
Key Completion Indicators
Minimizing the Effect of DoS Attacks on Elastic Cloud-based Applications Based

on Application-level Markov Chain Checkpoints

George Kousiouris
Dept. Of Electrical and Computer Engineering, National Technical University of Athens,

 9 Heroon Polytechnioy Str, 15773, Athens, Greece

Keywords: Cloud Computing, elasticity, DoS,eDoS, Markov Chains, DoS Identification as a Service

Abstract: The problem of DoS attacks has significant effects for any computing system available through the public
domain. In the case of Clouds, it becomes even more critical since elasticity policies tied with metrics like
Key Performance Indicators (KPIs) can lead a Cloud adopter to significant monetary losses. DoS attacks
increase the KPIs, which in turn trigger the elastic increase of resources but without financial benefit for the
owner of the cloud-enabled application (Economic Denial of Sustainability). Given the numerous scenarios
of DoS attacks and the nature of services computing (in many cases involving legitimate automated traffic
requests and bursts), networking mitigation approaches may not be sufficient. In this paper, the concept of
Key Completion Indicators (KCIs) is provided and an analysis framework based on a probabilistic approach
is proposed that can be applied on the application layer in cloud-deployed applications and elasticity
policies, in order to avoid the aforementioned situation. KCIs indicate the level of completeness and
provided revenue of the requests made towards a publicly available service and together with the KPIs can
lead to a safer result with regard to elasticity. An initial architecture of this DoS Identification as a Service is
portrayed.

1 INTRODUCTION

In the current IT world, Cloud computing is
considered as a revolutionary way to provide
software, platform and computational resources as
services (SaaS, PaaS, IaaS) in order to reduce IT
costs and capital investments for enterprises. The
outsourcing of their applications on these
infrastructures leads to much simpler management,
increased availability and what is more important,
elasticity in the needed resources, especially in the
case of IaaS/PaaS. Companies do not have to cater
for the worst case scenario regarding the usage of
their resources but just toggle the amount of
reserved virtual servers in a pay-per-use model,
following their dynamic need.

In order to identify when this increase/decrease in
resources is needed, Key Performance Indicators are
used together with service offerings to enable this
like AWS Auto Scaling. An example of a KPI may
be the response time of a web server to the external
requests made by the clients. If this time is over a
specific limit, more virtual machines may be

deployed in a load balancing way to compensate for
the increase in traffic. Due to the fact that Cloud
resources are vast, a service can scale up to
thousands of servers. This has an effect of course on
the overall cost for the owner of the Cloud-based
application, but given that along with it the revenues
from the usage increase, they are able to make more
profit.

The problem in this process is when an
application that is available to external clients
through the public domain becomes a target for
Denial-of-Service (DoS) or Distributed (DDoS)
attacks. In that case, the requests generated towards
the server do not generate profit for the owner but
due to the elasticity policies they increase the cost of
deployment, thus leading them to monetary loss and
eventually bankruptcy, also known as Economic
Denial of Sustainability (Kumar,2012). Due to the
severity of the result, not a single false negative
detection may be afforded or we must resort to more
hard-core solutions, such as budget-based
boundaries on elasticity. However the latter greatly
cancels the main benefit of Clouds, seemingly

622
Kousiouris G..
Key Completion Indicators - Minimizing the Effect of DoS Attacks on Elastic Cloud-based Applications Based on Application-level Markov Chain
Checkpoints.
DOI: 10.5220/0004963006220628
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER-2014), pages 622-628
ISBN: 978-989-758-019-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

infinite resources to meet demand peaks.
In this paper, we present a design approach that

has as a major goal to identify a DoS/DDoS attack
against Cloud-enabled elastic applications. This
identification must be applied above the networking
layer, in order to avoid false negatives, enable web
service-based automated implementations or
different networking setups and must be based on
the single most definitive criterion: “Is the noticed
burst of requests generating the anticipated
profit?”

In order to do so, we define Key Completion
Indicators (KCIs). KCIs are checkpoints introduced
inside a cloud-enabled application and indicate the
level of completion of the external user requests in
the application value chain. Thus, KCIs can indicate
the gradual fulfilment of the path towards
revenue/value creation. The main argument is that
this progress and eventual revenue creation is the
single most definitive criterion to identify whether a
set of requests (despite their origins) corresponds to
a DoS/DDoS attack or a legitimate traffic burst,
above and beyond any metric based on networking
aspects or usage patterns. This is discussed in detail
in the Related Work section. The framework may be
integrated with an application through API calls to
an external service for the maintenance of the KCIs
state.

