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Abstract: The author proved that the continuous general linear (Lie) group in n dimensions can be decomposed into 
(a) a Markov type Lie group (MTLG) preserving the sum of the components of a vector,  and (b) an Abelian 
Lie scaling group that scales each of the components.  For a specific Lie basis, the MTLG generated all 
continuous Markov transformations (a Lie Markov Monoid LMM) and in subsequently published work, 
proved that every possible network as defined by an n x n connection matrix Cij of non-negative off-
diagonal real numbers was isomorphic to the set of LMM. As this defined the diagonal of C, it supported 
full eigenvalue analysis of the generated Markov Matrix as well as support of Renyi entropies whose spectra 
ordered the nodes and make comparison of networks now possible. Our new research provides (a) a method 
of expanding a network topology in different orders of Renyi entropies, (b) the construction of a meta-
network of all possible networks of use in network classification, (c) the use of eigenvector analysis of the 
LMM generated by a network C to provide an agnostic methodology for identifying clusters and (d) an a 
methodology for identifying clusters in general numeric database tables.  

1 INTRODUCTION AND 
PREVIOUS RESEARCH 

Prior work by the first author established a general 
mathematical foundation for the theory of networks 
that is extended by the current research on network 
series expansions and cluster identifications. It is 
common knowledge that vast domains of knowledge 
can be expressed in the form of networks. 
Furthermore our understanding and classification 
systems of the world and even of language itself 
depend upon the concept of clustering within those 
networks. We first review the foundations of the 
underlying mathematics and that of networks along 
with the first author’s previous results (Johnson 
2005) and (Johnson 2006)  in order to frame our 
current joint results.  

1.1 Background on Networks and 
Cluster Analysis 

A network is here defined as a set of ‘n’ points 
called nodes and numbered 1, 2, …n along with a set 
of connections among those nodes given by real 
non-negative numbers Cij. These values are to 

represent the ‘strength of connection’ between nodes 
i and j and are specified by a square n * n matrix C, 
normally called the connection, adjacency, 
connectivity, or network matrix. One example of C 
is to assign a number 1, 2, …to each member of a 
group and then define Cij to be the number of emails 
which each person i sends to another person j per 
month. Obviously C is also a function of time and 
also is not symmetric since every email i to j does 
not necessarily have another one that goes from j to 
i.. It is also normally the case that the vast majority 
of the C matrix values are ‘0’ in value as a given 
node will only connect to a few hundred or few 
thousands of other nodes.  For example a person 
usually has less than a thousand contacts for phone 
or email out of the 7 billion people on earth. Thus C 
is called a ‘sparse matrix’ predominantly consisting 
of zeroes. The connections are not allowed to be 
negative because one cannot have less than a ‘0’ 
(no) connection between two nodes. The diagonal 
terms are not defined for C because one cannot give 
a “strength” to a connection of a thing with itself. 
Thus it is important to realize the C diagonal is not 
equal to zero but rather is not defined at all. The 
connection from i to j is normally independent of the 
connection from j to i thus making the C matrix 
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different from its transpose (Cij   !=  Cji) and thus is 
asymmetric as a matrix. A special set of networks 
have only the values Cij  = 1 or 0 and are called 
‘graphs’ so they either have a connection or not and 
can be directed (not equal to their transpose) or not. 
Although this is a special case of the networks that 
we study, they are highly degenerate and the 
richness of the different real number values of C is 
lost. Networks normally have certain nodes that 
have more connections than most nodes in the 
network, and are called ‘hubs’. Groups of nodes 
often are much more interconnected with each other 
than with other nodes and form what are called 
“clusters”. Cluster analysis is an essential 
component of knowledge, and even language as we 
give common entities and concepts a group name if 
their properties are similar and thus cluster. If every 
member of a group of nodes has a non-zero 
connection with every other member then this sub-
network is called a “clique” and is represented by a 
dense set of connections.  Other common networks 
are “‘tree”, “star”, “ring”, “random”, and “scale-
free” networks. Networks have the unusual property 
that one can take any subgroup of the nodes and 
consider that “sub-net” to be a node by collapsing 
that subnet to a single node.  For example all 
computers that belong to a given corporation could 
be thought of as a single node as represented by the 
company and thus ignoring all internal traffic.  
Conversely all nodes on the internet could be 
grouped into the “outside” and only those nodes 
within the corporation might be considered in 
constructing C. In conclusion, a network among n 
nodes is defined as a n x n matrix Cij consisting of 
non-negative real values and with undefined 
diagonal elements and thus is defined by n x (n-1) 
independent non-negative values. 

