
Process Discovery
Automated Approach for Block Discovery

Souhail Boushaba, Mohammed Issam Kabbaj and Zohra Bakkoury
Department of Computer Science, AMIPS Research Group, Ecole Mohammadia d’Ingénieurs,

Mohammed Vth University - Agdal, Av Ibn Sina, Rabat, Morocco

Keywords: Process Mining, Business Process Management, Process Discovery, Block Discovery.

Abstract: Process mining is a set of techniques helping enterprises to avoid process modeling which is a time-
consuming and error prone task. Process mining includes three topics: process discovery, conformance
checking, and enhancement (IEEE Task Force on Process Mining: Process Mining Manifesto, 2012). The
principle of process discovery is to extract information from event logs to capture the business process as it
is being executed. Several techniques in literature (α algorithm, α+ algorithm and others) can be applied to
discover a process model from a workflow log. However, as the amount of information grows
exponentially, the log files (input of a process discovery algorithm) get bigger. In fact, classical techniques,
which inspect relation between each couple of tasks will have problem dealing with big data. To this end,
we introduced in (Boushaba et al., 2013) a new approach aiming to extract a block of tasks from event logs.
In this paper, we present a new algorithm, based on a matrix representation, to detect a block of tasks. In
addition, we develop an application to automate our technique.

1 INTRODUCTION

In the current circumstances of competition, every
company needs to accelerate its business processes.
Therefore, reviewing the process execution becomes
more and more essential in every business. So
instead of starting by process modeling which is a
time consuming and error prone task, process
discovery techniques generate process models from
workflow logs available in current information
systems (Figure 1 illustrates the principle of process
discovery).

Figure 1: Process discovery (IEEE Task Force on Process
Mining: Process Mining Manifesto, 2012).

As mentioned in figure1, process discovery
techniques scan information system’s log files to

determine the process model that has been used.
Many techniques in literature are used to

discover process models from event logs. However,
as the data continue growing (event logs containing
millions of events), classical approaches are definite
but they will not keep up. In fact, more sophisticated
approaches such as genetic mining (De Medeiros et
al., 2004) are faster than the direct ones but are
extremely inefficient as they depend on
randomization to find new alternatives.Therefore we
present a new block discovery oriented method (a
block is a set of tasks having the same behavior with
all other tasks in the process model) in (Boushaba et
al., 2013). Our method for block discovery starts by
representing the workflow log by a matrix and then
applying a set of filters to extract the set of blocks
composing the final petri net.

The idea of our algorithm is to detect two or
more blocks of activities composing a partition of
our log. Each block can be examined independently.
Therefore, we can be able to reduce the time
processing and the complexity of the extraction
process. The remainder of this paper is organized as
follows: In section 2 we present related works.
Section 3 introduces preliminaries. Section 4 shows
how to detect blocks using filters; in Section 5 we

204 Boushaba S., Issam Kabbaj M. and Bakkoury Z..
Process Discovery - Automated Approach for Block Discovery.
DOI: 10.5220/0004896402040211
In Proceedings of the 9th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE-2014), pages 204-211
ISBN: 978-989-758-030-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

present our algorithm for block detection. A case
study is given in Section 6. Finally, a conclusion is
drawn in Section 7.

2 RELATED WORKS

In (Van Der Aalst et al., 2004) and (De Medeiros et
al. 2003), authors present an algorithm named the α-
algorithm which discovers a large set of business
process models called structured workflow nets.
This basic algorithm have been extended in
(Weijters and van der Aalst, 2003), to deal with
noise problem by using some metrics expressed in
literature, and in (Wen et al., 2007). the problem of
non-free choice constraint was also dealt with.

The idea of matrix representation was presented
before; Alves De Medeiros et al. have addressed the
same issue in (De Medeiros et al., 2004), by
representing the process log as a matrix. However
authors use the same basic operator (direct
succession) inspecting the relation between each
couple of tasks (i.e. non-block-oriented method).
Our approach aims to transform a workflow log into
a matrix (using new operators) to first detect blocks
and then discover the process model. In (Chen et al.,
2009) Li describes a complete method for
discovering a reference process model from a set of
process variants, the main difference between our
approach and Li’s method is that the input is not the
same: we discover process model from the
information registered in the log. As per Li’s
approach, the entry items are the process variants.

