
A Scalable Framework for Dynamic Data Citation of Arbitrary
Structured Data

Stefan Pröll1;2 and Andreas Rauber1

1SBA Research, Vienna, Austria
2Institute of Software Technology and Interactive Systems, Technical University of Vienna, Vienna, Austria

Keywords: Research Data Citation, Subset Versioning, Subset Authenticity, Data Sharing.

Abstract: Sharing research data is becoming increasingly important as it enables peers to validate and reproduce data
driven experiments. Also exchanging data allows scientists to reuse data in different contexts and gather new
knowledge from available sources. But with increasing volume of data, researchers need to reference exact
versions of datasets. Until now access to research data often based on single archives of data files where
versioning and subsetting support is limited. In this paper we introduce a mechanism that allows researchers
to create versioned subsets of research data which can be cited and shared in a lightweight manner. We
demonstrate a prototype that supports researchers in creating subsets based on filtering and sorting source
data. These subsets can be cited for later reference and reuse. The system produces evidence that allows
users to verify the correctness and completeness of a subset based on cryptographic hashing. We describe a
replication scenario for enabling scalable data citation in dynamic contexts.

1 INTRODUCTION

Having access to data sources is crucial for our so-
ciety and recently many initiatives promote the use,
reuse, sharing and open access to data. Data shar-
ing portals1 gain popularity and public institutions no
longer hide and protect their valuable data. In the sci-
entific domain we also face strong encouragement for
sharing data and provide access to data sources which
enables peers to reuse data in completely new con-
texts.

Research is an iterative process that requires to re-
run experiments with different input data in order to
verify results. Researchers often have to modify their
datasets. They need to track different versions and
have access to them on demand. Therefore scientists
require a mechanism that allows them to work with
dynamic datasets. Still they need to reference any ver-
sion for later reinspection.

Sharing data without providing additional authen-
ticity and provenance metadata for its correctness is
insufficient. We need to be sure that the data is accu-
rate, unchanged, not manipulated and complete. Ev-
idence that allows to evaluate whether a dataset is
available in the correct version, is complete and not

1e.g. http://www.figshare.com/

manipulated is essential.
In this paper we present a framework that allows

researchers to create, reference and cite subsets of
dynamically changing data without the need for full
sized data exports. We address solutions for a range
of disciplines which do not yet have the tradition of
using sophisticated data management tools such as
large scale structured databases. Our framework for
dynamic data citation allows researchers to generate
and retrieve secure evidence for the integrity of their
smaller-scale datasets, i.e. wide spread data formats
such as CSV files.

The remainder of this paper is structured as fol-
lows. Section 2 describes the problem of dynamic
data citation. Section 3 provides an overview of ex-
isting work in the area and shows its application on
evolving databases which our work uses as a ba-
sis. Section 4 provides a sample use case. Sec-
tion 5 provides an overview of the server side im-
plementation and Section 6 describes a novel hash-
ing scheme that we use for result set identification
and integrity verification. Furthermore, we discuss
security improvements of our approach with regards
to tamper-resistance of datasets. Section 7 introduces
the client component which allows researchers as-
sembling, storing, referencing and citing datasets and
sharing them with peers. Section 8 covers the query

223Pröll S. and Rauber A..
A Scalable Framework for Dynamic Data Citation of Arbitrary Structured Data.
DOI: 10.5220/0004991802230230
In Proceedings of 3rd International Conference on Data Management Technologies and Applications (DATA-2014), pages 223-230
ISBN: 978-989-758-035-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

store which serves as the repository for the queries
that are used to retrieve the datasets. The paper closes
with a conclusion and a future outlook in Section 9.

2 MOTIVATION

Sharing data and referencing it is an important step
towards a more open scientific community that actu-
ally can reproduce experiments from peers instead of
relying on the paper based publication only. Classi-
cal paper publications without available data are in
many cases not sufficient to reproduce experiments.
Many journals now require data audits, data deposits
and data descriptors for their submissions. For this
reason researchers need tools that allow them tracing
different versions of their datasets. Data citation deals
with the question how data can be identified and thus
strongly supports the culture of sharing data between
scientists by allowing to precisely identify, reference,
cite and credit their research data.

