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Abstract: Process mining is a set of techniques helping enterprises to avoid process modeling which is a time-
consuming and error prone task. Process mining includes three topics: process discovery, conformance 
checking, and enhancement (IEEE Task Force on Process Mining: Process Mining Manifesto, 2012). The 
principle of process discovery is to extract information from event logs to capture the business process as it 
is being executed. Several techniques in literature (α algorithm, α+ algorithm and others) can be applied to 
discover a process model from a workflow log. However, as the amount of information grows 
exponentially, the log files (input of a process discovery algorithm) get bigger. In fact, classical techniques, 
which inspect relation between each couple of tasks will have problem dealing with big data. To this end, 
we introduced in (Boushaba et al., 2013) a new approach aiming to extract a block of tasks from event logs. 
In this paper, we present a new algorithm, based on a matrix representation, to detect a block of tasks. In 
addition, we develop an application to automate our technique. 

1 INTRODUCTION 

In the current circumstances of competition, every 
company needs to accelerate its business processes. 
Therefore, reviewing the process execution becomes 
more and more essential in every business. So 
instead of starting by process modeling which is a 
time consuming and error prone task, process 
discovery techniques generate process models from 
workflow logs available in current information 
systems (Figure 1 illustrates the principle of process 
discovery). 

 

Figure 1: Process discovery (IEEE Task Force on Process 
Mining: Process Mining Manifesto, 2012). 

As mentioned in figure1, process discovery 
techniques scan information system’s log files to 

determine the process model that has been used. 
Many techniques in literature are used to 

discover process models from event logs. However, 
as the data continue growing (event logs containing 
millions of events), classical approaches are definite 
but they will not keep up. In fact, more sophisticated 
approaches such as genetic mining (De Medeiros et 
al., 2004) are faster than the direct ones but are 
extremely inefficient as they depend on 
randomization to find new alternatives.Therefore we 
present a new block discovery oriented method (a 
block is a set of tasks having the same behavior with 
all other tasks in the process model) in (Boushaba et 
al., 2013). Our method for block discovery starts by 
representing the workflow log by a matrix and then 
applying a set of filters to extract the set of blocks 
composing the final petri net.  

The idea of our algorithm is to detect two or 
more blocks of activities composing a partition of 
our log. Each block can be examined independently. 
Therefore, we can be able to reduce the time 
processing and the complexity of the extraction 
process. The remainder of this paper is organized as 
follows: In section 2 we present related works. 
Section 3 introduces preliminaries. Section 4 shows 
how to detect blocks using filters; in Section 5 we 
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present our algorithm for block detection. A case 
study is given in Section 6. Finally, a conclusion is 
drawn in Section 7. 

2 RELATED WORKS 

In (Van Der Aalst et al., 2004) and (De Medeiros et 
al. 2003), authors present an algorithm named the α-
algorithm which discovers a large set of business 
process models called structured workflow nets. 
This basic algorithm have been extended in 
(Weijters and van der Aalst, 2003), to deal with 
noise problem by using some metrics expressed in 
literature, and in (Wen et al., 2007). the problem of 
non-free choice constraint was also dealt with. 

The idea of matrix representation was presented 
before; Alves De Medeiros et al. have addressed the 
same issue in (De Medeiros et al., 2004), by 
representing the process log as a matrix. However 
authors use the same basic operator (direct 
succession) inspecting the relation between each 
couple of tasks (i.e. non-block-oriented method). 
Our approach aims to transform a workflow log into 
a matrix (using new operators) to first detect blocks 
and then discover the process model. In (Chen et al., 
2009) Li describes a complete method for 
discovering a reference process model from a set of 
process variants, the main difference between our 
approach and Li’s method is that the input is not the 
same: we discover process model from the 
information registered in the log. As per Li’s 
approach, the entry items are the process variants.  

Mathematically, the matrix representation in Li’s 
approach cannot lead to proper matrix calculus, due 
to its use of symbols such as L for loops, for Xor 
block as components of the matrix. In our approach, 
the matrix contains strictly figures. 

All these methods and others inspect the ordering 
relations in a log and discover the ordering relations 
between every couple of tasks in a log, which 
extends the processing time. 

The described method in this paper, reinforcing 
the method presented in (Boushaba et al., 2013), 
explores the flow relations between blocks of tasks. 
Besides in (Lemans et al., 2013) described a method 
called inductive miner “IM” extended to inductive 
miner-infrequent “IMi” in (Leemans et al., 2013) in 
order to deal with infrequent behaviour, was also 
proposed for the same purpose. It aims to extract the 
set of blocks composing the process model. 
However, the principal of the IM method is based on 
cutting the most relevant design pattern from the 
directly-follows graph which is not a well 

deterministic criterion.  