1.2 The Fundamental Problems with 
Network and Cluster Analysis 

At first glance, it would appear easy to classify 
networks and clusters the way we classify matrices 
in mathematics but this is far from the case: (a) The 
mandated non-negativity of C values disallows the 
full range of real numbers as a constraint. (b) The 
absence of definition for the diagonal terms leaves 
the essential definition of the matrix undefined and 
without the ability to perform the primary analysis 
of eigenvalue and eigenvector determination, (c) The 
lack of a unique and well defined ordering for the 
nodes and thus for a unique definition of C means 
that there are n ! different C matrices that 
equivalently describe each network and thus we 

cannot even tell if two networks are the same. (d) 
The lack of a unique, non-arbitrary definition of the 
concept of cluster as there are over 100 common 
algorithms and definitions of what constitutes a 
cluster. (e) The very large sizes of the C in the 
practical world can defeat real computations as n can 
be perhaps seven billion squared to describe just one 
kind of network of humans. (f) The actual number of 
nodes often changes over time or by the nature of 
the problem being studied, by a splitting or merging 
of sets of nodes. Thus new nodes can spring into 
existence and others can disappear causing the 
matrix to not even have the same size from moment 
to moment. (g) The distance between two networks 
has no natural meaning and thus one lacks a metric 
for the space of networks. Specifically this means 
that one cannot define the rate of change of a 
network over time dC/dt and this defeats a 
dynamical theory of networks.  (h) Finally, with 
most complex systems in the sciences, there are 
means for “expanding” the system in a series of 
sequentially less important terms such as Fourier 
expansions of sound waves, binomial and Taylor 
expansions of functions and multipole expansions of 
mass and charge distributions. Such expansions 
could capture the most important or dominant 
aspects of the topology would be invaluable in 
beginning a classification system or for comparing 
two networks as well as simplifying our network 
descriptions but there is no such system for 
networks. (i) There is no “intuitive or physical 
model” for networks that can guide us in deeper 
understanding and guide our intuition. (j). We also 
lack any definitions for invariants or conserved 
quantities such as energy, momentum, mass, charge, 
and angular momentum. Nor do we even have 
metrics for concepts such as “temperature”, 
“entropy”, or “information content”. (k) Finally, 
there is no well-defined concept of what is “optimal” 
for a given network (given some ‘purpose”) and thus 
one cannot measure “how far from optimal” a given 
network is, or how rapidly it is approaching such an 
optimal configuration. This list of problems is not 
even exhaustive.  

1.3 Background in Continuous (Lie) 
Markov Transformations  

Markov transformations are linear (matrix) 
transformations that, when acting on a vector of non-
negative values (positive or zero components), 
preserve the sum of that vectors components (i.e. the 
sum of the components is invariant) and give a new 
vector that also has non-negative components.  Thus 
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while a rotation leaves the sum of the squares of a 
vectors components invariant and describes the 
motion on a circle or n-dimensional sphere, a 
Markov transformation leaves the linear sum 
invariant and describes the motion on a straight line, 
or plane or generally a hyperplane that is 
perpendicular to the vector (1,1,1,…..) and where all 
vectors, both before and after the transformation are 
in the positive hyperquadrant.  Markov 
transformations describe diffusion and increasing 
disorder such as the dispersion of ink into clear 
water or dirt in one’s home. They are the 
transformations that describe the irreversibility of 
time, increasing entropy (disorder) and the gradual 
loss of organized energy into heat (random energy) 
and thus the second law of thermodynamics (and 
even the loss of information in systems).   Because 
Markov transformations do not have an inverse, they 
were never studied from the point of view of group 
theory, because mathematical groups all have 
inverse transformations (along with closure, an 
identity, and associativity). It can be shown that all 
Markov transformations are square matrices that 
consist of non-negative (positive or zero) numbers 
where each column sums to unity (one). Another 
type of Markov matrix has the row values sum to 
unity. Essentially all studies of Markov 
transformations are for discrete and not continuous 
transformations.  It is the continuous Markov 
transformation that will be central to our work 
related to networks.  