Researchers use various kinds of data formats
as input for their experiments, e.g. CSV, JSON,
XML, RDF and various office software formats. Dur-
ing their research scientists often need to adapt their
datasets according to their requirements, they might
need to update or delete values and create new sub-
sets of their data. Each of these iterations results in a
new version of the dataset. For text based data files
many researchers do not use any version control soft-
ware. Recently source code versioning software such
as subversion2 or git3 have gained popularity outside
the computer science departments, but still the final
dataset which eventually gets published on the repos-
itory does not contain previous versions any more.
Additionally datasets are mainly published as archive
files on institutional Web sites where a hash string
serves as a digital fingerprint. If datasets are large
and consume considerable amounts of storage space,
providing multiple versions with the appropriate his-
tory metadata causes a burden to the data provider.
Therefore, many institutions only provide the latest
version of a dataset without any previously accessible
versions available.

The information about earlier versions is valuable
for several reasons. First of all, versions contribute
to the provenance track of a dataset and therefore are
evidence how a dataset was obtained. Even if sev-
eral versions of the datasets are available, without the
appropriate metadata it is not possible to understand
how they have been created. This is especially true for

2https://subversion.apache.org/
3www.git-scm.com/

scientific disciplines where large scale database man-
agement systems are not available that would allow
tracing the creation of a dataset. Secondly, the pro-
cess of creating a dataset consumes resources in the
form of time and money. Thus preserving informa-
tion about previous datasets is economically reason-
able and other peers would benefit from the historical
data. Thirdly, the attribution of datasets to their au-
thors is not possible without referencing a precisely
defined dataset.

Citing subsets of datasets is still a challenge, es-
pecially when the source data is still evolving. What
is needed is a solution that allows researchers to
cite arbitrary subsets of their research datasets and
share them with peers without the need to copy large
datasets.

We developed a prototype that supports scientists
in referencing, citing and sharing their datasets in a
lightweight fashion. In the scientific domain there ex-
ists a huge variety of data formats that are used for
specialised research in diverse domains. The band-
width of data formats is highly diverse and the fo-
cus of research is often directed towards highly spe-
cialised data formats used in big data processing or
structured databases as they are used in large scale sci-
entific facilities such as CERN 4 or STFC5. But many
disciplines still rely on simpler solutions such as CSV
(coma separated value) (Shafranovich, 2005). Al-
though the format was originally only used for small
scale datasets, now bigger sets also need to support
proper data citation (Bertin-Mahieux et al., 2011).

CSV data recently receives more attention6 as it
is a very clear and simple data format that is widely
used in different domains. Also there exist a lot of
different tools that allow export and import facilities
in order to transform the data into a different data for-
mat that might be more complex. Therefore we chose
CSV data as a reference data type for our prototypes,
but our methods can be applied to any structured data
format. The system that we propose in this paper can
be used to create citable subsets of versioned CSV
data by only storing the queries that were used to as-
semble a subset. In order to preserve the knowledge
how this datasets have been constructed, we need to
collect dataset metadata.

Independently from the actual data format used,
there are only two axiomatic methods that researchers
need to apply in order to compile their datasets. They
need to select those attributes of a dataset which they
are interested in (projection) and they have to filter
these by some criteria (selection).

4http://home.web.cern.ch/about/computing
5http://pan-data.eu/STFC
6http://www.w3.org/2013/csvw

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

224

For tracing the creation of a dataset, we need to
store the filtering and sorting operations that were
used in order to generate the dataset. If we apply these
operations again on versioned data, the result set will
caeteris paribus return the same result set again. We
provide mechanisms that ensure dataset integrity and
dataset stability, i.e. stable sorting of the dataset for
further processing.

In order to create and use such datasets, we require
basic data definition and manipulation languages.
Due to the compatibility of relational SQL databases
and CSV files, we can use the powerful features of
modern relational database management systems in
order to manage the data.

3 RELATED WORK

Data citation is an urgent topic (Lawrence et al.,
2011), yet the citation landscape is fragmented (Par-
sons et al., 2010) and various approaches exist
(CODATA-ICSTI, 2013). In February 2014 the Data
Citation Synthesis Group published their Joint Dec-
laration of Data Citation Principles7 which address 8
core concepts for accessible research data. The docu-
ment highlights the importance of data as a first class
research object which requires the same attention with
regards to citations as paper publications (principle
1). Not only stimulates data citation correct attri-
bution among peers (principle 2), but it serves even
more importantly as evidence (principle 3). When-
ever a statement within a publication is based upon the
foundation of data, the corresponding dataset needs
to be referenced. Obviously each dataset requires a
unique identifier (principle 4) that allows resolving a
dataset and its accompanying materials such as meta-
data (principle 5). These identifiers need to be avail-
able for the long term, i.e. persistent (principle 6).
Data citation needs to facilitate means for researchers
to assess the data’s provenance and fixity (principle
7). The guidelines encourage an interoperable design
that can be applied across research domain and com-
munity boundaries.

