Figure 4: Shared circuit-segmentsggfandc; .

Here, we introduce a new tygtath An instance
path of type Path is defined as a list of directed
lines and used to construct a new circuit. Fath,
start(path), end path) and inner_lines(path) show
the starting point, ending point and list of directed
lines, respectively. The length ainer_lineg path),
which may be 0, is said to be thength of the path
Clearly, any circuit-segment isRath

2.4 Consistency

A consistent PLCA expression does not allow an iso-
lated point or an isolated line, and all of the objects
should be correctly defined by the incidence relations.
For any point, there exists at least one line that con-
tains it. For any line, there exist exactly two distinct

circuits that contain it and its inverse direction, re-

spectively. For any circuit, there exists exactly one
area that contains it. Theutermostis not included

in any area. The consistency is formally defined as
follows.
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Definition 2.4. (PLCA consistency) Theorem 2.2. For a consistent, connected PLCA ex-
pression, it is PLCA-Euler iff there exists a corre-
sponding target figure on a two-dimensional plane.
Planar PLCA is defined as follows.
Definition 2.9. (planar PLCA) For a PLCA expres-
sion, if it is consistent, PLCA-connected and PLCA-
Euler, then it is said to bplanar PLCA.
For example, the PLCA expression in Exam-
ple 2.1 is planar.

e [Consistency of Point-Line]
Vpe P(3l €L; pel.pointy
vl e L(Vp €l.pointsp € P)
e [Consistency of Line-Circuit]
vl € L(3c,c € C;1T e clinesnl™ € clines)
Vce C(VI* eclinesl el)
vl € L(I* € c1.lines* € ca.lines— ¢ = ¢p)
e [Consistency of Circuit-Area]

Vc € C(Ja € A;c € acircuits) The following lemmas hold for a planer PLCA ex-
Vac A(vc € aareasce C) pression, and are used in the subsequent proof for the
Ve € C(c € ay.circuits, ¢ € ap.circuits — a; = realizability of an inductively constructed PLCA.
a) Lemma2.1. For a planar PLCA expression, there ex-
e [Independence of outermost] ists an area that has a single circuit.
—da € Ajoutermoste a.cuicuit. Proof. Let (P,L,C,A outermost be a planar PLCA
expression.  Assume that for any areac A,
2.5 PLCA-connectedness |a.circuits| > 2 holds. Sek = 0 andco beoutermost

Take ¢ such thatlc(c,c) holds. Take an areayx
Intuitively, PLCA-connectedness guarantees that no such thatc € ay.circuits holds. Letay.circuits be

objects are separated, including tbetermost In {C,Ciy, 1050k} Note that—pe(c, o) holds for all
other words, for any pair of objects, there exists a trail i from the definition of Area. Take an arbitracy

from one object to the other via further objects. (ck # ©) and letcy, 1 be ¢ Incrementk and repeat
Definition 2.5.  (d-pcon) Let e = this procedure, then we can take an infinite sequence
(P,L,C,A outermost be a PLCA expression. OfcircuitsSeqC= co,cy,. ...

For a pair of objects of e, the binary relation d-pcon Figure 5 illustrates each step of this procedure.
on PULUCUA is defined as follows. Takecp as an outermost arwsuch thatc(cg, ) holds.

Take an areag such thatc € agp.circuits holds (Fig-
ure 5(a)). There are three circuitsag.circuits other
thanc. Take an arbitrary circuit among them and set it

1. d-pcorip,l) iff p € I.points.
2. d-pcorl,c) iff| € c.lines.

3. d-pcoric, a) iff ¢ € a.circuits. ascy; takec such thatc(cy, ¢) holds. Take an arem
Definition 2.6. (pcon) Leta, B andy be objects ofa  such thatc € a;.circuits holds. (Figure 5(b)). There
PLCA expression. is one circuit ina .circuits other tharc. Take this cir-
1. If d-pcora, B), then pcotia, B). cuit and set it agy; takec such thatc(cp,c) holds.

Take an area such that € ay.circuits holds. (Fig-

2. If peor(a, ), then pcoi, a). ure 5(c)). We continue this procedure.

3. If pcor(a, B) and pcoriB, ), then pcora, y). Each circuit is a simple closed curve.
Definition 2.7. (PLCA-connected) A PLCA expres- —-pc(ci,Cit2) holds for eachi, from Theorem 2.1,
sion e is said to be PLCA-connected iff poorf3) sincec; andc;.,» are circuits in the exterior region and
holds for any pair of objecta andf3 of e. interior region ofc;, respectively. On the other hand,
the number of circuits is finite. Therefore, we cannot
2.6 Planar PLCA Expression take an infinite sequence of circuiqC Hence,
there exists an aremc A such thata.circuits| = 1.
Intuitively, PLCA-Euler guarantees that a PLCA ex- |

pression can be embedded in a two-dimensional plane

so that the orientation of each circuit can be correctly L8mma 2.2. For any circuit ¢ of a planar PLCA ex-

defined. pression, there exists a circuit that has only one max-
— . imal shared circuit-segment with c.

