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Abstract. In this paper, we propose a new type of information-theoretic method
to improve prediction performance in supervised learning with two main techni-
cal features. First, the complicated procedures to increase information content is
replaced by the direct use of hidden neuron outputs. We realize higher informa-
tion by directly changing the outputs from hidden neurons. In addition, we have
had difficulty in increasing information content and at the same time decreasing
errors between targets and outputs. To cope with this problem, we separate infor-
mation acquisition and use phase learning. In the information acquisition phase,
the auto-encoder tries to acquire information content on input patterns as much
as possible. In the information use phase, information obtained in the phase of
information acquisition is used to train supervised learning. The method is a sim-
plified version of actual information maximization and directly deals with the out-
puts from neurons. We applied the method to the protein classification problem.
Experimental results showed that our simplified information acquisition method
was effective in increasing the real information content. In addition, by using the
information content, prediction performance was greatly improved.

1 Introduction

Neural network try to store information content on input patterns as much as possible.
Thus, it is necessary to examine how and to what extent information should be stored
within neural networks. Linsker stated explicitly this information acquisition in neural
networks as the well-known information maximization principle [1], [2], [3], [4]- This
means that neural networks try to maximize information content in every information
processing stage.

Following Linsker’s information principle, we developed information theoretic meth-
ods to control the quantity of information on input patterns [5], [6], [7]. We have so
far succeeded in increasing information content, keeping training errors between tar-
gets and outputs relatively small. However, we have had several problems of those
information-theoretic methods to be solved in the course of experiments.

Among them, the most serious ones are the inability to increase information, com-
putational complexity and compromise between information maximization and error
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minimization, First, we have observed some cases wherafibyenation-theoretic meth-
ods do not necessarily succeed in increasing informatiotecd. For example, when
the number of neurons increases, the adjustment amongnmebazomes difficult,
which prevents neural networks from increasing informatontent. Then, we have
a problem of computational complexity. As experted, infation or entropy functions
gives complex learning formula. This also suggests thattieemation-theoretic meth-
ods can be effective only for the relatively small sized a¢oetworks. Third, we have
a problem of compromise between information maximizatiod arror minimization.
From the information-theoretic points of view, information input patterns should
be increased. However, neural networks should minimizeretetween targets and
outputs. We have observed that information maximizaticsh @mor minimization are
sometimes contradictory to each other. This mean that iffisult to comprise between
information maximization and error minimization in onerfrawork.

We here propose a new information-theoretic methods tdititei information ac-
quisition in neural networks. Instead of directly dealinighathe entropy function, we
realize a process of information maximization by using tagpats from neurons with-
out normalizing the outputs for the probability approximoat This direct use of outputs
can facilitate a process of information maximization arichelate the computational
complexity.

In addition, we separate information acquisition and usasphWe first try to ac-
quire information content in input patterns. Then, we usiioled information content
to train supervised neural networks. This eliminates aafittion between information
maximization and error minimization. The effectivenesseparation has been proved
to be useful in the field of deep learning [8], [9], [10], [LDjifferent from those meth-
ods, our method tries to create actively necessary infeom#&ir supervised learning.

2 Theory and Computational Methods

2.1 Simplified Information Maximization

We developed the information-theoretic methods to in@é@a®rmation content in hid-
den neurons on input patterns. We have so far succeeded@asing the information
content to a large quantity [5], [6], [7]. However, the math@as limited to networks
with a relatively smaller number of hidden neurons becafiigeocomputational com-
plexity of the information method. In addition, we found thize obtained information
content did not necessarily contribute to improved préatigberformance.

The computational complexity of the information-theacetiethods can be atten-
uated by dealing directly with the outputs from the neurdie. try to approximate
higher information by producing the hidden patterns addey the real information
maximization.