Mathematically, the matrix representation in Li’s
approach cannot lead to proper matrix calculus, due
to its use of symbols such as L for loops, for Xor
block as components of the matrix. In our approach,
the matrix contains strictly figures.

All these methods and others inspect the ordering
relations in a log and discover the ordering relations
between every couple of tasks in a log, which
extends the processing time.

The described method in this paper, reinforcing
the method presented in (Boushaba et al., 2013),
explores the flow relations between blocks of tasks.
Besides in (Lemans et al., 2013) described a method
called inductive miner “IM” extended to inductive
miner-infrequent “IMi” in (Leemans et al., 2013) in
order to deal with infrequent behaviour, was also
proposed for the same purpose. It aims to extract the
set of blocks composing the process model.
However, the principal of the IM method is based on
cutting the most relevant design pattern from the
directly-follows graph which is not a well

deterministic criterion.

3 PRELIMINARIES

In this paper, we present an approach for block
discovery based on a matrix representation. This
section introduces the concepts used in the
remainder of this paper. To model our processes, we
use a variant of Petri nets named Place Transitions
Net for more details, the reader is referred to
(Murata, 1989).

3.1 Indirect Succession

The first step in our work is to create an operator
which defines indirect succession in a given
workflow log. Our operator is denoted	⋙. The basic
ordering relations are defined as follows:

3.1.1 Indirect Succession Operators

Let W be a workflow log over T, i.e., W ∈	P(T*).
Let a, b ∈T:

 ⋙ if and only if there exists a trace
. . . and , ∈ 1, . . . , such that

∈ W, 	 , and , (Indirect
Succession);

 ↠ if and only if ⋙ 	and ⋙ ,
(Causality);

 ≢ if and only if ⋙ and ⋙ , (No
indirect or direct relation);

 ∥∥ if and only if ⋙ 	and ⋙ ,
(Parallelism).

To illustrate the principle of our basic operators on
the log file L:

L= [(A,B,C,D), (A,C,B,D), (E,F)]

 ⋙ because there exists a trace (A,B,C,D)
such that A is indirectly succeded by C,

 ≢ because E is never succeded by D and D
is never succeded by E

 ∥∥ because there exists a trace (A,B,C,D)
where ⋙ and there exists a trace
(A,C,B,D) where ⋙ .

3.1.2 Indirect Succession Matrix

Let L be the log composed of n tasks, and ∈
the set of tasks in the log. The indirect succession
matrix , is a binary Matrix (0, 1) where:

1. , 1		if ⋙ ;

Process�Discovery�-�Automated�Approach�for�Block�Discovery

205

2. Else	 , 0.

To exemplify the principle,the indirect succession
matrix corresponding to the event log L is:

Table 1: Indirect succession matrix for log file L.

⋙ A B C D E F

A 0 1 1 1 0 0

B 0 0 1 1 0 0

C 0 1 0 1 0 0

D 0 0 0 0 0 0

E 0 0 0 0 0 1

F 0 0 0 0 0 0

 , 1	because ⋙ ,

 , 0	because	 ⋙ .

3.2 Block Discovery

The block discovery is an issue that we first
presented in (Boushaba et al., 2013). Unlike
traditional methods which inspect relation between
every two tasks of a workflow log,our idea of
process discovery is to discover the relation between
a block of tasks.

As we define it, two tasks are in the same block
if and only if they have the same behavior with the
other tasks. Using matrix representation, we can
present a formalisation of this concept as follows:

Let L be the log composed of n tasks, the set of tasks
in the log, and , the corresponding indirect

succession matrix.
Let ⊊ 1, be the set of the tasks ∈ is considered as a
block if and only if:
∀	 , 	 ∈ 	 , ∀	k ∈ 1, n \I		 , , (same values in
rows).
∀	 , 	 ∈ 	 , ∀	k ∈ 1, n \I		 , , (same values in
columns).	

Using the indirect succession matrix for log L
presented in (Table 1), we can say that:

 B and C are in block because, out of the red
square, tasks B and C have the same values in
row and in column.

Now, as the concept of block is well defined, we
need to design ate the block type. For this purpose
we will present design patterns to determine
relations between tasks forming a block.

3.3 Design Patterns

This subsection presents the design patterns
illustrating relations between tasks in a block using
Petri net graphical notation (Murata, 1989).