Definition 2.8. (PLCA-Euler) For a PLCA expression

(P,L,C,A outermos}, if |P|—|L| —|C|+2|A] =0, 2strictly, the original PLCA admits a curved line, and

then it is said to béLCA-Euler multiple lines between the same pair of points. If we admit

. . only straight lines, we convert a PLCA expression in the
~ Takahashi et al. have given a proof of the follow-  5iginal definition by adding the same number of points and
ing theorem on the planarity of a PLCA expression Jines, and this conversion does not affect the condition for
(Takahashi et al, 2008). planarity or the proof thereof.
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(c) step3: takexy
Figure 5: Existence of an area with a single circuit.

Proof. Let (P,L,C,A outermost be a planar PLCA,
andc € C be an arbitrary circuit. Assume that for
all circuits ¢’ € C, |Suscdc,c)| # 1 holds. For a
circuit ¢ such that-lc(c,c’) holds, |Suscdc,c)| =
0 holds. Therefore, we take a circuit such that
Ic(c,c) holds. LetSyscqc,c') = {cs,c}. Circuit-
segments and cs do not share a point.  Since
cs andcs are considered to be paths, we can take
their starting points and ending pointstart(cs;) =
p,endcs) = q, start(cs) = r,endcp) =s. Then
there existesC c such thattart(cs) = g,end(cs) =
r, and each line isis not included inc’.lines Since
¢ is a circuit, there existss; cs C ¢, start(cs) =
r,endcs) = g. On the other hand, from the consis-
tency of Line-Circuit, there existsp; inv(cs) C cp,
start(inv(cs)) = r,endinv(cs)) = q. Then, circuitcy
is defined by appending two circuit-segmeintgcs)
andinv(cs). Therefore Sscdc,co) = {cs}. It follows
that|Suscdc,co)| = 1, which is a contradiction (Fig-
ure 6).

O
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Figure 6: Existence of an area with a single maximal
shared circuit-segments. (Relationships of circuit-
segments: cs,c,cs C ¢, inv(cs),inv(cs),cs C ¢
inv(cs),inv(cs) C cp, start(cs) = p,endcs) = q,
start(c) = r,endcs) = s. start(cs) = g,endcs) =,
start(cs) =r,end(cs) =q.)

3 CONSTRUCTION OF PLCA

Theorem 2.2 gives the conditions for planarity of a
given PLCA expression. The nextissue to address is
how to construct such an expression.

We can construct a PLCA expression of elements
P, L, C andA in this order, for example. In this ap-
proach, we must check all of the constraints on the
objects carefully during each stage. For example, we
must make a circuit so that there exist exactly two dis-
tinct circuits: one that contains a line, and one the
line in the inverse direction. If this is not satisfied, we
must backtrack to construct these lines. This not only
requires time, but it is also very difficult to prove that
the resulting structure is a planar PLCA expression.

Therefore, we take a different approach, in which
we begin withoutermostand construct a PLCA ex-
pression inductively.

We define a class for PLCA expressions using the
following three constructorssingleloop, add.loop
andaddpath A constructorsingleloop corresponds
to the base case, and the other two correspond to op-
erations that construct a new PLCA expression by di-
viding an existing area in a current PLCA expression
using a path. An arbitrary path, the length of which is
more than one is introduced, makes a new circuit us-
ing it. Points and lines contained in the path are added
simultaneously, and the area is divided into two areas.

We must add objects of four different types simul-
taneously during an induction step because the objects
of a PLCA expression are mutually related. We take
the number of areas as a measure of induction, and
the number of other objects increases following the
application of each constructor. We cannot take the
number of points or lines as such a measure, because
the expression that is obtained as a result of adding
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a single point or a single line to a PLCA expression
may not be a PLCA expression.

An alternative method of generating a new area
is to add a path to the outer part of tbatermost
That is, we take two points on the currenitermost
and combine these with a path in the exterior region
of outermost In this caseputermostchanges during

each step where a constructor is applied. Because the;, lines = &Iy

construction of a newoutermostis the base case in
an inductive definition, we cannot succeed in a proof
if we change the definition afutermostduring each
step. Therefore, we do not adopt this method.