A mathematical group is a set of objects (say A, 
B, C, …) and a multiply operation (say *) that has 
(a) closure into another member of the set), (b) is 
transitive i.e. the ordering of the operation among 
three elements does not matter, (c) has an identity 
transformation leaving another element unchanged, 
and (d) for every element the group has an inverse 
that reverses the action of the first. One simple 
example is the set of the identity and the reflection R 
in a mirror.  Another example is the set of four 
rotations of a square that leave it invariant (by 0, 90, 
180, and 270 degrees). Then one can consider the 
group of rotations about an axis or the translations 
on a straight line as examples of continuous (Lie) 
transformations of rotation both of which have an 
infinite number of elements. In the 1890s Sophius 
Lie invented a way to study all of these by studying 
the associated infinitesimal transformation where he 
showed that an exponentiation of the infinitesimal 
transformation gives the original transformation. 
This means that we can study a single 
transformation L rather than the infinite number of 
rotations. For rotations in three dimensions, there is 

a set of three such transformations: Lx, Ly, and Lz 
for rotations about each axis.  Thus one only has 
three objects that are needed to study all of the three-
fold infinity of rotations in three dimensions. The 
resulting set of L matrices is called the Lie algebra 
for that Lie group, R, which is generated by 
exponentiation. This group is called the rotation 
group R3 or the Orthogonal group O(3).  

1.4 Decomposition of the Continuous 
Linear Transformation Group 

The general linear group of all continuous 
transformations in n dimensions is represented by an 
n x n (invertible) matrix of real numbers. Such 
transformations include rotations, translations, and 
the Lorentz transformations of the theory of 
relativity as well as all the unitary transformations in 
quantum theory. Transformations allow us to study 
symmetry such as rotational symmetry or other 
invariance. Since we wish to generate all continuous 
linear transformations, we will need all possible 
infinitesimal generating matrices which are easily 
listed as having a ‘1’ in the i,j position and a ‘0’ in 
all other positions. There are (as might be expected) 
n2 such matrices since we can put the ‘1’ in any of 
the n2 positions. Those matrices with a “1” in the i, j 
position form the n2 elements of the general linear 
group. However, it was discovered by the author 
(Johnson 1985) that the general linear group can be 
decomposed into two separate Lie groups as follows: 
(a) Consider the generator (Lie algebra) element 
which has a 1 at the ii position and a 0 at every other 
position. If we exponentiate that matrix then this is 
obviously ea at one diagonal position,  1 at other 
diagonal positions, and zeroes everywhere off the 
diagonal. These transformations multiply that one 
axis by ea and multiply all the rest by ‘1’ thus 
leaving them unchanged so it just makes that one 
axis longer or shorter by that factor. We call these 
scaling transformations and the group is called 
Abelian because every transformation commutes 
with all the other elements in the algebra. We next 
identify the Markov Type Lie Group (MTLG). 
Consider the off-diagonal algebra (generators) and 
rather than using just a ‘1’ at each off diagonal 
position, let us form an element by placing a ‘-1’ on 
the corresponding diagonal of that column. This 
makes the sum of the elements in each column of the 
generator equal to zero with a “1” off the diagonal 
and a “-1” on the diagonal in the same column. 
Every other value is “0”. Formally this defines the 
m,n matrix element. There are obviously n2-n such L 
matrices corresponding to every position off the 
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diagonal.  The first author showed that the 
exponentiation of these L matrices always generates 
a Markov type matrix and conversely all continuous 
Markov type matrices (transformations are so 
generated.  We call this Lie group and its associated 
Lie algebra a ‘Markov Type’ Lie group or algebra 
because it preserves the sum of the components of a 
vector. However it does not preserve the positive 
definiteness of the components of the vector because 
M can also take one to negative values of the 
coordinates. We now restrict the MTLG to give only 
physically acceptable transformations resulting in a 
Markov Monoid (MM). One can easily verify that if 
the parameters that multiply the L generators are all 
non-negative, then one only gets a transformation 
that takes one from a vector with only non-negative 
values to another vector with non-negative values. 
This is essential if the vector components are to 
represent probabilities (or numbers of objects). In 
that process however, one gives up the inverse of the 
transformation and we end up with a group without 
an inverse which is called a Lie ‘monoid’. Now with 
this restriction to non-negative values of the L 
multipliers, we always get a Markov matrix: One 
notices that the sum in each column is ‘1’ and that 
all elements are positive. This result was highly 
significant because it tightly connected the theory of 
Lie groups and Lie algebras with the theory of 
Markov transformations allowing the theorems and 
insights in that powerful domain of Mathematics to 
be utilized in the other domain: the theory of all 
continuous Markov transformations.  