The authors of (Pröll and Rauber, 2013a) propose
a model for citing evolving data from SQL databases
which is based on time stamp annotated queries and
versioned data. The authors describe a query cen-
tric citation approach that augments SQL queries with
timing information, which can then be utilised in or-
der to retrieve a the same data again at a later point
in time. Also they present a generalised model for
rendering dynamic data citable and define basic re-

7http://www.force11.org/datacitation

quirements for citable subsets. In (Pröll and Rauber,
2013b) the same authors applied their model on a
use case and described a reference implementation.
They propose several implementation strategies and
describe how an existing relational database schema
can be extended to support data citation. They dis-
cuss the advantages and disadvantages of several im-
plementation variations and show how previous ver-
sions data can be retrieved from dynamically chang-
ing source data. Our work is based on these two pa-
pers and extends the model by applying a chained
hashing approach which ensures data integrity of sub-
sets. Furthermore, we apply the model to a client
server infrastructure that enables researchers to create
and reference arbitrary subsets from flat data files.

Fingerprinting and watermarking relational
databases is a common technique to detect tampering
(Li et al., 2005). The authors of (Narasimha and
Tsudik, 2006) describe a method for validating the
completeness and correctness of queries. In our
work, we use a similar method applying a row based
hash on the result set returned from a query.

4 A SCIENTIFIC USE CASE FOR
CITABLE CSV FILES: SYSTEM
OVERVIEW

In order to implement dynamic data citation for CSV
files we use a client-server approach. The server com-
ponent (see Section 5) is responsible for handling
the data, managing the metadata and ensuring the in-
tegrity of the raw data. The server component is also
responsible for interacting with data citation queries
that return previously created subsets with the appro-
priate evidence of authenticity. The client (see Sec-
tion 7) serves as frontend and allows users to assemble
datasets. The prototype that we developed supports
researchers in managing their datasets during the fol-
lowing exemplified experiment based on the Million
Song dataset (Bertin-Mahieux et al., 2011).

4.1 Use Case Description

Music classification is a widely used method which
has applications in many areas such as genre or style
classification, recommender services, playlist genera-
tion etc. These systems are based on feature extrac-
tion from a potentially large set of audio files. In
order to train the machine learning algorithms, spe-
cific sets of audio files and their features are required.
For interoperability reasons, many tools from that do-
main support the CSV file format and store the fea-

A�Scalable�Framework�for�Dynamic�Data�Citation�of�Arbitrary�Structured�Data

225

tures in this simple textual representation(Hall et al.,
2009). Whenever the audio files which serve as input
for such experiments change, e.g. due to an increased
fidelity, detected errors in source files or newly avail-
able material, the features need extracted again and
the datasets need to be updated. Researchers have to
be able to differentiate between these versions on or-
der to analyse the effects of the updated source mate-
rial on their results. Therefore precise citation which
considers subsets and different versions are an essen-
tial requirement. Also, researchers need tools which
allow them to exchange and share data without hav-
ing to deal with the overhead of managing potentially
large file dumps of different versions of several sub-
sets which they need for their work.

4.2 Supporting Automated Dynamic
Data Citation

The prototype we developed allows researchers to up-
load their CSV data (e.g. from feature extraction ap-
plication) to a Web service. The server component
ingests the data and automatically transforms the data
into a relational database model and bulk inserts the
data, see Section 5. During the ingestion phase, the
database server annotates every new record with a
time stamp. As each song as a unique identifier, up-
dates of existing song data can be detected. In this
case, the server adds versioning additional metadata.
No data gets overwritten or deleted, markers are used
to indicate the version number and record status.

Our prototype provides a frontend which allows
researchers to select specific subsets based on their
personal requirements, sortings and filters. The fron-
tend submits all selection and filtering operations to
the backend, which records them in a sequential man-
ner. The server stores adds metadata to the query such
as query execution time and sorting sequences. This
mechanism allows retrieving a specific version of any
dataset at a later point in time. Instead of being based
on specific database log file formats, this metadata re-
mains human readable and can be utilised in any other
database system in a similar fashion.