We now describe the construction. The idea of
construction is based on drawing a figure. Although

and cs = [Il5,....II;] (Figure 9(a)). Take an
arbitrary path path, such that start(path) = s,
endpath) = e andinnerlineg(path) = [Ig,....I,]].
Make linesls and le such thatls.points = [sy]
and le.points = [z,€], respectively (Figure 9(b)).
Then make new circuitsc; and c; such that

cilines = [lg,lg,....Iq,le 105, 1Ih] and
Sl I g . Add ¢ to

a;.circuitsand addc; to ap.circuits (Figure 8(c)). As
a result,a is divided into two areasa; anday (the
hatched part)c is eliminated, and two new circuits
are created. The points and lines containegath
are added and the objects are change@ dbntains
circuits other tham, all of them remain ira;, anday

we demonstrate the construction process on a figure tocontains none.

provide an intuitive discussion, the construction itself
is performed symbolically.

A constructorsingleloop is for a base case,
and corresponds to the simplest target figure with
one area. There are only two circuits: the outer-
most circuit and the inner side thereof. Consider
an arbitrary pathpath, such thatstart(path) = x,
end(path) =y, andinner_lines(path) = [I5,...,1;].
Then we create new circuitsutermostsuch that

outermostiines = [I*.I;,...,17] and ¢ such that
clines=[I,...,ly,17], wherel.points= [y,x] (Fig-
ure 7).

Figure 7: The constructa@ingleloop.

We now defineadd.loop. Consider an arbi-
trary areaa (Figure 8(a)). Take an arbitrary path
path such thatstart(path) = x, end path) =y and
inner_lines(path) = [I§,...,I]. Make a linel such
thatl.points= [y,x (Figure 8(b)). Then make new
circuitsc; andc, such thaty.lines= [I7,15,...,11],
andcy.lines= [l ,...,I;,17]. Addc; to a;.circuits
andc; to ay.circuits (Figure 8(c)). As a resulia is
divided into two areasa; anday (the hatched part).
The points and lines contained pathare added ac-
cordingly. If a contains more than one circuit, all of
them remain imy, anday contains none.

Now we defineadd_path Consider a circuit
such thatc € a.circuits, and two pointsy,z on c.
Herey and z may be identical. Because a circuit-
segment is a path, consider a circuit-segnosit ¢
such thatstart(cs) =y, endics) =z Thenc is
divided into two circuit-segmentscs andcs. Let
clines=[ll§... 5], cs=(llg....I1lF ] (0<k<m)

Note thatadd.loopis applied to a specific area,
whereasadd pathis applied to a specific circuit and
two points on it.

Definition 3.1. (IPLCA) PLCA expressions con-
structed by the above three constructors are said to
beInductive PLCA (IPLCA)

4 PROOF OF FORMALIZATION

Here we prove that IPLCA coincides with planar
PLCA.

4.1 Proof of Planarity

We first prove that IPLCA is planar. From Theo-
rem 2.2, we prove the following theorem.

Theorem 4.1. (planarity for IPLCA) If e is IPLCA, e
is (i) consistent, (ii) PLCA-connected, and (iii) PLCA-
Euler.

We implement IPLCA and prove these three prop-
erties using the proof assistant Coq (Bertot and
Castfan, 1998). Coq is based on typed logic adopted
for higher-order functions. The data types and func-
tions are defined in recursive form, and the proof pro-
ceeds by connecting suitable tactics. The definition
of IPLCA and the proof of Theorem 4.1 required ap-
proximately 5500 lines of code in total The advantage
of using Coq is to certify the correctness of the for-
malization. We do not show the detail of the proof
here, since it is out of the focus of this paper. The
entire code is shown in (Goto, 2014).

4.2 Proof of Realizability

We prove that a planar PLCA is IPLCA. This means
that any target figure can be drawn by applying the
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Figure 9: The construct@add._path

constructors of IPLCA in a suitable order. For ex-
ample, consider Figure 10. If we appadd.loop

first, we cannot successively apply constructors, be-

(Induction step) The number of areasis 1.

The principle of our proof via induction is as fol-
lows. For a planar PLCA, of which the number of

cause any intermediate figure is not the target figure greas isn+ 1, we remove a suitable ara@asuch that

(Figure 10(a)). However, if we appydd pathfirst,
we can successively add areas by applyddd path
again (Figure 10(b)).

ol D= OO ]e| o
add_I oop (a)
o o [p
add_pat h

(b)
Figure 10: Constructing figures (a) by first applying
add._loop, and (b) by first applyin@dd._path

Theorem 4.2. (Realizability for IPLCA) A planar
PLCA is IPLCA.