Each request, as it passes through the various
stages of the process that generates revenue, raises
the KCIs, thus indicating that it is a legitimate
transaction. The approach is based on the
assumption that a legitimate user will advance
through the various stages of the application, until
the point where he/she will produce revenue for the
application owner (e.g. credit card payment). An
illegitimate user or automated bot will be restricted
to a specific area of the application, without
completing the full application lifecycle.

Based on the level of these KCIs and the
proportion of seemingly legitimate requests over the
overall ones, a decision can be made as to whether
the owner should enable the elasticity policies or
not. This of course does not alleviate from the pain
of a DoS attack but the scalability effect on the cost
will be avoided. The remainder of the paper is
structured as follows. In Section 2, similar
approaches in the related field are presented, while
in Section 3 an analysis is made on the concept of
the approach. Section 4 presents requirements
necessary for the implementation of the approach
while Section 5 provides the overall conclusions
from this study and intentions for the future.

2 RELATED WORK

Elasticity is one of the main benefits of Cloud
computing. (Kranas et al, 2012) indicate the usage of
this feature in a service oriented framework manner,
to enable applications to harvest the benefits of it.
From a networking point of view, numerous works
exist for identifying patterns that are indicative of a
DoS attack. CPM (Wang,2004) uses statistical and
time series analysis at the network protocol level
(e.g. SYN flooding attack detection) in order to
abstract from application behaviour. (Kumar et al.,
2011) uses neural network classifiers in order to
filter traffic messages that are identified as DDoS
packets. The characteristics that are taken under
consideration include network level attributes such
as UDP echo packets, number of connections with
SYN errors, type of service etc. (Wang et al., 2011)
uses a fuzzy logic based system in order to evaluate
the infection of domain names and IP addresses.
(Ahmed et al., 2010) use an IP-based approach in
order to detect suspicious addresses and the change
in the traffic arrival rate.

In a different approach, QoSSoD (Mailloux et
al., 2008) caches incoming requests at a proxy and
valuates each request. Requests are then scheduled
for execution based on their perceived cost or threat.
Usage patterns are collected over time and provide a
baseline to compare current request behaviour
against nominal behaviour.

In (Pinzon,2010) a different approach is
presented in order to obtain time bounded Case-
Based reasoning conclusions for attacks on SOAP-
based web services, based on classifiers and SOAP
specific rules for determining whether a set of
requests can be categorized as malicious. (Yang et
al, 2008) investigate a credit model and flow control
policy for minimizing effects of DDoS attacks on
P2P systems including malicious nodes. The most
similar to our work is (Cheng et al, 2003), in which
an application level approach is considered that
utilizes specific API injection calls in the code in
order to check common rules regarding aspects of
DoS attack requests. However this approach also
needs detailed knowledge on the types of attacks and
their specificities.

An extensive survey on EDoS attacks and
countermeasures can be found in (Sandar and Senai,
2012). The main problem with networking
approaches is the fact that in many cases false
positives or negatives may influence the decision
process. For example, corporate gateways that mask
all their traffic to be seen as one IP may be
mistakenly interpreted for DoS attacks, if their

Key�Completion�Indicators��-�Minimizing�the�Effect�of�DoS�Attacks�on�Elastic�Cloud-based�Applications�Based�on
Application-level�Markov�Chain�Checkpoints

623

employees make a burst of requests towards an
external cloud-based application. Furthermore,
usually malicious approaches may take advantage of
various aspects of networking protocols and
defensive tools may focus on only a part of them.
Moreover, authentication mechanisms may not
always be relevant to a specific application deployed
on a cloud infrastructure or may hinder the usability
of an application by legitimate bots in a more
automated application design/usage or web service
system.

So in essence, what is needed is a holistic
approach that will abstract from the networking
layer and will focus only on the global aspect of
revenue creation.

3 KEY COMPLETION
INDICATORS APPROACH

As seen in the Introduction and Related work
section, modern elasticity approaches allow for a
feedback loop between the application and the IaaS
provider or incorporate an internal mechanism in the
applications to automatically trigger the elasticity
rules based on the performance metrics. However, in
a classic DoS attack, this means that the KPIs of the
application will deteriorate, thus trigger the
enactment of elasticity. Then, new resources will be
deployed, in an attempt to mitigate this effect,
driving the cost of the service very high and without
getting any revenue due to the false requests.