3.3.1 Succession Pattern

The succession pattern represents tasks in
succession. Let A, B, C and D be four tasks in
succession presented in Petri net as follows:

Figure 2: Succession pattern.

The corresponding indirect succession matrix is
presented in Table 2:

Table 2: Indirect succession matrix corresponding to
succession pattern.

⋙ A B C D
A 0 1 1 1
B 0 0 1 1
C 0 0 0 1
D 0 0 0 0

3.3.2 Parallel Pattern

The parallel pattern represents tasks running in
concurrence. A parallel pattern is presented in Petri
as:

Figure 3: Parallel pattern.

The corresponding indirect succesion matrix is:

Table 3: Indirect succession matrix for the parallel pattern.

⋙ A B C D
A 0 1 1 1
B 0 0 1 1
C 0 1 0 1
D 0 0 0 0

3.3.3 Xor Pattern

The Xor pattern presents tasks running in mutual
exclusion. Xor pattern is presented in Petri net as
follows illustrated in Figure 4:

Figure 4: Xor pattern.

The corresponding indirect succesion matrix is
presented in Table 4:

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

206

Table 4: Indirect succession matrix for Xor Pattern.

⋙ A B C D
A 0 1 1 1
B 0 0 0 1
C 0 0 0 1
D 0 0 0 0

3.4.4 Loop Pattern

Loop pattern presented in the following figure can
be seen as a specific Xor patternt (Task B and task
C, are in concurrence as they share places P1 and P2).

Figure 5: Length two loop.

The corresponding indirect succesion matrix is
presented as follows:

Table 5: Indirect succession matrix for the loop Pattern.

⋙ A B C D
A 0 1 1 1
B 0 1 1 1
C 0 1 1 1
D 0 0 0 0

4 DETECTION FILTERS

A block as defined earlier is a set of tasks having the
same behavior with all other tasks of the process
model.In order to automate blocks detection, we use
a combinatorial logic operator that extracts the
difference and the similarity between two binary
vectors.

4.1 Logical Similarity Operator

We use the combinatorial logic operator that gives a
score of 1 if the two bits used as input are equal and
0 otherwise. For two tasks, this operator, denoted
(⊕), is equivalent to Not Xor operator, whose truth
table is given in Table 6:

Table 6: Not Xor truth table.

A B ⨁
0 0 1
0 1 0
1 0 0
1 1 1

Where		 	 ⊕ 	 	2 .
We can generalize our operator to handle more

than two tasks as follows:
For a set of tasks :

⨁

0, 	 0

1, 	 0

So⨁ 0		 		∀ 	 0	 	∀ 	 1
Then⨁ 1 if and only if all have

the same value.

4.2 Detecting the First Task

Let L be the log file for a given process model P,
and let M be its indirect succession matrix.

Theorem1: The task Ai is the first task if and only if
the sum of the corresponding column values of the
indirect succession matrix equals 0 (i.e..∑ ,

0).

4.3 Detecting Last Task

Theorem2: The task Ai is the last task if and only if
the sum of the corresponding row in the indirect
succession matrix equals to 0 (i.e.∑ , 0)

4.4 Detecting Patterns

In this subsection, we explain how we can detect
each one of our patterns and loops using logical
similarity operator.

4.4.1 Succession Pattern

The succession pattern present tasks in succession,
by applying logical similarity operator to the indirect
succession matrix. results are given in Table 7:

Table 7: Logical similarity operator applied to succession
pattern.

⋙ A B C D ⨁
A 0 1 1 1 1
B 0 0 1 1 0
C 0 0 0 1 1
D 0 0 0 0 1
⨁ 1 1 0 1

The application of logical similarity operator to
succession pattern gives the following results:

 B and C have the same behavior with task A,

Process�Discovery�-�Automated�Approach�for�Block�Discovery

207

because the index of		 ⨁ 	related to A equals to
1 in row and in column (see red cells). The same
for D, so B and C form a block.

 If we apply the operator for B, C and D, the
index related to A is equal to 1 in row and in
column, that means B, C and D are in the same
block compared with the task A.

4.4.2 Parallel Pattern

The parallel pattern represents tasks in competition
(figure 3). By applying the logical similarity
operator to its indirect succession matrix we obtain:

Table 8: Logical similarity operator applied to parallel
pattern.