Proof. LetF be atarget figure. We prove the theorem
using induction on the number of areasrof

(Base case) The number of areas is 1.
F consists of only a simple closed curve. This is

we can form a planar PLCA, where the number of
areas isn. Because? is IPLCA from the induction
hypothesis, we can appdd.loop or add_pathto
obtaine. We proceed the proof based on this princi-
ple.

We can take an area with a single circuitc
from Lemma 2.1. Then, there exists such that
|Suscdc,c)| = 1, from Lemma 2.2. Assume that
¢’ = outermost Since the number of areas is more
than onea contains more than one circuit, which is a
contradiction. Therefore] # outermost
Case 1.Suscdc,c) = {c.lines}.

In this case, we removae, c, ¢/, and all objects
on ¢ and ¢ to obtain a planar PLCA¢ such that
|¢.areas = n. Note that since’ # outermos{€ has
anoutermost Here€ is IPLCA from the induction
hypothesis. Then we can constrediy applying the
constructoradd_loopona’ (Figure 11).

Case 2.Syscdc, ) # {clines}.

Let Suscqc,c’) = {cs}. In this casec is divided
into two circuit-segmentssandcs;, andc’ is divided
into two circuit-segmentsv(cs) andcs, (Figure 12).
We removey, ¢, ¢/, and all objects ooandc’, and add

clearly a base case of IPLCA, and is constructed by a circuitnewCby appendings; andcs. We obtain

applyingsingleloop.

210
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a PLCA expression places constraints on the locations
of areas. In this respect, a PLCA expression is more
specific than a graph.

One of the challenges for symbolic expressions of
a figure on a two-dimensional plane is the concept

a’ . .
, of a hypermap A hypermap is an algebraic struc-
e ture that represents objects and relationships between
Figure 11: Removing an area with case 1. them, and can be used to distinguish the topological

and geometric aspects. There are several works that
use a hypermap and give a formalization and a proof
of the properties of these aspects using proof assis-
tants. Gonthier et al. formalized and proved the four-
color theorem and showed a proof (Gonthier, 2008).
In this work, planar subdivisions are described by a
hypermap. Dufourd applied a hypermap to formal-

) T : oy A ize and to prove a Jordan curve theorem (Dufourd,
Figure 12: Circuit-segments in case 2. Cirauis divided 5049y "He also showed a treatment of surface subdi-
into csandcsy, and circuitc’ is divided intoinv(cs) andcs,. 7 .

vision and planarity based on a hypermap (Dufourd,
,,,,,,,,,,,,,,,,, 2010). Brun et al. showed a derivation of a program
D J newC to compute a convex-hull for a given set of points

D e from their specification using a hypermap (Brun et al,
| {4 a : 2012). They specified the algorithm and proved its
D = D correctness using a structural induction. Hypermap is
S | IR | a strong method for providing a mechanical proof of

e e’ the topological or geometric properties in a symbolic

form; however, the representation is too complicated

Figure 13: Removing an area with case 2. 1 R
to understand intuitively.

€ is IPLCA from the induction hypothesis. Then we

can construce by applying the construct@dd_path

onnew( start(cs ) andend(cs;) (Figure 13). 6 CONCLUSION
O

We have described a method of constructing a PLCA

expression inductively, and have proved that the de-
5 RELATED WORK fined class coincides with that of planar PCLA. For-

malization and part of the proof was implemented us-

There exist several symbolic expressions other thanN9 the proof assistant Coq. Our main contribution

qualitative spatial representations for a figure on IS giving acom_putatlo_nal _model_to aquallta_t|ve spa-
a two-dimensional plane, including computational tial representation, which is the first attempt in the re-

geometry (de Berg et al, 1997) and graph the- search fieldlon qualitatiye spatial reasqning. .
ory (Harary, 1969). Different from qualitative spatial _Mechamcal proof using a proof assistant p_row_des
representations, the main objective of computational a rigorous proo_f of correctness of the fprmallzatlon.
geometry is to analyze the complexity of algorithms In future, we will complete the mechanical proof of
for problems expressed in terms of geometry and to € Part currently done manually.

develop efficient ones, rather than to recognize or to

analyze the characteristics of a figure. Graph theory

can be used to provide symbolic expressions of spa-ACKNOWLEDGEMENTS

tial data. The topological structure of spatial data can

be represented as a graph by treating spatial objectsThis work is supported by JSPS KAKENHI Grant
such as points and lines, as nodes and the relationNumber 25330274.

ships between them as edges. There exists a condition

to determine the planarity of a given graph; however,

in general, a graph does not contain any information

on an area, and therefore we only know that we can

embed a graph by locating areas properly. In contrast,
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