In order to avoid this situation, we propose the
Key Completion Indicators metric to be inserted in
the application source code. These API calls may be
generic and may only indicate the increase of a
global set of counters, external to the program, each
of which indicates a part in the process. These multi-
level counters are increased each time a request
passes through a specific part of the process(Figure
1). By having at each time the amount of requests in
each stage we can apply macroscopic statistical
analysis compared to a known interval of known
operation.

The reason for having multiple levels of KCIs is
to reduce the reaction interval. If there is only one
KCI in the end of the process, then the comparison
must be made in the end of the average time it takes
a user to finish the entire process. By breaking the
sequence of actions into more elementary ones we
can have multiple levels of completeness and thus
identify potential threats sooner.

An example of such an implementation could be

a multi-page e-shop. Users navigate through the
pages, e.g. entering keywords, surfing through
catalogues, selecting products, adding to carts and
eventually paying for the kart contents. Thus during
this lifecycle they create revenue for the e-shop,
mainly after the payment step is completed.

Due to the fact that this is in essence a
probabilistic process, a similar approach must be
followed. Not all users will eventually buy products
(they might just have a look on available products)
and not all users spend the same time accessing the
intermediate steps (some may be more cautious or
selective with regard to their added products).
However, from a macroscopic point of view, the
percentage of users being in each step can be
averaged and used in a probabilistic approach. Thus
we may conclude that the amount of time spent by
people in the selection of products is a cumulative
distribution that follows a specific pattern as time
proceeds.

Figure 1: Checkpoints (CPs) through which a request
passes until revenue is created in CP4. At each given time,
different numbers of requests are in different levels of
completion (number of CPs passed).

In order to identify whether a DoS attack is in
progress, we can compare the KCI levels of this time
interval against the ones from a known normal
operation interval. For having the correct
coefficients that reflect the normal operation under
genuine load, a testing period may be considered, in
order to observe application and user behaviour
under normal circumstances. By determining the
95% confidence interval of the different KCI levels
oscillation, it can be determined during runtime if
their observed levels are within the specified
intervals.

One problem with this approach is that KCIs will
be low also in case of extensive legitimate traffic,
due to the low response of the service. We can avoid
this false alarm, if we originally enable elasticity for
a specific time period (so that the load of the service

CP2 CP3

Initial
State:CP1

Final
State:CP4

NCPi

Number of requests in each CP

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

624

is distributed) and then measure the KCI levels. If
they do not reach normal levels soon, then the traffic
can be considered as illegitimate.

The state diagram for a request across the e-shop
appears in Figure 2. A user may navigate through
the different pages of the site and these transitions
maybe modelled with a probability, as in the case of
Markov chains. However, given that this is a
stochastic process, the transition probability varies
with time, in order to depict different user
interactions with the pages (some users may need
more than one products, others may be performing
other tasks in parallel etc.). Thus, with the use of this
method we can determine what would be the
probability after a given time for the requests to have
reached the intermediate or final stages of the value
chain and gradually monitor the anticipated revenue.

Figure 2: State diagram representing the possible states of
a request across the e-shop.

4 APPLICATION AND
MODELLING REQUIREMENTS

4.1 Logging Requirements

In order to obtain the necessary data regarding
transition statistics, an application should enforce
state transition logging. This logging should reflect
only the states based on which the Markov model
has been designed and it should also support
documentation of the source and destination state
(e.g. S1->S2, timestamp). The information should be
forwarded towards global (to the application
threads) counters that will hold the statistics for each
transition at any given time.

It is not necessary to have request IDs or similar
identifiers since we are not interested in single
requests but rather on the macroscopic
characteristics in order to detect a potential DoS
attack. However it could be helpful to log for
example IP addresses in case other countermeasures
are jointly applied, in order to reason, isolate and
drop packets coming from specific IP addresses that

have been identified as malicious through the
process. IP address logging could also be helpful
during the normal operation to identify a user’s path
in the e-shop and aid in the modeling analysis.

4.2 Markov Chain Modeling
Requirements

In order to create the MC model, we can implement
the following process:
 Step1: Filter the log files of a known normal

operation period in order to extract the
probabilities of transitions for each transition
case

 Step2: Calculate the probability for
transitioning from one state to another This
would create an array of probability values
(Table 1) for the MC analysis that can indicate
how many steps are in general necessary (or
probable) for a request.

