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Abstract: The problem of DoS attacks has significant effects for any computing system available through the public 
domain. In the case of Clouds, it becomes even more critical since elasticity policies tied with metrics like 
Key Performance Indicators (KPIs) can lead a Cloud adopter to significant monetary losses. DoS attacks 
increase the KPIs, which in turn trigger the elastic increase of resources but without financial benefit for the 
owner of the cloud-enabled application (Economic Denial of Sustainability). Given the numerous scenarios 
of DoS attacks and the nature of services computing (in many cases involving legitimate automated traffic 
requests and bursts), networking mitigation approaches may not be sufficient. In this paper, the concept of 
Key Completion Indicators (KCIs) is provided and an analysis framework based on a probabilistic approach 
is proposed that can be applied on the application layer in cloud-deployed applications and elasticity 
policies, in order to avoid the aforementioned situation. KCIs indicate the level of completeness and 
provided revenue of the requests made towards a publicly available service and together with the KPIs can 
lead to a safer result with regard to elasticity. An initial architecture of this DoS Identification as a Service is 
portrayed.   

1 INTRODUCTION 

In the current IT world, Cloud computing is 
considered as a revolutionary way to provide 
software, platform and computational resources as 
services (SaaS, PaaS, IaaS) in order to reduce IT 
costs and capital investments for enterprises. The 
outsourcing of their applications on these 
infrastructures leads to much simpler management, 
increased availability and what is more important, 
elasticity in the needed resources, especially in the 
case of IaaS/PaaS. Companies do not have to cater 
for the worst case scenario regarding the usage of 
their resources but just toggle the amount of 
reserved virtual servers in a pay-per-use model, 
following their dynamic need.    

In order to identify when this increase/decrease in 
resources is needed, Key Performance Indicators are 
used together with service offerings to enable this 
like AWS Auto Scaling. An example of a KPI may 
be the response time of a web server to the external 
requests made by the clients. If this time is over a 
specific limit, more virtual machines may be 

deployed in a load balancing way to compensate for 
the increase in traffic. Due to the fact that Cloud 
resources are vast, a service can scale up to 
thousands of servers. This has an effect of course on 
the overall cost for the owner of the Cloud-based 
application, but given that along with it the revenues 
from the usage increase, they are able to make more 
profit. 

The problem in this process is when an 
application that is available to external clients 
through the public domain becomes a target for 
Denial-of-Service (DoS) or Distributed (DDoS) 
attacks. In that case, the requests generated towards 
the server do not generate profit for the owner but 
due to the elasticity policies they increase the cost of 
deployment, thus leading them to monetary loss and 
eventually bankruptcy, also known as Economic 
Denial of Sustainability (Kumar,2012). Due to the 
severity of the result, not a single false negative 
detection may be afforded or we must resort to more 
hard-core solutions, such as budget-based 
boundaries on elasticity. However the latter greatly 
cancels the main benefit of Clouds, seemingly 
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infinite resources to meet demand peaks. 
In this paper, we present a design approach that 

has as a major goal to identify a DoS/DDoS attack 
against Cloud-enabled elastic applications. This 
identification must be applied above the networking 
layer, in order to avoid false negatives, enable web 
service-based automated implementations or 
different networking setups and must be based on 
the single most definitive criterion: “Is the noticed 
burst of requests generating the anticipated 
profit?” 

In order to do so, we define Key Completion 
Indicators (KCIs). KCIs are checkpoints introduced 
inside a cloud-enabled application and indicate the 
level of completion of the external user requests in 
the application value chain. Thus, KCIs can  indicate 
the gradual fulfilment of the path towards 
revenue/value creation. The main argument is that 
this progress and eventual revenue creation is the 
single most definitive criterion to identify whether a 
set of requests (despite their origins) corresponds to 
a DoS/DDoS attack or a legitimate traffic burst, 
above and beyond any metric based on networking 
aspects or usage patterns. This is discussed in detail 
in the Related Work section. The framework may be 
integrated with an application through API calls to 
an external service for the maintenance of the KCIs 
state. 

Each request, as it passes through the various 
stages of the process that generates revenue, raises 
the KCIs, thus indicating that it is a legitimate 
transaction. The approach is based on the 
assumption that a legitimate user will advance 
through the various stages of the application, until 
the point where he/she will produce revenue for the 
application owner (e.g. credit card payment). An 
illegitimate user or automated bot will be restricted 
to a specific area of the application, without 
completing the full application lifecycle. 