1.5 Networks Are 1 to 1 (Isomorphic) 
with the Lie Algebra for Markov 
Transformations 

The author (Johnson 2005) subsequently proved that 
every network is a Markov monoid (MM) and 
conversely. Recalling that any network is an off 
diagonal set of non-negative numbers, it now 
follows immediately that we can multiply the 
appropriate MM generator by the value in the off 
diagonal value of a given network, and end up with a 
Markov monoid matrix that will generate a valid 
Markov transformation. This is a consequence of the 
fact that each diagonal is automatically defined as 
the negative sum of off-diagonal elements in that 
respective column.  Thus any network C gives 
exactly one MM Lie generator for a continuous 
Markov transformation and conversely any MM 
generator defines, via its off-diagonal elements, a 
network with that C matrix  with exp(aC). This 
important result now connects the study of the 

complete topology of all networks to the study of the 
equivalent MM and its associated unique Markov 
transformation. The collective power of three 
branches of mathematics, Lie algebras & groups, 
Markov transformations, and Networks, are now 
fully integrated allowing us to use the power of each 
domain to study the other domains. This result also 
has an immediate positive consequence, namely that 
the diagonal of the C matrix is exactly defined and is 
unambiguous as a MM where each diagonal element 
is the negative of the sum of the off diagonal terms 
in that corresponding column. This puts network 
theory on a firm unambiguous mathematical footing 
and every possible network defines a continuous 
Markov transformation in that number of 
dimensions as defined by the associated Lie and 
Markov monoid.  

These results provide solutions to each of 
the core network problems as follows.  The first 
important consequence is that since the C matrix 
now has its diagonal determined and is 
unambiguous, that all eigenvector and eigenvalue 
analysis is well defined. With some thought, one can 
show that the associated eigenvalues are all ‘0’ or 
negative with the ‘0’ value being associated with the 
equilibrium eigenvalue, and all the other (negative) 
eigenvalues being associated with flows of an 
associated diffusion rate that is exponentially 
deceasing for the corresponding eigenvector and 
representing an approach to equilibrium for the 
vector upon which it acts. There are also cases (since 
the resulting C matrix may not be ‘normal’ (as 
required in order to have real eigenvalues), where 
there can be complex eigenvalues and in this case 
this eigenvalue gives the angular velocity of a 
circular flow of conserved entity under the Markov 
transformation while the real component provides 
the decay of that cycle to zero (equilibrium). This is 
very analogous to the physical system of coupled 
harmonic oscillators with overdamped, critically 
damped and underdamped solutions. In fact, in spite 
of the fact that the network matrix is a static system, 
it can be modeled by a dynamical evolution of the 
approach to equilibrium of the diverse combinations 
of nodes that constitute each eigenvalue and which 
approaches zero if time were to evolve the 
associated eigenvalue. This is an example of where 
we can use dynamical evolutions of the associated 
‘time’ parameter to inform us of the structure of the 
C matrix using the time evolution of the MM.  