 Step 3: Filter the logs of a known normal
operation period in order to acquire all the
measured timings for a given transition from
one state to another

 Step 4: Extract the cumulative probability
distribution for that given transition and fit a
common distribution type (e.g. exponential,
normal etc.). This will indicate the probability
for a request to go from state A to state B after a
specific time interval (Figure 3). By taking the
measurements from the normal period of
execution we can conclude the time interval
after which a transition should have occurred
(with a 95% probability).

 Step 5: By combining the information from
steps 2 and 4, we can macroscopically
determine how many requests should have
arrived at the final (or even some intermediate)
state after a given time interval, based on the
initial conditions (e.g. number of pending
requests at each stage). This expected value can
be compared with the monitored value
(potentially incorporating the confidence
intervals) in order to conclude whether these
requests generate value for the application
owner.

It is necessary to stress that steps 1-4, which can
be considered in general as time consuming, are
needed only in the model preparation phase and not
during runtime. Once the model is complete and
online, during runtime, only the counters (or KCIs)
levels would be needed and probably the calculation
of the anticipated value, which is a minor
computational task.

Key�Completion�Indicators��-�Minimizing�the�Effect�of�DoS�Attacks�on�Elastic�Cloud-based�Applications�Based�on
Application-level�Markov�Chain�Checkpoints

625

Figure 3: Cumulative Distribution Function of the delay of transition from one given state to another given state (x axis in
seconds, y axis the probability for the specific transition to occur within the interval). In the specific example, the 95%
probability for this to occur is within 86 seconds.

Table 1: Matrix describing the probability from a transient
state to another transient state. From this matrix we can
calculate how many steps are probable for a request.

States S1 S2 S3 S4 S5 S6
S1 0 P12 0 0 0 P16

S2 P21 P22 P23 0 0 P26

S3 P31 P32 P33 P34 0 P36

S4 P41 P42 P43 0 P45 P46

S5 0 0 0 0 0 1
S6 0 0 0 0 0 1

In case one needs to simplify this process, then
we can reduce the analysis to the absolutely
necessary states, which means one state for all cases
of surfing through the e-shop and one state that is
described as the “key” decisive state, the state that
generates value. In the aforementioned example the
decisive state is S5, in which the user performs the
payment. This would however delay the
identification process since the interval after which
we could check the KCIs level would include all
intermediate steps.

4.3 Application Elasticity Logic and
Overall Architecture

As mentioned in Chapter 3, the application should
enforce elasticity directly in case of a request surge,
so that limited resources do not hinder with the
progress of the requests and thus contaminate the
analysis. For example, if the surge makes the
application unresponsive due to scarce resources,
valid requests would not be able to reach the end of
the process and thus lead to a false positive
detection. Thus an elasticity logic should apply the

pseudo-code in Figure 4. The sleep interval can be
calculated through the model described in Section
4.2 and represent the time after which we would
expect requests to have reached the end of the
process. The overall system architecture appears in
Figure 5.

Public class eDoSDetector extends
Thread
.
.
If (elasticity_flag=true)then
 Enable elasticity
 Thread.sleep(interval)
 Check KCIs status

Run MC model to get anticipated
KCI values for this interval
Difference=Predicted-Actual
If (difference><confidence_limit)
then
 Disable elasticity
Else
 Keep elasticity enabled

Figure 4: eDoS detector pseudo-code structure.

An interested application will have to inject code
at the necessary points, before migrating to the
Cloud, that indicate a change of state. That code will
be responsible for contacting a web service (DIaaS)
to increase the respective KCIs. The probabilistic
analyser will have access to the KCI levels and will
have created and stored in advance the MC model.
Based on the runtime analysis, it may inform the
application part (or in a more independent way of
communication, the application will query the
analyser) that is responsible for enabling elasticity
the outcome of the analysis.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

626

Figure 5: Overall Concept Architecture: the proposed
mechanism is offered as a service (DoS Identification as a
Service).

5 CONCLUSIONS

DoS attacks on cloud-based applications are more
dangerous since they might lead to an unsustainable
service and eventual bankruptcy. In order to mitigate
this effect and efficiently identifying a DoS attack
despite traffic patterns or networking aspects, the
Key Completion Indicators concept is proposed in
order to model and analyse the transition of requests
along the application value chain. The KCIs are
accompanied by a probabilistic modelling approach
in order to identify whether a surge of traffic is
legitimate or not, based only on the generation of
wealth by the application. It must be stressed that the
approach is for detecting a DoS attack and mitigates
only the effect of eDoS, by cutting off the elasticity
actions and does not help restore the performance of
the server. It is also applicable for DDoS cases, since
the analysis is made on the application states
transition and not the source of requests.

