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Abstract: The compressed sensing (CS) can acquire and reconstruct a sparse signal from relatively fewer 
measurements than the classical Nyquist sampling. Practical ADCs not only sample but also quantize each 
measurement to a finite number of bits; moreover, there is an inverse relationship between the achievable 
sampling rate and the bit depth. The quantized CS has been studied recently and it has been demonstrated 
that accurate and stable signal acquisition is still possible even when each measurement is quantized to just 
a single bit. Many algorithms have been proposed for 1-bit CS however, most of them require that the prior 
knowledge of the sparsity level (number of the nonzero elements) should be known. In this paper, we 
explored the reweighted 1 -norm minimization method in recovering signals from 1-bit measurements. It is 
a nonconvex penalty and gives different weights according to the order of the absolute value of each 
element. Simulation results show that our method has much better performance than the state-of-art method 
(BIHT) when the sparsity level is unknown. Even when the sparsity level is known, our method can get a 
comparable performance with the BIHT method. Besides，we validate our methods in an ECG signal 
recovery problem. 

1 INTRODUCTION 

The CS theory enables reconstruction of sparse or 
compressible signals from a small number of linear 
measurements relative to the dimension of the signal 
space. In this setting, we have  

y Φx  

where M NR Φ ( M N ) is the measurement 
system, 1NR x is the signal. It was shown that K -
sparse signals, i.e. the number of the nonzero 
elements is K , can be reconstructed exactly if Φ  
satisfies the restricted isometry property (RIP). The 
reconstruction from y  amounts to determining the 

sparsest signal that explains the measurements y , 

i.e.  solving the following optimization problem: 

0
ˆ arg min s.t. 

x
x x y Φx  (1)

where 
0

x  counts the number of nonzero 

components of x . Unfortunately, the 
0
 is 

combinatorially complex to optimize for. Instead, CS 
enforces sparsity by minimizing the 1 norm of the 

reconstructed signal, i.e. 

1
ˆ arg min s.t. 

x
x x y Φx  (2)

In practice, CS measurements must be quantized, 
which will induce error on the measurements. The 
quantized CS has been studied recently and several 
new algorithms were proposed. Furthermore, for 
some real world problems, severe quantization may 
be inherent or preferred. For example, in ADC, the 
acquisition of 1-bit measurements of an analog 
signal only requires a comparator to zero, which is 
an inexpensive and fast piece of hardware that is 
robust to amplification of the signal and other errors, 
as long as they preserve the signs of the 
measurements. In this paper, we will focus on the 
CS problem when a 1-bit quantizer is used. 

The one-bit CS framework is expressed as: 

( )signy Φx  (3)

where the sign operator is applied component-wise 
on Φx , 

1, if 0
( )

1, otherwise
i

i

x
sign x


 

. 
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In this setup, M is not only the number of 
measurements acquired but also the number of bits 
acquired. Thus the ratio M N can be considered the 

“bits per coefficient” of the original N -length 
signal. In sharp contrast to conventional CS settings, 
this means that in cases where the hardware allows, 
it may actually be beneficial to acquire M N
measurements. 

Since the problem was first introduced and 
studied by Boufounos and Baraniuk in 2008, it has 
been studied by many people and several algorithms 
have been developed. Binary iterative hard 
thresholding (BIHT) is shown to perform better than 
other previous algorithms, such as fixed point 
continuation (FPC), matching sign pursuit (MSP), 
and restricted-step shringe (RSS). The BIHT is the 
algorithm for solving  

1

2 0

ˆ arg min ( , ( ) )

s.t. 1,

M

i i
i

y

K






 


x

x Φx

x x

 (4)

where  
0, f 0

( , )
, otherwise

i x y
x y

x y


   
 

Although the BITH algorithm performs the best, it 
requires that the sparsity level K  should be known 
as a prior.  In practice, K is always unknown. 

2 THE BINARY REWEIGHTED 1
NORM MINIMIZATION 
METHOD 

Recently, to enhance the sparsity of 1 -norm, E.J. 

Candes etc. proposed a reweighted 1  norm, X.L. 