⋙ A B C D ⨁
A 0 1 1 1 1
B 0 0 1 1 0
C 0 1 0 1 0
D 0 0 0 0 1
⨁ 1 0 0 1

We can conclude from Table 8 that B and C have
the same behavior with task A and D (see red cells).

4.4.3 Xor Pattern

The Xor pattern represents tasks in mutual
exclusion. By applying the logical similarity
operator to its indirect succession matrix we obtain

Table 9: Logical similarity operatorapplied to Xor pattern.

⋙ A B C D ⨁
A 0 1 1 1 1
B 0 0 0 1 1
C 0 0 0 1 1
D 0 0 0 0 1
⨁ 	 1 1 1 1

The application of logical similarity operator to
Xor pattern gives as result:

 B and C have the same behavior with task A and
D (see red cells).

 In addition, ⨁ 	change signature from one
pattern to another (see the green cells in the
different pattern). therefore the pattern detection
becomes self-evident.

4.4.4 Loop Processing

A loop processing can be seen in an event log as
repeated treatment in the same trace.For exemple the
log , , , , , , , , contains a loop
because the sequence (a, b, c, b, c, d) contains the
repeated treatment of the tasks b and c.

To detect the loop pattern we apply the logical
similarity operator to its indirect succession matrix,
the results are as follows:

Table 10: logical similarity operator applied to the loop
pattern.

⋙ A B C D ⨁
A 0 1 1 1 1
B 0 1 1 1 1
C 0 1 1 1 1
D 0 0 0 0 1
⨁ 1 1 1 1

The differentiation between a loop and an Xor
pattern can be made by verifying the apparition of 0
in the four cells of the indirect succession matrix
(see blue cells in table 10).

5 BLOCK DISCOVERY METHOD

Our approach for block discovery aims to extract
block of tasks from an event log. Because each
block can be examined independently we’re able to
reduce the algorithm complexity. We begin by
finding the biggest block which is the group of tasks
having a maximum number of successors, equivalent
in indirect succession matrix, to selecting tasks
having row’s sum maximal.

5.1 Block Detection Steps

The algorithm presented in (Boushaba et al., 2013)
is unable to deal with loops; in this paper we extend
our method by adding filters (section 4) to
differentiate between a loop and an Xor Pattern. To
achieve this purpose the following steps are
executed:

 First step: compute the indirect succession
matrix, and calculate the sum of its rows and the
columns;

 Second step: select the group of tasks (two or
more) having maximum values in rows sum;

 Third step: for the selected tasks, we apply the
logical similarity operator;

 Fourth step: if the selected tasks are in a block,
we try to detect its type:
o First, we look for Xor pattern and loops else

we jump to next step;
o Second, we look for the parallel pattern else

we jump to next step;
o Third, we assume that it is a succession

pattern;

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

208

 Fifth step: create a frame of discovered Petri Net

 Sixth step: we repeat all steps for the unselected
tasks.

 Seventh step: we regroup the result frames of the
Petri net

5.2 Application for Block Detection

We implemented the algorithm, subject of this
paper, in a web application. (Html/ JavaScript) The
latter takes as input an event log and returns:

 The corresponding indirect succession matrix,

 First tasks of the process,

 The last tasks of the process,

 And compute the logical similarity operator.

6 CASE STUDY

To verify our method we use the following event log
which is not representative for real-life event log in
terms of size and complexity. However, because of
its simplicity, it serves as a suitable illustration of
our concepts.

L=[(A,B,D,E,G,H),(A,B,C,B,D,E,G,H),(A,B,D,
G,E,H),(A,B,C,B,D,G,E,H),(A,B,D,F,H),(A,B,C,
B,D,F,H)(A,B,C,B,C,B,D,F,H)]

We compute the indirect succession matrix (using
our application for block discovery presented in
subsection 5.2)

Table 11: Indirect succession matrix of L.

⋙ A B D E G H C F ∑

A 0 1 1 1 1 1 1 1 7

B 0 1 1 1 1 1 1 1 7

D 0 0 0 1 1 1 0 1 4

E 0 0 0 0 1 1 0 0 2

G 0 0 0 1 0 1 0 0 2

H 0 0 0 0 0 0 0 0 0

C 0 1 1 1 1 1 1 1 7

F 0 0 0 0 0 1 0 0 1

∑ 0 3 3 5 5 7 3 4

The application generates the first task (task A)
and last task (task H).