Renyi entropies of order two can be defined 
on each column in the resulting Markov matrix M 
thus providing another set of critical metrics for the 
topology. This second equally or perhaps more 
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important consequence is that since the resulting 
Markov matrix has columns that are non-negative 
and sum to unity, each column can be interpreted as 
a probability distribution. Thus it follows that each 
column can support a well-defined concept of 
entropy (either Shannon or Renyi’) on each column. 
This entropy value measures the order or disorder of 
the incoming (columns) or outgoing (rows) flows of 
the conserved substance such as probability to the 
node in question as per the model which we 
described above. Thus each column (and each row 
separately) has a numerical value that can be used to 
either partially or totally distinguish them, and 
which can be used to uniquely number the nodes! By 
sorting the Renyi entropy values in order, we obtain 
an entropy “spectral curve” that is highly descriptive 
of the topology. No two topologies can be identical 
unless the entropy spectral curves are identical and 
thus we can take the distance between the Renyi 
entropy curves as a measure of the distance between 
the two topologies (computed as sum/integral of the 
curve differences squared). In the previous work we 
only considered the use of the two second order 
Renyi entropy spectral curves where one was 
computed for the columns and one computed for the 
rows.  The distance metric between network A and 
B was defined as the sum of the column and the row 
distances between the two networks.      

1.6 The Algorithm for Network 
Analysis with Entropy Metrics 

It is easier here to bypass other details of the 
technical foundation and give the exact prescription 
from the following algorithmic steps (Johnson 
2012). Set the diagonal terms C of a connection 
matrix to be equal to the negative of the sum all 
elements in that respective column (and then later 
redo all this for the rows instead of the columns to 
achieve a second type of Markov transformation). 
Then divide every element of the matrix by the 
negative of the trace *n thus ‘normalizing’ the 
matrix to have a trace of ‘-n’. It can be shown that 
this matrix is the infinitesimal generator of a 
continuous Markov transformation since it is a linear 
combination of the Markov monoid Lie generators. 
Compute the associated Markov matrix as exp(aC)  
using any number of terms  and one will always get, 
in any order, a Markov matrix where all matrix 
elements are non-negative and the sum of all 
elements in any column is ‘1’. The number of 
expansion terms used represents the degrees of 
separation thus incorporated and this is an important 
consideration in informing the entropy functions that 

are computed in terms of the M matrix of the 
number of degrees of separation to be considered. 
Since each column has only non-negative elements 
and each sums to unity, it now follows that these 
elements can be interpreted as probabilities and thus 
support a definition of entropy which is defined as 
the negative of the log of sum of the squares of the 
elements of that column. As this Sj is defined for 
each column (node), we may sort the nodes in order 
of these values.  For real values there is rarely 
degeneracy, but if there are two or more equal 
values, then a similar procedure, when performed on 
the rows, will usually distinguish the sort order and 
if not, one uses the higher Renyi orders. These 
sorted values provide an “entropy spectra” for the 
columns which can be plotted as a curve, and 
likewise one obtains another entropy spectral curve 
for the rows.  These two curves for the row and 
column entropy spectra for each order of the Renyi 
entropy  are specific to the network topology, 
represent the incoming and outgoing order/disorder 
of connectivity. The isomorphism of a network C to 
the Lie Monoid generator L occurs because (a) both 
C and L have all possible non-negative off-diagonal 
elements of a square matrix of any size, and (b) C 
has an arbitrary diagonal while the diagonal of L is 
defined as having a diagonal consisting of the 
negative of the sum of all non-diagonal elements of 
the corresponding column (or row) thus providing 
that definition for the diagonal for the network 
matrix C. It is precisely those Markov type 
generators that have a negative off-diagonal term 
that are not pertinent to the concept of a network and 
are exterior to our investigation. The MM Lie 
generators provide a definition of the diagonal thus 
allowing (a) a well-defined matrix whose eigenvalue 
and eigenvector structure can be studied, and (b) 
thereby providing a dynamic model of exponentially 
decreasing flows of all eigenvalues toward zero 
except for the eigenvalue of “0” which represents 
final equilibrium with maximum entropy. Secondly, 
that same MM generator always generates a family 
of Markov transformations whose column (or row) 
sums gives non-negative values that always sum to 
unity, and thus can be treated as probabilities.  