Given that the approach requires an intervention
at the source code level and a similar framework, it
can be pursued by PaaS providers as a service
offering that ensures the application from such types
of attacks. Standard PaaS offering such as Google
App Engine already need a certain
alteration/adaptation of the source code to the
development framework they are using, so it would
be easier at this level to support also the concepts
presented in this paper. The simplification suggested
in Section 4 is also interesting to be investigated in
order to minimize the analysis effort but also a
potential implementation overhead of the
mechanism.

ACKNOWLEDGEMENTS

The research leading to these results is partially
supported by the European Community’s Seventh
Framework Programme (FP7/2007-2013) under
grant agreement n° 317859, in the context of the
ARTIST Project.

REFERENCES

Naresh Kumar, M.; Sujatha, P.; Kalva, V.; Nagori, R.;
Katukojwala, A. K.; Kumar, M., "Mitigating
Economic Denial of Sustainability (EDoS) in Cloud
Computing Using In-cloud Scrubber Service,"
Computational Intelligence and Communication
Networks (CICN), 2012 Fourth International
Conference on , vol., no., pp.535,539, 3-5 Nov. 2012.

Haining Wang, Danlu Zhang, Kang G. Shin, "Change-
Point Monitoring for the Detection of DoS Attacks,"
IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 4, pp. 193-208, Oct.-Dec. 2004.

P. Arun Raj Kumar, S. Selvakumar, Distributed denial of
service attack detection using an ensemble of neural
classifier, Computer Communications, Volume 34,
Issue 11, 15 July 2011, Pages 1328-1341, ISSN 0140-
3664.

Kuochen Wang, Chun-Ying Huang, Shang-Jyh Lin, Ying-
Dar Lin, A fuzzy pattern-based filtering algorithm for
botnet detection, Computer Networks, Volume 55,
Issue 15, 27 October 2011, Pages 3275-3286, ISSN
1389-1286.

E. Ahmed, G. Mohay, A. Tickle, and S. Bhatia, “Use of ip
addresses for high rate flooding attack detection,” in
Proceedings of 25th International Information
Security Conference (SEC 2010) : Security & Privacy
: Silver Linings in the Cloud, Brisbane, Australia.

M. Mailloux, H. Naim, T. Wayne, “Application Layer and
Operating System Collaboration to Improve QoS
against DDoS Attack”, Available at:
https://wiki.engr.illinois.edu/download/attachments/68
780072/QoSSoD.pdf?version=2&modificationDate=1
210044601000.

Pinzón, C., De Paz, J. F., Zato, C., Pérez, J.: Protecting
Web Services against DoS Attacks: A Case-Based
Reasoning Approach. In: Graña Romay, M.,
Corchado, E., Garcia Sebastian, M.T. (eds.) HAIS
2010. LNCS, vol. 6076, pp. 229–236. Springer,
Heidelberg (2010).

Kranas, P.; Anagnostopoulos, V.; Menychtas, A.;
Varvarigou, T., "ElaaS: An Innovative Elasticity as a
Service Framework for Dynamic Management across
the Cloud Stack Layers," Complex, Intelligent and
Software Intensive Systems (CISIS), 2012 Sixth
International Conference on , vol., no., pp.1042,1049,
4-6 July 2012.

Yang J., Li Y., Huang B., Ming J. (2008) Preventing
DDoS attacks based on credit model for P2P

Key�Completion�Indicators��-�Minimizing�the�Effect�of�DoS�Attacks�on�Elastic�Cloud-based�Applications�Based�on
Application-level�Markov�Chain�Checkpoints

627

streaming system. In: ATC ’08: Proc of the 5th
International Conference on Autonomic and Trusted
Computing. Springer, Berlin, pp 13–20.

Sandar S. V., Shenai S. Economic denial of sustainability
(EDoS) in cloud services using HTTP and XML based
DDoS attacks. International Journal of Computer

Applications 2012;41(20):11–6.
Cheng Jin, Haining Wang, and Kang G. Shin. 2003. Hop-

count filtering: an effective defense against spoofed
DDoS traffic. In Proceedings of the 10th ACM
conference on Computer and communications security
(CCS '03). ACM, New York, NY, USA, 30-41.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

628