After a researcher has created a dataset, he con-
firms the new subset to the system. The server then
iterates over the result set and computes a hash value
as evidence for the integrity of the subset. The query
is stored and a persistent identifier is attached to the
dataset. This persistent identifier serves as a handle
which can be shared with other peers and be used in
publications. A resolver service may point users who
enter the PID to the specific version of a dataset where
it can be retrieved. Landing pages can provide addi-
tional information about the dataset such as previous

versions, query text and filter terms. As the system is
aware of updates and evolving data, researchers have
transparent access to specific versions. There is no
need of storing multiple versions of a dataset exter-
nally for the long term as the system can reproduce
them on demand. As hashing methods are in place,
the integrity of the datasets can be verified.

5 SCALABLE BACKEND FOR
DATA CITATION OF DATA

The prototype we developed provides a Web service
for uploading data. Although many RDBMS natively
support importing CSV files, we used a CSV parser
library in order to analyse the data files and perform
data cleansing, header data generation and escaping
of special keywords and characters. As the content of
the files is previously unknown, the database schema
is generated based on the column metadata on the
fly. In this simple scenario we utilise VARCHAR
fields with the longest encountered field length that
is gathered during the upload process. Future ver-
sions may support more specific column data types
in order to increase search and indexing performance
of the system. The server automatically deploys the
table schema and appends columns for maintenance
metadata such as the sequence in which the data was
inserted and a timestamp. After the Web service has
populated the database, the researcher can utilise the
frontend we propose in Section 7. The server’s API
currently supports sorting of arbitrary columns of the
dataset in either ascending or descending order. As
we currently only implemented CSV data, only text
based filtering is supported. More complex filtering
options will be available future versions of the proto-
type.

The goal of our data citation approach is to re-
duce the overhead for data citation to a minimum for
data providers and hide them transparently from re-
searchers. We use a second database instance denoted
DCDB that replicates the primary database denoted
DB. The DCDB server implements the data citation
functionality. Hence the database DB only contains
the latest version of the records whereas the replicated
database DCDB is used for managing historical data.
Introducing a separate data citation system has sev-
eral advantages. Firstly it is possible to introduce data
citation without interfering with the primary database
DB. All additional metadata that is required in order
to facilitate data citation can be moved to the DCDB
database instance. The replicated server DCDB im-
plements triggers which react on updates or deletes.
Any operation that alters the original table is reflected

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

226

in history tables on the replicated server. Figure 1
shows an overview of the setup.

Figure 1: Replication Scheme.

The user interacts with database DB which han-
dles the current state of the data. Whenever a re-
searcher creates new subset, the query which was
used is stored together with the timestamp of the
query execution time in the query store. All table
operations on DB are automatically replicated to the
data citation database instance DCDB and annotated
with versioning information. If records are updated
or deleted, these changes are immediately visible at
the DB server and replicated to the DCDB server in-
stance, which maintains the historical data.

For retrieving a specific dataset, the persistent
identifier allows to retrieve the query again, which
then is issued against the historical data. The data
citation capabilities in this setup does not cause any
burden on the data server DB as the queries that gather
historic data are only issued against the data cita-
tion server. Advantages of this scenario are horizon-
tal scalability, which allows to introduce several data
citation instances that can operate on the same data
or the possibility to implement different replication
strategies. Delayed replication can be used for in-
stance to time the replication to off peak hours for
further reduction of required performance of the DB
instance.

The replicated server holds a full copy of the pri-
mary database DB. The overhead in terms of storage
in this setup depends on the frequencies of updates on
the original table in the DB instance. In terms of ad-
ditional data the replication server automatically ap-
pends at least three columns for insertion and modifi-
cation timestamps as well as the flags which indicate
the record status.

6 HASHING DATASETS

Researchers may not rely the assumption that the
cited data itself has not changed ever since it has been
published, therefore evidence is needed. For ensuring

authenticity and integrity of these archives, a check-
sum of the file is calculated and provided as a refer-
ence. Traditionally, checksums of datasets are based
on a hash of the complete content of a data file. Tools
such as md5sum or sha1sum iterate over the content
of a file and compute a checksum according to a hash
value. Researchers would then download the file, cal-
culate the checksum themselves locally and compare
the resulting hash with the one provided by the data
publisher. The resulting hash string differs for new or
changed result sets. The problem with this approach
is that it requires the complete dataset as a file for each
new version, hence it does not scale well for large sub-
sets.