2 NETWORK 
CLASSIFICAITONS, 
EXPANSIONS, AND 
CLUSTRING 

The previous research enabled one (a) to determine a 
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unique diagonal for the C matrix making it a 
member of the Lie Monoid that created a family of 
Markov matrices; (b) thus allowing one to compute 
the unique associated eigenvectors and eigenvalues 
for the resulting Markov matrix and thus for the 
network topology; and (c) thus in turn to create a 
hypothetical physical model of dynamic flows 
among the nodes that modeled flows where each 
eigenvector (as a linear combination of nodes) 
would describe a flow (of an imaginary dispersing 
fluid or substance) toward equilibrium at the rate of 
the associated eigenvalue. The flow rate occurs 
among the nodes at rates proportional to the 
connection strength between those nodes. 
Consequently any network could be studied from the 
point of view of the unique associated Markov 
transformation and the associated physical model of 
approach to equilibrium of a dispersing system of a 
conserved substance (since the Markov 
transformation preserves the sum of the components 
of the vector upon which it acts) . Thus one now has 
the powerful tools of eigenvalue/eigenvector 
analysis to use in the study of the network topology.  
This work next enabled one to compute the (second 
order) Renyi entropies of the n columns and the n 
rows of the associated Markov transformation that 
which, when sorted, provided an entropy spectra 
curve (d) that ordered the nodes and allowed direct 
comparison between two networks to see if they 
were the same and (e) allowed one to define a 
distance metric between two topologies (as the 
length of the vector which is the distance between 
the two respective Renyi entropy vectors.  This also 
then allowed one (f) to compute the distance 
between a network at one time and at a later time 
and thus compute the rate of change of a networks 
topology.  But our past work did not provide (g) (a 
means of expanding a network in a series of terms 
which would reflect smaller and smaller aspects of 
the topology, (h) any framework that could support a 
classification of network topologies, or (j) any 
insight into the very complex structure of clusters in 
networks and the clusters within those clusters etc.  
We now have foundations laid in each of these areas 
(Campbell 2014).   

2.1 Expansion of Networks using 
Higher Order Renyi Entropies  

Networks can be uniquely identified by ordering the 
nodes using the Renyi entropies as previously 
discussed and these entropy curves based upon the 
MM matrices must be identical if the generating 
topologies are identical.  First of all this essentially 

solves the problem of distinguishing and ordering 
the nodes using the sorted column (and row) 
entropies. But there are only 2n of the second order 
Renyi entropies as computed for each row and each 
column of the network generated Markov matrix 
while there are n2 elements of the matrix. So even if 
the second order Renyi entropies are sufficient to 
provide a unique ordering of the nodes, they are not 
functionally sufficiently rich to carry all the network 
information. However one notes that the successive 
higher orders of Renyi entropies for each column 
and each row are functionally independent as each is 
proportional to the log of each sequentially higher 
powers of the components of the components of 
each column and row. Since the sum of the 
successive powers 2, 3, 4, …m are linearly 
independent then one only needs to utilize a 
sufficient number of powers (and thus orders of 
Renyi entropy) to determine the Markov matrix 
elements and thus the topology. Thus 2m = n2 – n.  It 
is easy to see from the definition of the entropy that 
an ordering of nodes using one order of Renyi 
entropy cannot conflict with the ordering of another 
order of Renyi entropy. But aside from the 
functional independence of the sums of sequentially 
higher powers, the next most important realization is 
that for a given column or row, the sum of each 
higher power results in a value less than that of the 
lower power since all values are less than unity.  It 
then follows that each higher order Renyi entropy is 
lower than its predecessor and that the distance 
between each successive curve (as previously 
defined) is smaller and smaller. Thus the set of 
curves that are the differences between the n and the 
n+1Renyi entropy is increasingly smaller and thus 
when they are taken together, they both represent the 
topology as a decreasing expansion of functional 
differences.   Furthermore they are functionally 
complete to (only in principle) determine the entire 
original topology of  n2 – n values.    