Huang et al. proposed a new non-convex penalty, 
both of them are used in conventional CS, giving 
different weights according to the order of the 
absolute value. Inspired by these works, we propose 
a modified reweighted 1  norm minimization 

method and use it in 1-bit CS, hence we call it 
Binary reweighted 1  norm Minimization method 

(BRW). 
Using the reweighted 1  norm instead of the 0 -

norm in (4), we have  

1 1

2

ˆ arg min( ( , ( ) ) 2 )

s.t. 1

M N

i i i i
i i

y w x 
 

 



 
x

x Φx

x

 (5)

where 1 2, , Nw w w  are positive weights, in the 

sequel, it will be convenient to denote the objective 

function by 
1

Wx where W  is the diagonal matrix 

with 1 2, , Nw w w on the diagonal and zeros 

elsewhere. (5) can be rewritten as 

1
1

2

ˆ arg min( ( , ( ) ) 2 )

s.t. 1

M

i i
i

y 


 




x

x Φx Wx

x

 (6)

This raised the immediate question: what values for 
the weights will improve signal reconstruction? One 
useful way is that large weights could be used to 
discourage small entries in the recovered signal, 
while small weights could be used to encourage 
large entries, i.e. we give different weights 
according to the absolute value of each element, the 
bigger the absolute value is, the smaller the 
corresponding weight is. 

Since (6) is nonconvex and intractable. We in 
this section establish a thresholding algorithm to 
solve (6). Define a soft thresholding operator ( )w x
as : 

  ( ),
( )

0,

i i i i i

i
i i

x w sign x if x w

if x w

 



 








w x  (7)

where  1 2, ,
T

Nw w ww  . 

We can write the local optimality condition of (6) as  

( ( ( )))T sign  wx x Φ y Φx  (8)

Then motivated by the optimality condition (8), we 
derive the following iterative soft thresholding 
algorithm for (6). 
 

Algorithm: Binary reweighted soft thresholding algorithm. 

Input: M NR Φ ,  1,1
M y , 0Miter  , 1;   

Initialization: 0l  , 1hd  , 0htol  , 0 Tx Φ y ; 

while l Miter  and hd htol  do 

    Compute   1 ( ( ))l l T lsign   β x Φ y Φx ;   

    Update  1

1 1( )
l

l li
i norm


 


 




w
β

; 

     Update 1 : ( )l l  wx β ;                

     Compute   1

0
( )lhd sign  y Φx ; 

     1l l  ; 
  end while 

  return 
l

l

x

x
. 
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we set  and  are positive in order to provide 
stability to ensure that a zero-valued component in 

lx  does not strictly prohibit a nonzero estimate at 
the next step. 

3 NUMERICAL RESULTS 

In the simulations, we first generate a matrix 
M NR Φ  whose elements follow i.i.d. Gaussian 

distribution. Then we generate the original K -
sparse signal 1NR x . It’s non-zero entries are 
drawn from a standard Gaussian distribution and 
then normalized to have norm 1. Then we compute 
the binary measurements y  according to (3). 

Reconstruction of x is performed from y with two 

algorithms: BIHT and the Binary reweighted 1
Minimization method (labelled as BRW). Each 
reconstruction in this setup is repeated for 500 trials 
and with a fixed 1000N   and 10K   unless 
otherwise noted. We record the average SNR, 
average reconstruction angular error ( Sd ) and 

average hamming distance ( Hd ) for each 

reconstruction  x̂  with respect to x , the three 
metrics are defined as: 

22

10 2 2
ˆ ˆ( ) 10 log ( )SNR x x x - x ; 

1
ˆ ˆ( , ) arccos ,Sd


x x x x ; 

1

1
ˆ ˆ( , ) ( ( ) )

M

H i ii
d y sign

M 
 x x Φx . 

respectively. 
We begin by testing the two methods in the case 

that K is unknown. We set 1000M N  , 10K  . 
Since the prior knowledge of K  should be known in 
BIHT method, to demonstrate the influence of the 
inaccuracy of K for both methods, we set 

10,12,14, , 20K   instead respectively for the 
BIHT method. Besides, the two parameters  and 
  are set to 0.35 and 0.05, respectively. The results 
are shown in Fig.1. It demonstrates that the proposed 
method outperforms the BIHT very much in the 
SNR and average reconstruction angular error. 
Fig.1(c) demonstrates that there is approximately on 
average 0.5 sign differences between y  and 

ˆ( )sign Φx . 