We select the group of tasks having (∑row
maximal) (A, B, C having ∑row= 7) and we apply
the logical similarity operator (We note	ABC 	 ⊕
⊕):

Table 12: Logical similarity operator applied to tasks A, B
and C.

⋙ A B D E G H C F ∑ ABC
A 0 1 1 1 1 1 1 1 7 0
B 0 1 1 1 1 1 1 1 7 0
D 0 0 0 1 1 1 0 1 4 1
E 0 0 0 0 1 1 0 0 2 1
G 0 0 0 1 0 1 0 0 2 1
H 0 0 0 0 0 0 0 0 0 1
C 0 1 1 1 1 1 1 1 7 0
F 0 0 0 0 0 1 0 0 1 1
∑ 0 3 3 5 5 7 3 4
ABC 1 1 1 1 1 1 1 1

The selected tasks have the same behavior with
the rest of tasks (value 1 in red boxes) which implies
that the tasks A, B and C are in a block. To
determine the nature of this block, let’s extract the
sub matrix composed of the three tasks:

Table 13: Sub-matrix related to tasks A, B and C.

⋙ A B C ∑ ⊕
A 0 1 1 2 1
B 0 1 1 2 1
C 0 1 1 2 1
∑ 0 3 3
⊕ 1 1 1

Tasks B and C have the same behavior with A
(value 1 red box), and are in loop or Xor (blue
boxes).The green square correspond to a loop
pattern. We reduce the matrix by substituting B, C
by a unique activity denoted BC:

Table 14: Indirect succession matrix related to tasks A and
block B and C.

⋙ A BC

A 0 1

BC 0 0

The Petri net corresponding to this matrix is

Figure 6: Petri net corresponding to table 17.

By replacing the block BC by the two tasks that
are in loop, the previous Petri net becomes:

Figure 7: Splitting the block BC.

Now we extract the sub matrix D, E, G, H and F

BC A

Process�Discovery�-�Automated�Approach�for�Block�Discovery

209

constituting a block as follows:

Table 15: Indirect succession matrix for L.

⋙ D E G H F ∑ ⊕
D 0 1 1 1 1 4 1
E 0 0 1 1 0 2 0
G 0 1 0 1 0 2 0
H 0 0 0 0 0 0 1
F 0 0 0 1 0 1 1
∑ 0 2 2 4 1
⊕ 1 0 0 1 1

We select E and G having an equal value in sum
of the rows, by computing the logical similarity
operator, we detect that these two tasks are in a
parallel block. By substituting tasks E and G by a
unique activity EG, our indirect succession matrix
becomes:

Table 16: Indirect succession matrix (reduced).

⋙ D EG H F ∑ ⊕

D 0 1 1 1 3 1

EG 0 0 1 0 1 1

H 0 0 0 0 0 1

F 0 0 1 0 1 1

∑ 0 1 3 1

⊕ 1 1 1 1

Idem, the tasks EG and F which are in Xor are
substituted with a representative activity (EFG):

Table 17: Indirect succession matrix (reduced).

⋙ D EFG H ∑
D 0 1 1 2

EFG 0 0 1 1
H 0 0 0 0
∑ 0 1 2

The matrix corresponds to succession pattern.
The Petri representing to the matrix is:

Figure 8: Petri Net corresponding to the Matrix.

As EFG is not an elementary element, we split
the block EFG into EG and F having an XOR
relation. The Petri net becomes:

Figure 9: Petri net after splitting the block EFG.

As EG is not an elementary element, we split it into
tasks E and G having parallel relation. So, the Petri

net becomes:

Figure 10: The Petri net after splitting the block EG.

Now, we can substitute the two blocks (ABC and
DEFGH) by the representative elements. So the
Indirect succession matrix of the log L is:

Table 18: Indirect succession matrix related to block ABC
and block DEFGH.

⋙ ABC DEFGH
ABC 0 1

DEFGH 0 0

The matrix corresponds to succession pattern,
and the Petri net corresponding to the matrix is
shown in Figure 11:

Figure 11: Final petri net.

7 CONCLUSION

Our approach for block discovery extends the
algorithm presented in (Boushaba et al., 2013). The
idea is taking a log file as input to generate a Petri
net by creating a matrix representation and reducing
its size iteratively. Filters are added to automate
detection and loops are also handled.