Based on the level of these KCIs and the 
proportion of seemingly legitimate requests over the 
overall ones, a decision can be made as to whether 
the owner should enable the elasticity policies or 
not. This of course does not alleviate from the pain 
of a DoS attack but the scalability effect on the cost 
will be avoided. The remainder of the paper is 
structured as follows. In Section 2, similar 
approaches in the related field are presented, while 
in Section 3 an analysis is made on the concept of 
the approach. Section 4 presents requirements 
necessary for the implementation of the approach 
while Section 5 provides the overall conclusions 
from this study and intentions for the future. 

 

2 RELATED WORK  

Elasticity is one of the main benefits of Cloud 
computing. (Kranas et al, 2012) indicate the usage of 
this feature in a service oriented framework manner, 
to enable applications to harvest the benefits of it. 
From a networking point of view, numerous works 
exist for identifying patterns that are indicative of a 
DoS attack. CPM (Wang,2004) uses statistical and 
time series analysis at the network protocol level 
(e.g. SYN flooding attack detection) in order to 
abstract from application behaviour. (Kumar et al., 
2011) uses neural network classifiers in order to 
filter traffic messages that are identified as DDoS 
packets. The characteristics that are taken under 
consideration include network level attributes such 
as UDP echo packets, number of connections with 
SYN errors, type of service etc. (Wang et al., 2011) 
uses a fuzzy logic based system in order to evaluate 
the infection of domain names and IP addresses. 
(Ahmed et al., 2010) use an IP-based approach in 
order to detect suspicious addresses and the change 
in the traffic arrival rate. 

In a different approach, QoSSoD (Mailloux et 
al., 2008) caches incoming requests at a proxy and 
valuates each request. Requests are then scheduled 
for execution based on their perceived cost or threat. 
Usage patterns are collected over time and provide a 
baseline to compare current request behaviour 
against nominal behaviour. 

In (Pinzon,2010) a different approach is 
presented in order to obtain time bounded Case-
Based reasoning conclusions for attacks on SOAP-
based web services, based on classifiers and SOAP 
specific rules for determining whether a set of 
requests can be categorized as malicious. (Yang et 
al, 2008) investigate a credit model and flow control 
policy for minimizing effects of DDoS attacks on 
P2P systems including malicious nodes. The most 
similar to our work is (Cheng et al, 2003), in which 
an application level approach is considered that 
utilizes specific API injection calls in the code in 
order to check common rules regarding aspects of 
DoS attack requests. However this approach also 
needs detailed knowledge on the types of attacks and 
their specificities. 

An extensive survey on EDoS attacks and 
countermeasures can be found in (Sandar and Senai, 
2012). The main problem with networking 
approaches is the fact that in many cases false 
positives or negatives may influence the decision 
process. For example, corporate gateways that mask 
all their traffic to be seen as one IP may be 
mistakenly interpreted for DoS attacks, if their 
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employees make a burst of requests towards an 
external cloud-based application. Furthermore, 
usually malicious approaches may take advantage of 
various aspects of networking protocols and 
defensive tools may focus on only a part of them. 
Moreover, authentication mechanisms may not 
always be relevant to a specific application deployed 
on a cloud infrastructure or may hinder the usability 
of an application by legitimate bots in a more 
automated application design/usage or web service 
system.  

So in essence, what is needed is a holistic 
approach that will abstract from the networking 
layer and will focus only on the global aspect of 
revenue creation. 

3 KEY COMPLETION 
INDICATORS APPROACH 

As seen in the Introduction and Related work 
section, modern elasticity approaches allow for a 
feedback loop between the application and the IaaS 
provider or incorporate an internal mechanism in the 
applications to automatically trigger the elasticity 
rules based on the performance metrics. However, in 
a classic DoS attack, this means that the KPIs of the 
application will deteriorate, thus trigger the 
enactment of elasticity. Then, new resources will be 
deployed, in an attempt to mitigate this effect, 
driving the cost of the service very high and without 
getting any revenue due to the false requests. 

In order to avoid this situation, we propose the 
Key Completion Indicators metric to be inserted in 
the application source code. These API calls may be 
generic and may only indicate the increase of a 
global set of counters, external to the program, each 
of which indicates a part in the process. These multi-
level counters are increased each time a request 
passes through a specific part of the process(Figure 
1). By having at each time the amount of requests in 
each stage we can apply macroscopic statistical 
analysis compared to a known interval of known 
operation.  

The reason for having multiple levels of KCIs is 
to reduce the reaction interval. If there is only one 
KCI in the end of the process, then the comparison 
must be made in the end of the average time it takes 
a user to finish the entire process. By breaking the 
sequence of actions into more elementary ones we 
can have multiple levels of completeness and thus 
identify potential threats sooner. 