Information in Hidden Neurons. We here explain how to compute the information
and approximate it for simplification. Let; andw;; denote thekth element of the
sth input pattern and connection weights from #th input neuron to thgth hidden
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neuron in Figure 1, then the net input is computed by

L
uj =Y wikay, (D)
k=1
whereL is the number of input neurons. The output is computed by
vj = f(u), )
where we here use the sigmoid activation function. The gesta@utput is defined by
1 S
v =g Z (3)

whereS is the number of input patterns. The firing probability of ftie hidden neuron

is obtained by
iy

PU) = =i — (4)
Z%:l U,
The entropy is defined by
M
H = =" p(j)logp(j), (5)
j=1

whereM is the number of hidden neurons. The information is definedeasease of
entropy from its maximum value

I=H"" —H (6)

Simplified Information Maximization. We can directly differentiate the information
or entropy function in the equation (5). However, in actualaions, we have had
difficulty in increasing the information or to decrease tidrepy. In particular, when

the number of hidden neurons was large, we had difficultyénsasing the information

content.

Thus, we try to realize this information increase by using dctual outputs from
hidden neurons. When the information becomes larger orritregy becomes smaller,
a small number of hidden neurons tend to fire, while all theexsttbecome inactive.
To realize this situation, we consider the winners in hiddearons. Let; denote the
index of thejth winner, then the rank order of the winners are

c1<cp<cg<..<cpy. (7)
We here suppose that the winning neurons keep the folloveilagions
Vg > Uy > Veg.or > Uey, (8)

Thus, when the outputs from neurons become larger, the e@jr@inning becomes
higher. For higher information, a small number of hiddenroes only fires, while all
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the others cease to fire. Thus, we suppose that the winningmeshould have the
following outputs
p

pj=—, 0<B<1 (9)

¢j

wheref is a parameter to control the degree of winning and rangesgeest zero and
one. To decrease the entropy, we must decrease the follddirdjvergence

M
Pj 1 —pj
KL:Z {pjlogv—j—i—(l — p;)log 1 j (10)

j=1

When the KL divergence becomes smaller, a smaller numbeirofimg neurons tend
to fire, while all the other neurons become inactive.

2.2 Separation of Information Acquisition and Use Phase

We have found that the information maximization is contcéatiy to the error mini-
mization. In maximizing the information, the errors betwéargets and outputs cannot
be decreased. Recently, the use of unsupervised learrmimgdtout to be effective in
training multi-layered networks [8], [9], [10], [11]. Thuse separate the information
acquisition procedure from the information use. Figure dwshthis situation of sep-
aration. In the information acquisition phase in Figure) 1{ae auto-encoder is used
and the information content in hidden neurons is increasadch as possible. Then,
using connection weights obtained by the information agitiah phase, learning is
performed in supervised ways in Figure 1(b).

Information Acquisition Phase. We here explain computational procedures for the
information acquisition phase. The output from the outpunon in the auto-encoder
in Figure 1(a) is computed by

op =f > Wivs |, (11)

by
1 2 & s 5\2
E=33 > > (@ —o}) 12)

To increase information, we should decrease the entroplyelmformation acquisition
phase, we use the auto-encoder. Thus, we must decrease

| S L M
= 5o 20D @k op)? =7 Y p(i)logp()): (13)
s=1 k=1 j=1

wherey is a parameter to control the effect of the entropy term.
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Fig. 1. Network architecture for supervised learning with an infation acquisition (a) and use
phase (b).

Simplified Information Acquisition Phase. The equation to be minimized is
| S L
- g5 2D e — i)
1k=1

M 1=
Z[palog + (1= pj)log 1— ”}, (14)

— Uj

wherey is a parameter to control the effect of the KL-divergencedBfgerentiating the
equation, we have

aJ
8wjk

1 S
=3 > ssa, (15)
s=1
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where

L 1,
o = [Z Wigdi + (2 + —”)] I'(uy) (16)

1 (% 1-— Vj
whered; denote the error signals from the output layer.
Information Use Phase. In the information use phase, connection wights obtained
by the information acquisition phase are used as initiasohet w7, denote initial

connection weights provided by the information acquisifinase, then the output from
the hidden neuron is computed by

L
v; = f (Z wf,&vi) . a7
k=1
In the output layer, we use the sofmax output computed by

M s
exp(d_ 2, Wjivg)
N M o
> met eXp(Zj:l ij”j)

whereWV;; are connection weights from the hidden neurons to the owtpes. The
error is computed by

0; =

(18)

s N
E=-Y Y ylogo}, (19)
s=1i=1
wherey is the target andV is the number of output neurons. We can differentiate this
error function with respect to connection weights in the petitive and output layer.
We here show the update formula for the first competitivedaye

0] 1<
==Y 5ap 20
awjk S; ks ( )
where
N
5= Wi, (21)
=1

whered is the error signal sent from the output layers grigl a learning parameter.