6.1 A Chained Approach

There are two main requirements for result set hash-
ing: identification of content changes and recognising
deviations in the sorting sequence of subsets. Several
strategies exist to create a result set hash with regards
to these requirements. The most obvious approach is
using the complete result set as a basis for hashing.
This does not scale well for huge datasets. Another
approach would be to generate a hash by appending
all primary keys of the result set’s rows. This allows
tracing the sequence, but not the content integrity. A
further approach is the creation of row hashes by ap-
pending all columns of each row and computing the
hash value row wise. In this case all row hashes can
get sequentially appended and then serve as the basis
of the hash. This approach however does not reflect
the column selection that was made by the researcher.

In order to enable result set hashing with respect
to integrity and sorting we only use those columns
which been matched by the projection and those rows
which have been included by the selection during the
filtering. These rows are used for the hash value cal-
culation of the result set. In the next step, we calculate
the checksum of the particular subset by constructing
a hash chain. For each row rn, where the subscript
n denotes the sequence number of the row in the re-
sult set, the system appends the data from the pro-
jected columns and concatenates the selected values
to one string per row. We denote this string of ap-
pended values as rvn. Then we calculate the hash of
each concatenated string by using a one-way crypto-
graphic hash function denoted h(rvn). For maintain-
ing the sequence of the results in the subset, we use a
chained hash approach as in the equation in Equation
1.

h(rvn) =

(
h(rv0); if n = 0:
h(h(rv(n�1))+ rvn); if n > 0:

(1)

A�Scalable�Framework�for�Dynamic�Data�Citation�of�Arbitrary�Structured�Data

227

We prepend each row with the hash value of the
previous row in order to reflect the sequence of the
records in the result set. The system iterates in this
fashion over all rows of a specific subset and sequen-
tially computes a hash of the complete result set in
the correct order. As each row (except the first rv0)
calculates its hash value based on its predecessor, the
sorting that was applied to the original dataset can be
maintained. Figure 2 shows this scheme.

The proposed hashing method allows to detect er-
rors in the data, i.e. insertions, deletions or modifica-
tions. Furthermore the sequence of the data and also
its alignment (e.g. the sequence of the columns) of
each result set can be checked against the original re-
sult set. As we calculate the hashes individually per
row, the storage demand for each row is constant (e.g.
SHA1 uses 160 bits per hash). The overall check-
sum for the result set is computed by chaining hashes.
This keeps the storage demand for the creation of the
hash low as it never exceeds the length jrvnj+ jhj for
each hashing operation. Also the scheme is agnostic
regarding the hashing algorithm used.

Figure 2: Hashing Scheme.

Therefore our model provides evidence that a
dataset is authentic, complete and unchanged in a dy-
namic setting. This allows researchers to ensure that
they are using the correct dataset and they can ref-
erence an explicit version of a subset with a persis-
tent identifier. The authors of (Bakhtiari et al., 1995)
present an overview of hash functions, popular hash
functions which are widely used are MD5, the SHA-
family of hash functions. As MD5 has been found to
be vulnerable for collision attacks (Wang et al., 2004;
Klima, 2005), we utilised the SHA1 hash function for
generating row based hashes in our prototype imple-
mentation.

6.2 A Secure System for Storing Data
Citation Metadata

The presence of hash keys alone is no guarantee for
security as they can be recomputed for manipulated
content. In order to harden our prototype implemen-

tation for data manipulation, we considered several
mechanisms which are described in the following sec-
tions.

It is clear that the data citation database which
holds the history data and their metadata requires pro-
tection from intended sabotage and unintended mis-
use. The same is true for the primary database. In
contrast to the primary database DB, data is never
deleted or updated from DCDB. Only new records
along with the event type (e.g. INSERTED, UP-
DATED or DELETED) need to be inserted. Therefore
the historic tables do not allow updates or deletes in a
permission level.

As an additional level of security, an archival
database storage mechanism needs to be deployed.
The MySQL RDBMS that we use in our prototype
implementation provides the ARCHIVE storage en-
gine that does not support DELETE, REPLACE and
UPDATE operations by design. This specialised stor-
age engine only supports INSERT and SELECT state-
ments which are the only two operations needed in
this scenario. Additionally, the rows are automatically
compressed upon data insertion which reduces the
storage footprint of the versioned data and its meta-
data used for data citation. In the particular case of
the ARCHIVE storage engine, it needs to be consid-
ered that this system does not support indexes, hence
there is a trade-off between storage demand and data
citation query performance.