Secondly, we assume that the sparsity K  is 
known for the BIHT method. To test the 
performance difference between the BIHT method 
and   the  BRW  method,  we  perform  the  trials  for 

(a) (b) 

 
(c) 

Figure 1: The average reconstruction error versus an 
inaccurately given sparsity K (The actual K  is 10 ). 

M N with in [0.4, 2].The results are depicted in 

Fig.2. Then we fix 1000,M N  change K  from 
10 to 20. Still, the 3 metrics in the first experiment 
are recorded. The results are shown in Fig3. From 
Fig.2, we can see that in the case that K is known 
correctly, above 0.8M N  , the average SNR and 

average reconstruction angular error of the proposed 
method are almost the same as that of BIHT. 
Although the average hamming distance of our 
method is a little poorer than the BIHT, there is 
approximately only 2 sign difference between y and 

ˆ( )sign Φx when 2M N  . From Fig.3, we can see 

that the proposed method is comparable with the 
BIHT method. 

In the above simulations, we have shown the 
performance of the one bit reweighted 1 norm 

minimization method, generally, though the method 
is non-convex and global optimality cannot be 
guaranteed, the algorithm for binary reweighted 1
norm minimization gives more feasible in practice. 
Here, we consider real-life electrocardiography 
(ECG) data as an example, and shown the ECG 
signal recovery results of the one bit reweighted 1
minimization method. The used ECG data come 
from the National Metrology Institute of Germany, 
which is online available in PhysioNet. The record 
includes 15 simultaneously measured signals 
sampled from one subject simultaneously. Each 
signal is digitized at 1000 samples per seconds. For 
each signal channel, there are 38400 data points. We 
starts from the first 1024 data and generate one 
matrix M NR Φ ,   where   1024N  ,   we   set  that 
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(a) (b) 

 
(c) 

Figure 2: The average reconstruction error versus M N  

when K is known priori. 

(a) (b) 

 
(c) 

Figure 3: The average reconstruction error versus K . 

2048M  . Then we move to the next 1024 data and 
so on. The ECG data is not sparse in the time 
domain as shown in Fig.4 (a), which plots x for time  
1~1024 of signal channel no.1. We apply the 
orthogonal Daubechies wavelets (db10), which is 
reported to be the most popular wavelet family for 
ECG compression, to design Ψ and get θ such that 
x Ψθ . Then θ has sparsity as shown in Fig.4(b). 
We generate Φ and compute ( )signy ΦΨθ . 

Then we apply the algorithm proposed in this paper 

to recover θ . The resulted θ̂  and the corresponding 

reconstructed signal ˆˆ x Ψθ are illustrated by 
Fig.4(d) and Fig.4(c), respectively. All the signals 
are normalized. 

From Fig.4, one can see that the binary 

reweighted 1 norm minimization method can 

recovery sparse pattern . Since all the amplitude 
information of the signal is lost, the reconstructed 
signal lies on a unit 2 -sphere. On the other hand, 

θ is not exactly a sparse signal, so the reconstructed 
results are not very good.  Hence, our future work is 
to solve these problems. 

(a) (b) 

(c) (d) 

Figure 4: The ECG signal in signal channel No.1. 

4 CONCLUSIONS 

In this paper, we proposed a binary reweighted 1  

norm minimization method for recovering signals 
from 1-bit measurements. It is a nonconvex penalty 
and gives different weights according to the order of 
the absolute value of each element. The simulation 
results shows that the performance is much better 
than the BIHT method (which has the state-of-art 
performance) when the sparsity information is 
unknown. Even when the sparsity is known, our 
method can obtain a comparable performance with 
the BIHT method.  

In the future, one can consider global search 
methods for the 1-bit CS. One the other hand ,since 
in practice, some signals, such as the ECG data, do 
not have an exactly sparse wavelet representation, 
we should use more signal structure information to 
enhance the 1-bit CS recovery with non-sparse 
signals.  
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