3 Results and Discussion

3.1 Experimental Results

Experimental Outline. In the experiment, we try to show that our simplified method
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Fig. 2. Network architecture for the protein classification probleith the information acquisi-
tion phase (a) and use phase (b).

can be used to increase the information content by firing dlemaumber of hidden
neurons. In addition, prediction performance can greatlyproved by controlling the
information content.

To demonstrate the performance of our method, we used theipassification
problem [12]. The number of patterns was 1484, and the nusrdfdraining and vali-
dation patterns were 500. The remaining patterns werestnte The numbers of input
and output neurons were eight in the information acquisifibase in Figure 2 (a). In
the information use phase in Figure 2(b), the number of dutpurons became ten,
representing ten classes. First, the auto-encoder wagastare information on input
patterns as shown in Figure 2(a). Then, weights to hidderomsuvere used as initial
weights for the supervised learning in Figure 2(b).

Information Acquisition. First, we examined whether our simplified methods were
effective in increasing information content

M

1ogM+Zp ) logp(4). (22)
j=1

Figure 3 shows information as a function of the paramgtdnformation should in-
crease when the parametgincreases. A smaller number neurons tend to fire, when
the information increases as can be expected by the equation

1_ .
KL= Z[pylog— (1 —pj)logl_ﬁ"_ : (23)
j=1 J

On the other hand, when the paraméieiecreases, the firing rates of all hidden neurons
become smaller.
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Fig. 3. Information as a function of the parametgfor the protein classification data.
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Fig. 4. Firing probabilitiesp(j) when the parametet increased from 0.01 (a) to 0.99 (I).

As can be seen in the figure, when the paramgtecreased, the information in-
creased constantly except when the paramgteras changed from 0.0 to 0.1. This
means that the simplified method was effective in increasifagmation content. Fig-
ure 4 shows the firing probabilitieg j) of fifty hidden neurons. When the parameter
8 was 0.01 in Figure 4(a), all neurons fires with low firing prbitiies. When the pa-
rameter increased to 0.19 in Figure 4(b), the first hidden neuronddrad fire the
most strongly. Then, when the parameter increased to 0.B@ure 4(c), the first hid-
den neuron became dominant in terms of the firing probabilie results showed that
when the parametet increased, one hidden neuron only strongly fired.

Classification Errors. Then, we examined how the obtained information affected the
classification rates for testing data. Figure 5 shows ttesifleation errors as a function
of the parametef. Without information provided by the auto-encoder, theoerate
was 0.395. This means that all error rates by our method wererlthan this error rate
obtained without the information content. In particulahem the parameteérwas 0.37,

we have the lowest error of 0.353. The experimental reshtized that by controlling
the information content, improved prediction performaogeld be obtained.
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Fig. 5. Classification errors when the paramegancreased from 0.01 to 0.99.
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4 Conclusion

In this paper, we have proposed a new type of information+ttee method to improve
prediction performance. In the method, the complex promsiaf information max-

imization are replaced by the approximation method. Thehowkdirectly deals with

outputs from hidden neurons. In addition, the informatieqguasition and use phase
are separated. In the information acquisition phase, inéion content in hidden neu-
rons is increased by producing a small number of active mddgputs. On the other
hand, in the information use phase, the information obthinghe information acqui-

sition phase, is used to train supervised learning. We eglie method to the pro-
tein classification problem. Experimental results shovwad the information increased
by our method and the improved prediction performance waaiméd. Though the

information-theoretic methods have given tools to exanhia& neural networks ac-
quires information content on input patterns, their leagniules were complicated for
the actual applications. Our proposed method is simple giméa be applied to many
problems, in particular, to large sized data.
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