A metric can now be defined for the distance 
between two topologies as follows.  The closer these 
two entropy spectral curves are to each other, then 
the more similar the values of the incoming and 
outgoing entropy probability vectors.  Thus we can 
usefully define the ‘distance between two topologies 
as the distance between these entropy spectral 
curves’ of the same Renyi entropy order as 
indicative of the ‘distance between the two 
topologies’. If the networks have the same number 
of nodes, then one can just take the sum of the 
squares of the differences of the two corresponding 
entropies. But in many cases one must compare a 
topology with another where an additional node (or 
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one missing node) prevents this direct comparison. 
In that case one takes the difference between the 
(boundary-normalized) smoothed sorted entropy 
curves and integrates the square of the distance 
between the curves and then takes its positive square 
root (like a scalar product in a Hilbert space).  This 
essentially treats the Renyi entropy values for the 
columns (or rows) as a vector of n ordered 
components for each network and then takes the 
distance between the two topologies as the 
magnitude of the difference vector (the square root 
of the integral of the differences (or if they have the 
same number of nodes, the sum of the entropy 
differences). These differences can be summed over 
each order of Renyi entropy for both the rows and 
columns to define a total distance between the 
topologies. Now that we have a metric for the 
distance between two topologies, we can take the 
derivative over time of that change and identify 
aberrant changes or differences. We have previously 
applied this to a study of system attacks on networks 
(using only the second order entropy) and for the 
identified aberrant changes. This method was 
successful in identifying network attacks not see by 
other software and also identified abnormal usages 
in large university network flows. 

2.2 A Framework for Potential 
Network Classification 

We ask the reader to now imagine an exceedingly 
large mathematical network where each node is 
itself a network.  This mega-network is then to be 
defined by a connection matrix that consists of the 
exponentiation of the negative of the total summed 
distance between the successive Renyi entropies for 
the columns and where the transpose terms are 
defined the similar term using the rows.  Then two 
networks are closer when these distances are smaller 
and since we exponentiate the negative of this 
positive distance it follows that when the distance 
becomes large, the connection becomes small as we 
would desire. This “MetaNetwork” is one of the 
largest entities in all of mathematics as every 
possible network (n*(n-1) set of non-negative reals) 
will constitute a node. The virtue of such a 
MetaNetwork is that although the dimensionality is 
very, very large and certainly the nodes cannot be 
positioned in a 3 or even a finite dimensional space, 
one can use special networks (trees, rings, clusters, 
scale-free networks, etc.) as reference points or 
better yet with sequences of them as axes with which 
other topologies can be referenced and thus 
positioned in this space Even to create this C, one 

must truncate the number of networks so that the 
diagonals can be determined. We will present our 
limited results for meta-networks containing some 
finite number of networks as nodes. In conclusion, 
whereas one cannot determine the “coordinates” of a 
network in this mega-network, one can find the 
distances from a network in question to a large 
number of “reference networks” (trees, rings, 
clusters, scale-free, and random networks).     