An example of such an implementation could be 

a multi-page e-shop. Users navigate through the 
pages, e.g. entering keywords, surfing through 
catalogues, selecting products, adding to carts and 
eventually paying for the kart contents. Thus during 
this lifecycle they create revenue for the e-shop, 
mainly after the payment step is completed. 

Due to the fact that this is in essence a 
probabilistic process, a similar approach must be 
followed. Not all users will eventually buy products 
(they might just have a look on available products) 
and not all users spend the same time accessing the 
intermediate steps (some may be more cautious or 
selective with regard to their added products). 
However, from a macroscopic point of view, the 
percentage of users being in each step can be 
averaged and used in a probabilistic approach. Thus 
we may conclude that the amount of time spent by 
people in the selection of products is a cumulative 
distribution that follows a specific pattern as time 
proceeds.  

 

Figure 1: Checkpoints (CPs) through which a request 
passes until revenue is created in CP4. At each given time, 
different numbers of requests are in different levels of 
completion (number of CPs passed). 

In order to identify whether a DoS attack is in 
progress, we can compare the KCI levels of this time 
interval against the ones from a known normal 
operation interval. For having the correct 
coefficients that reflect the normal operation under 
genuine load, a testing period may be considered, in 
order to observe application and user behaviour 
under normal circumstances. By determining the 
95% confidence interval of the different KCI levels 
oscillation, it can be determined during runtime if 
their observed levels are within the specified 
intervals. 

One problem with this approach is that KCIs will 
be low also in case of extensive legitimate traffic, 
due to the low response of the service. We can avoid 
this false alarm, if we originally enable elasticity for 
a specific time period (so that the load of the service 

CP2 CP3

Initial 
State:CP1

Final 
State:CP4

NCPi

Number of requests in each CP
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is distributed) and then measure the KCI levels. If 
they do not reach normal levels soon, then the traffic 
can be considered as illegitimate. 

The state diagram for a request across the e-shop 
appears in Figure 2. A user may navigate through 
the different pages of the site and these transitions 
maybe modelled with a probability, as in the case of 
Markov chains. However, given that this is a 
stochastic process, the transition probability varies 
with time, in order to depict different user 
interactions with the pages (some users may need 
more than one products, others may be performing 
other tasks in parallel etc.). Thus, with the use of this 
method we can determine what would be the 
probability after a given time for the requests to have 
reached the intermediate or final stages of the value 
chain and gradually monitor the anticipated revenue. 

 

Figure 2: State diagram representing the possible states of 
a request across the e-shop. 

4 APPLICATION AND 
MODELLING REQUIREMENTS  

4.1 Logging Requirements 

In order to obtain the necessary data regarding 
transition statistics, an application should enforce 
state transition logging. This logging should reflect 
only the states based on which the Markov model 
has been designed and it should also support 
documentation of the source and destination state 
(e.g. S1->S2, timestamp). The information should be 
forwarded towards global (to the application 
threads) counters that will hold the statistics for each 
transition at any given time. 

It is not necessary to have request IDs or similar 
identifiers since we are not interested in single 
requests but rather on the macroscopic 
characteristics in order to detect a potential DoS 
attack. However it could be helpful to log for 
example IP addresses in case other countermeasures 
are jointly applied, in order to reason, isolate and 
drop packets coming from specific IP addresses that 

have been identified as malicious through the 
process. IP address logging could also be helpful 
during the normal operation to identify a user’s path 
in the e-shop and aid in the modeling analysis. 

4.2 Markov Chain Modeling 
Requirements 

In order to create the MC model, we can implement 
the following process: 
 Step1: Filter the log files of a known normal 

operation period in order to extract the 
probabilities of transitions for each transition 
case  

 Step2: Calculate the probability for 
transitioning from one state to another This 
would create an array of probability values 
(Table 1) for the MC analysis that can indicate 
how many steps are in general necessary (or 
probable) for a request. 

 Step 3: Filter the logs of a known normal 
operation period in order to acquire all the 
measured timings for a given transition from 
one state to another  

 Step 4: Extract the cumulative probability 
distribution for that given transition and fit a 
common distribution type (e.g. exponential, 
normal etc.). This will indicate the probability 
for a request to go from state A to state B after a 
specific time interval (Figure 3). By taking the 
measurements from the normal period of 
execution we can conclude the time interval 
after which a transition should have occurred 
(with a 95% probability). 

 Step 5: By combining the information from 
steps 2 and 4, we can macroscopically 
determine how many requests should have 
arrived at the final (or even some intermediate) 
state after a given time interval, based on the 
initial conditions (e.g. number of pending 
requests at each stage). This expected value can 
be compared with the monitored value 
(potentially incorporating the confidence 
intervals) in order to conclude whether these 
requests generate value for the application 
owner.  