6.3 Server and Client Side Dataset
Validation

The queries which are stored in the query store (as
described in Section 8) contain all information that is
required in order to rerun the query. Hence a dataset
integrity watch can be implemented by using stored
procedures that periodically recompute the hash value
of the datasets and compare it with the original hash
value. This server side data integrity check can be
provided by the API and called from the client in or-
der to assess the integrity of a previously obtained
dataset. As the hash value computation of a dataset
is kept simple, it can be easily computed on the client
side as well, which enhances transparency and in-
creases the trust in research data.

7 A FRONTEND FOR DATASET
ASSEMBLY

We developed a simple browser based frontend for
dynamic tabular data which documents the steps ap-

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

228

plied during the creation of the dataset. The structure
of the tables does not need to be known in advance
as the table configuration can be loaded dynamically.
This renders our approach flexible as it can be ap-
plied to any data format that can be represented in
tables. The client submits requests to the Web ser-
vice, which then queries the database and retrieves the
appropriate result set. All computationally intensive
operations such as filtering and sorting are moved to-
wards the server side. Therefore the client becomes
very lightweight. Researchers can use the frontend
for browsing and creating even complex subsets from
large source data sources. As the API is generic, the
client can be replaced anytime by domain specific ap-
proaches. Plugins for specialised data editors can be
implemented that transparently hide the communica-
tion with the server, as long as the requests are in com-
patible with the API of the Web service.

Figure 3: The Frontend for Creating Subsets.

The server generates SQL queries based on the fil-
ter criteria and applies the appropriate sorting trans-
parently to the user. The researcher can confirm each
filtering step and therefore apply different filter com-
binations and sortings that are applied sequentially on
the dataset. Each of these operations is traced on the
server side and stored in the query store, see Section 8.
When the user is finished with compiling the dataset,
the data can be exported as a CSV file, as JSON or
other formats. The server computes the hash as de-
scribed in Section 6 and attaches a persistent identifier
to the query. This identifier can be used later for re-
trieving the same data. Updates of the data on a record
level need to be reflected in the data citation database
instance. Hence the CSV data either needs a unique
primary key (e.g. the track id in the million song
dataset) or a frontend needs to be used, which allows
utilising the automatically generated record sequence
number. Updates can be detected by an altered hash
key of the set. If a query which already exists in the
query store delivers a different hash, the query gets
a new persistent identifier assigned and constitutes a

new version of the same set.

8 AN ALL-PURPOSE QUERY
STORE

The query store collects the queries that have been
used in order to create a dataset, thus preserving the
information about the construction of subsets of data.
Whenever a researcher uses the frontend for assem-
bling a dataset, a query object is instantiated. This
object maintains a list of all operations the researcher
executed in their appropriate sequence. Each query
can handle multiple filters with arbitrary filter proper-
ties and it maintains the sorting direction for each of
the database columns that have been involved in the
query. This knowledge is important in order to pre-
serve the sorting sequence of the dataset, which needs
to be preserved whenever a technology change forces
a migration to a new data store. Figure 4 shows an ER
diagram of the query store.

Figure 4: The Query Store Holds the Metadata.

The information about the queries can be seen
as provenance data as it describes how a dataset has
been constructed. Each query contains a timestamp
that allows to map the query to a specific state of
the database, hence only those records are fetched
which have been valid during the execution time of
the query. Additionally a persistent identifier such as
a DOI (Paskin, 2010) can be assigned to each dataset.
This allows scientists to reference a specific version
of a dataset e.g. in their publication.

9 CONCLUSIONS AND
OUTLOOK

In this paper we presented a framework and a pro-
totype implementation enabling dynamic data cita-
tion for a general purpose data format. We chose
the CSV format as it is used across domain bound-
aries, simplistic yet flexible and therefore highly pop-
ular increasingly in settings involving larger volumes

A�Scalable�Framework�for�Dynamic�Data�Citation�of�Arbitrary�Structured�Data

229

of data and in dynamic data that is released in sub-
sequent batches and integrated across versions of up-
dated data. We thus deem it essential to facilitate con-
venient and transparent citation capabilities for such
types of data. We presented the steps necessary for
scientists to create citable subset of dynamic CSV
data. We proposed a solution which consists of a
server and a client component. The server side is re-
sponsible for data management, versioning, data se-
curity and citation facilities. It exposes an API via a
Web service for filtering, sorting and creating datasets
of arbitrary complexity that can be queried by clients.
Users can upload their datasets via a Web service to
the server which automatically migrates the file into a
relational database.