2.3 Eigenvectors Determine Network 
Clusters 

There are well over 100 different methods for 
mathematically identifying clusters. What one 
chooses to define as “similar” for clustering can vary 
greatly and there seems to be no natural definition.  
Intuitively one understands the basic concept of a 
cluster as a group of items in a set that have “very 
similar properties” or in a network as a subnet that is 
“highly connected”. It is the “cluster” that in many 
ways is the foundation of our language, concepts of 
abstractions, classifications, and intelligent 
reasoning and thus of the greatest possible 
importance. If we consider the eigenvectors of a 
network, they represent those combinations of 
nodes, (with some weighting vector that is 
normalized to unity), that, like the normal nodes of a 
set of coupled harmonic oscillators, will approach 
equilibrium at the unique rate of the associated 
eigenvalue. The nodes, weighted as per the defining 
linear combination for the eigenvector, behave in the 
model as one entity and transfer the imaginary 
substance in the vector being acted upon by the MM, 
among themselves. It follows that it is the 
eigenvectors that constitute clusters with nodes 
participating in a given cluster, in proportion to the 
weights, that provide a neutral definition of a cluster. 
The Markov matrix generated by a network has been 
shown by the authors to have eigenvectors that 
identify not only clusters but also the complex 
structure of such clustering within clustering. The 
eigenvalues and eigenvectors of the M matrix 
provide an intuitive model for networks in the 
following way.  The continuous one-parameter 
transformation generated by the network monoid 
serves as a dynamic model for any network as a 
combination of conserved flows among the 
components of a vector upon which it acts.  
Specifically the eigenvectors become those linear 
combinations of nodes that have unique associated 
eigenvalues representing the rate of flow toward 
equilibrium, or when complex, the angular 
frequency of flow cycles in the approach to 
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equilibrium. Clusters in networks can be identified 
by the magnitude of the component network nodes 
within each eigenvector.  Consequently one can see 
the multiple levels and complex structure of what 
constitutes “clustering”.  We have demonstrated this 
first with the direct construction of networks with 
clusters and even clusters within clusters.  In each 
case the eigenvector identified such structures.  The 
eigenvectors of the Markov matrix computed to 
different levels of connectivity also reveals 
additional structures. Our definition based upon the 
M eigenvectors is general and is agnostic to any 
arbitrary or additional assumption.  We are not able 
to “prove” that these eigenvalues identify the 
clusters because there is no fixed formula that 
defines a cluster.   But based upon the rate of flows 
within the eigenvector being maximal and contained 
in that eigenvector, this forms what our intuition 
would suggest is the most neutral definition of a 
cluster.  

2.4 The “Properties” of “Entities” as 
Defining a Network with Cluster 
Identification 

In parallel research, we constructed a new kind of 
network as follows. Imagine that one has a set of 
entities (chemical elements with numeric properties, 
economic profiles of companies, or people with 
numerical properties). Assume that all the properties 
of all entries are numerical values which measure 
the extent of that property that the entity possesses. 
We can define each entity to be a node and form a 
network among the entities as follows: Normalize 
each property column by transforming the values to 
the number of standard deviations for that column 
away from its mean value which we rescale to zero.  
This then removes the units in each column and puts 
the columns in an equivalent form of standard 
deviations. (If the values cover several powers of 
ten, then one would use the more reasonable value 
of the log of the values of the properties). Then one 
can form the function that is the sum of the squares 
of the differences of the respective values of each 
property and then exponentiate the negative of this 
value.  Notice that this function is very close to zero 
when the entities have very similar properties (in 
terms of the standard deviations from the norm).   
Thus the function will be the largest when the 
entities have extremely similar properties and thus 
are very much alike.  This is somewhat like 
computing the probability that entity x is the same as 
entity y.  By creating this C matrix for all of the 
entities, one creates a network among the entities 

that shows strong connections between highly 
similar entities. The study of the clustering in such a 
network via a study of the associated MM generated 
Matrix and its associated eigenvectors show unique 
and well defined clustering of the entities in terms of 
the properties listed.  . We have performed this both 
for the periodic table of elements and found 
reasonable clustering of physical properties of the 
elements and also for the Leontief IO model 
economic sectors of the U.S. economy using the use 
and make matrices at the 100 level of 
disaggregation.  

3 CONCLUSIONS 

Our new results first provide a powerful tool for the 
expansion of a topology in terms of a finite series of 
Renyi entropies of successively higher orders for the 
rows and columns. This sequence not only defines 
the topology uniquely, it does so as a sequence of 
successively smaller terms continuing topological 
information much like the Fourier expansion of 
sound waves of musical instruments.    Secondly we 
were able to construct a network that consisted of 
nodes each of which is a network itself.  This allows 
one to position a given network of interest in relation 
to known networks and potentially can lead to a 
beginning for the classification of networks in terms 
of the location of the network of interest in this 
space and with that position relative to reference 
networks.  Thirdly, we have been able to show that 
the eigenvectors of the Markov matrices generated 
by the Lie algebra monoid reveal the complex 
structure of clusters along with extensive data on the 
profile of that structure.  Finally, we have developed 
a method of generating a network where entities 
(such as elements, corporations, or people) are the 
nodes and where the connection matrix is defined in 
terms of multiple (possible weighted) properties of 
those entities. When we then study the clustering in 
these networks, it is highly revealing of the 
underlying structures.  This algorithm has very 
extensive applicability due to its generality.      
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