It is necessary to stress that steps 1-4, which can 
be considered in general as time consuming, are 
needed only in the model preparation phase and not 
during runtime. Once the model is complete and 
online, during runtime, only the counters (or KCIs) 
levels would be needed and probably the calculation 
of the anticipated value, which is a minor 
computational task. 
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Figure 3: Cumulative Distribution Function of the delay of transition from one given state to another given state (x axis in 
seconds, y axis the probability for the specific transition to occur within the interval). In the specific example, the 95% 
probability for this to occur is within 86 seconds. 

Table 1: Matrix describing the probability from a transient 
state to another transient state. From this matrix we can 
calculate how many steps are probable for a request. 

States S1 S2 S3 S4 S5 S6 
S1 0 P12 0 0 0 P16

S2 P21 P22 P23 0 0 P26

S3 P31 P32 P33 P34 0 P36

S4 P41 P42 P43 0 P45 P46

S5 0 0 0 0 0 1 
S6 0 0 0 0 0 1 

In case one needs to simplify this process, then 
we can reduce the analysis to the absolutely 
necessary states, which means one state for all cases 
of surfing through the e-shop and one state that is 
described as the “key” decisive state, the state that 
generates value. In the aforementioned example the 
decisive state is S5, in which the user performs the 
payment. This would however delay the 
identification process since the interval after which 
we could check the KCIs level would include all 
intermediate steps. 

4.3 Application Elasticity Logic and 
Overall Architecture 

As mentioned in Chapter 3, the application should 
enforce elasticity directly in case of a request surge, 
so that limited resources do not hinder with the 
progress of the requests and thus contaminate the 
analysis. For example, if the surge makes the 
application unresponsive due to scarce resources, 
valid requests would not be able to reach the end of 
the process and thus lead to a false positive 
detection. Thus an elasticity logic should apply the 

pseudo-code in Figure 4. The sleep interval can be 
calculated through the model described in Section 
4.2 and represent the time after which we would 
expect requests to have reached the end of the 
process. The overall system architecture appears in 
Figure 5. 

Public class eDoSDetector extends 
Thread 
. 
. 
If (elasticity_flag=true)then 
 Enable elasticity 
 Thread.sleep(interval) 
 Check KCIs status 

Run MC model to get anticipated       
KCI values for this interval 
Difference=Predicted-Actual 
If (difference><confidence_limit) 
then 
 Disable elasticity  
Else 
 Keep elasticity enabled 

Figure 4: eDoS detector pseudo-code structure. 

An interested application will have to inject code 
at the necessary points, before migrating to the 
Cloud, that indicate a change of state. That code will 
be responsible for contacting a web service (DIaaS) 
to increase the respective KCIs. The probabilistic 
analyser will have access to the KCI levels and will 
have created and stored in advance the MC model. 
Based on the runtime analysis, it may inform the 
application part (or in a more independent way of 
communication, the application will query the 
analyser) that is responsible for enabling elasticity 
the outcome of the analysis. 
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Figure 5: Overall Concept Architecture: the proposed 
mechanism is offered as a service (DoS Identification as a 
Service). 

5 CONCLUSIONS 

DoS attacks on cloud-based applications are more 
dangerous since they might lead to an unsustainable 
service and eventual bankruptcy. In order to mitigate 
this effect and efficiently identifying a DoS attack 
despite traffic patterns or networking aspects, the 
Key Completion Indicators concept is proposed in 
order to model and analyse the transition of requests 
along the application value chain. The KCIs are 
accompanied by a probabilistic modelling approach 
in order to identify whether a surge of traffic is 
legitimate or not, based only on the generation of 
wealth by the application. It must be stressed that the 
approach is for detecting a DoS attack and mitigates 
only the effect of eDoS, by cutting off the elasticity 
actions and does not help restore the performance of 
the server. It is also applicable for DDoS cases, since 
the analysis is made on the application states 
transition and not the source of requests. 

Given that the approach requires an intervention 
at the source code level and a similar framework, it 
can be pursued by PaaS providers as a service 
offering that ensures the application from such types 
of attacks. Standard PaaS offering such as Google 
App Engine already need a certain 
alteration/adaptation of the source code to the 
development framework they are using, so it would 
be easier at this level to support also the concepts 
presented in this paper. The simplification suggested 
in Section 4 is also interesting to be investigated in 
order to minimize the analysis effort but also a 
potential implementation overhead of the 
mechanism. 
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