The algorithm presented in this paper is more
efficient than those presented in (Van Der Aalst et
al., 2004) and (De Medeiros et al., 2003) in the sense
that it is not necessary to go through the whole log
file to discover each place and each transition of the
discovered Petri net. Additionally, our algorithm is
characterized by its ability to be parallelized in order
to discover different blocks. Another advantage of
our algorithm is that by dividing the log into sub
logs reduces the whole complexity as it is faster to
process each sub log separately than processing the
entire log. Finally, our algorithm is O (n2), which
makes it appropriate to deal with large event logs
(real logs) that can be composed of thousands
activities unlike the existing ones (Van der Aalst,

EFG D H

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

210

2012).
In order to enrich our research, we intend to

introduce the partial block concept, which should
allow us to deal with incomplete logs. The
application will be improved to generate all
relationships and the discovered Petri Net.

REFERENCES

Agrawal, R., Gunopulos, D., and Leymann, F. 1998.
Mining Process Models from Workflow Logs. Sixth
International Conference on Extending Database
Technology, pages 469–483.

Van Der Aalst, W. M. P., Weijters, A. J. M. M., and
Maruster L., 2004. Workflow Mining: Discovering
Process Models from Event Logs. IEEE Transactions
on Knowledge and Data Engineering, 16(9):1128–
1142.

De Medeiros, A. K. A. ,Van Der Aalst, W. M. P., and
Weijters, A. J. M. M. 2003.Workflow Mining: Current
Status and Future Directions Department of
Technology Management, Eindhoven University of
Technology P.O. Box 513, NL-5600 MB, Eindhoven,
The Netherlands, Springer,

Weijters, A. J. M. M., Van Der Aalst, W. M. P., and De
Medeiros, A. K. A., 2006. Process Mining with the
Heuristics Miner Algorithm, BETA Working Paper
Series, WP 166 Eindhoven University of Technology,
Eindhoven.

Boushaba, S., Kabbaj, M. I., Bakkoury, Z., 2013. Process
mining: Matrix representation for bloc discovery,
Intelligent Systems: Theories and Applications (SITA),
IEEE.

Murata, T., 1989. Petri Nets: Properties, Analysis and
Applications, Apr. Proc. IEEE, vol. 77, no. 4, pp. 541-
580.

De Medeiros, A. K. A., Weijters, A. J. M. M., and Van
Der Aalst, W. M. P, 2004.Using Genetic Algorithms
to Mine Process Models: Representation, Operators
and Results, Eindhoven University of Technology,
Eindhoven.

Chen, Li., Manfred, R., and Wombacher, A., 2009.
Discovering Reference Models by Mining Process
Variants Using a Heuristic Approach.

IEEE Task Force on Process Mining: Process Mining
Manifesto, 2012. In: BPM Workshops. LNBIP, vol. 99,
pp. 169–194. Springer

Van der Aalst, W. M. P. 2011. Process Mining: Discovery,
Conformance and Enhancement of Business
Processes. Springer.

Chen, Li., Manfred, R., Andreas, 2011, Mining Business
Process Variants: Challenges, Scenarios, Algorithms,
Data & Knowledge Engineering Elsevier,

Wen L., Van der Aalst W. M. P., Wang J., and Sun J.,
2007, Mining Process Models with Non-free- Choice
Constructs. Data Mining and Knowledge Discovery,
15(2):145–180.

Weijters, A. J. M. M. and van Der Aalst, W. M. P. 2003.

Rediscovering Workflow Models from Event-Based
Data Using Little Thumb. Integrated Computer-Aided
Engineering, 10(2):151–162.

Van der Aalst W. M. P., 2012. Desire Lines in Big Data,
In proceeding of: Promoting Business Process
Management Excellence in Russia (PropelleR 2012)
11-12.

Leemans, S. J. J., Fahland, D., van der Aalst, W.M.P.
2013. Discovering block-structured process models
from event logs -a constructive approach. In: Petri
Nets. Lecture Notes in Computer Science, vol. 7927,
pp. 311–329. Springer

Leemans, Sander J. J., Fahland D. and van der Aalst W.
M. P., 2013. Discovering Block-Structured Process
Models from Event Logs Containing Infrequent
Behaviour. fluxicon.com

Process�Discovery�-�Automated�Approach�for�Block�Discovery

211