The data is annotated with extra metadata such
as original sequence of insertion, timestamps and
the row hash. The client component is a simple
browser based frontend which allows scientists to
create citable subsets from the previously uploaded
datasets. The frontend transmits each sorting or fil-
tering operation to the server component which stores
them in the query store. When the user concludes the
creation of a dataset, the server rewrites the filtering
and sorting information into a single SQL query and
appends timing metadata. A persistent identifier can
be assigned to the query and serves as reference infor-
mation for the specific subset.

We presented a novel hashing scheme which al-
lows verifying the integrity of the data and providing
result sets of provably correct sorting sequences. The
hashing mechanism is based on row based hashes and
concatenated row hashes. For enhancing the scalabil-
ity, we introduced a new replication scheme, which
allows separating the live system from the data cita-
tion instance.

In future revisions of our prototype we will inte-
grate support for several interfaces that are natively
used by scientists for assembling datasets. We will
develop plugins for various data editors that transpar-
ently hide the provenance data collection for creating
secure datasets. Furthermore, we will develop proto-
types and tools for a much broader range of data for-
mats, hence enabling stable and secure data citation
within diverse fields of research.

ACKNOWLEDGEMENTS

Part of this work was supported by the projects
APARSEN, TIMBUS and SCAPE, partially funded
by the EU under the FP7 contracts 269977, 269940
and 270137.

REFERENCES

Bakhtiari, S., Safavi-Naini, R., Pieprzyk, J., et al. (1995).
Cryptographic hash functions: A survey. Centre for
Computer Security Research, Department of Com-
puter Science, University of Wollongong, Australie.

Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere,
P. (2011). The million song dataset. In Proceedings of
the 12th International Conference on Music Informa-
tion Retrieval (ISMIR 2011).

CODATA-ICSTI (2013). Out of cite, out of mind: The cur-
rent state of practice, policy, and technology for the
citation of data. CODATA-ICSTI Task Group on Data
Citation Standards and Practices.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The weka data min-
ing software: An update. SIGKDD Explor. Newsl.,
11(1):10–18.

Klima, V. (2005). Finding md5 collisions on a notebook pc
using multi-message modifications. IACR Cryptology
ePrint Archive, 2005:102.

Lawrence, B., Jones, C., Matthews, B., Pepler, S., and
Callaghan, S. (2011). Citation and peer review of
data: Moving towards formal data publication. Inter-
national Journal of Digital Curation, 6(2):4–37.

Li, Y., Swarup, V., and Jajodia, S. (2005). Fingerprinting re-
lational databases: Schemes and specialties. Depend-
able and Secure Computing, IEEE Transactions on,
2(1):34–45.

Narasimha, M. and Tsudik, G. (2006). Authentication of
outsourced databases using signature aggregation and
chaining. In Lee, M., Tan, K.-L., and Wuwongse, V.,
editors, Database Systems for Advanced Applications,
volume 3882 of Lecture Notes in Computer Science,
pages 420–436. Springer Berlin Heidelberg.

Parsons, M. A., Duerr, R., and Minster, J.-B. (2010). Data
citation and peer review. Eos, Transactions American
Geophysical Union, 91(34):297–298.

Paskin, N. (2010). Digital Object Identifier (DOI) Sys-
tem. Encyclopedia of library and information sci-
ences, 3:1586–1592.

Pröll, S. and Rauber, A. (2013a). Citable by Design
- A Model for Making Data in Dynamic Environ-
ments Citable. In 2nd International Conference
on Data Management Technologies and Applications
(DATA2013), Reykjavik, Iceland.

Pröll, S. and Rauber, A. (2013b). Scalable Data Citation
in Dynamic, Large Databases: Model and Reference
Implementation. In IEEE International Conference
on Big Data 2013 (IEEE BigData 2013), Santa Clara,
CA, USA.

Shafranovich, Y. (2005). Common Format and MIME Type
for Comma-Separated Values (CSV) Files. RFC 4180.

Wang, X., Feng, D., Lai, X., and Yu, H. (2004). Colli-
sions for Hash Functions MD4, MD5, HAVAL-128
and RIPEMD.

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

230