3 PRELIMINARIES 

In this paper, we present an approach for block 
discovery based on a matrix representation. This 
section introduces the concepts used in the 
remainder of this paper. To model our processes, we 
use a variant of Petri nets named Place Transitions 
Net for more details, the reader is referred to 
(Murata, 1989). 

3.1 Indirect Succession 

The first step in our work is to create an operator 
which defines indirect succession in a given 
workflow log. Our operator is denoted	⋙. The basic 
ordering relations are defined as follows: 

3.1.1 Indirect Succession Operators 

Let W be a workflow log over T, i.e., W ∈	P(T*). 
Let a, b ∈T: 

 ⋙  if and only if there exists a trace 
. . .  and , ∈ 1, . . . ,  such that 

∈ W, 	 , and  ,  (Indirect 
Succession); 

 ↠  if and only if ⋙ 	and ⋙ , 
(Causality); 

 ≢  if and only if ⋙  and ⋙ , (No 
indirect or direct relation); 

 ∥∥  if and only if ⋙ 	and ⋙ , 
(Parallelism). 

To illustrate the principle of our basic operators on 
the log file L:  

L= [(A,B,C,D), (A,C,B,D), (E,F)] 

 ⋙  because there exists a trace (A,B,C,D) 
such that A is indirectly succeded by C,  

 ≢  because E is never succeded by D and D 
is never succeded by E 

 ∥∥  because there exists a trace (A,B,C,D) 
where ⋙  and there exists a trace 
(A,C,B,D) where ⋙ . 

3.1.2 Indirect Succession Matrix  

Let L be the log composed of n tasks, and ∈  
the set of tasks in the log. The indirect succession 
matrix ,  is a binary Matrix (0, 1) where: 

1. , 1		if ⋙ ; 
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2. Else	 , 0. 

To exemplify the principle,the indirect succession 
matrix corresponding to the event log L is: 

Table 1: Indirect succession matrix for log file L. 

⋙ A B C D E F 

A 0 1 1 1 0 0 

B 0 0 1 1 0 0 

C 0 1 0 1 0 0 

D 0 0 0 0 0 0 

E 0 0 0 0 0 1 

F 0 0 0 0 0 0 

 , 1	because ⋙ , 

 , 0	because	 ⋙ . 

3.2 Block Discovery 

The block discovery is an issue that we first 
presented in (Boushaba et al., 2013). Unlike 
traditional methods which inspect relation between 
every two tasks of a workflow log,our idea of 
process discovery is to discover the relation between 
a block of tasks. 

As we define it, two tasks are in the same block 
if and only if they have the same behavior with the 
other tasks. Using matrix representation, we can 
present a formalisation of this concept as follows:  

Let L be the log composed of n tasks,  the set of tasks 
in the log, and , the corresponding indirect 

succession matrix. 
Let ⊊ 1,  be the set of the tasks ∈ is considered as a 
block if and only if:  
∀	 , 	 ∈ 	 , ∀	k ∈ 1, n \I		 , , (same values in 
rows). 
∀	 , 	 ∈ 	 , ∀	k ∈ 1, n \I		 , , (same values in 
columns).	

Using the indirect succession matrix for log L 
presented in (Table 1), we can say that:  

 B and C are in block because, out of the red 
square, tasks B and C have the same values in 
row and in column. 

Now, as the concept of block is well defined, we 
need to design ate the block type. For this purpose 
we will present design patterns to determine 
relations between tasks forming a block. 

3.3 Design Patterns 

This subsection presents the design patterns 
illustrating relations between tasks in a block using 
Petri net graphical notation (Murata, 1989). 

3.3.1 Succession Pattern 

The succession pattern represents tasks in 
succession. Let A, B, C and D be four tasks in 
succession presented in Petri net as follows:  

 

Figure 2: Succession pattern. 

The corresponding indirect succession matrix is 
presented in Table 2: 

Table 2: Indirect succession matrix corresponding to 
succession pattern. 

⋙ A B C D 
A 0 1 1 1 
B 0 0 1 1 
C 0 0 0 1 
D 0 0 0 0 

3.3.2 Parallel Pattern 

The parallel pattern represents tasks running in 
concurrence. A parallel pattern is presented in Petri 
as: 

 
Figure 3: Parallel pattern. 

The corresponding indirect succesion matrix is: 

Table 3: Indirect succession matrix for the parallel pattern. 

⋙ A B C D 
A 0 1 1 1 
B 0 0 1 1 
C 0 1 0 1 
D 0 0 0 0 

3.3.3 Xor Pattern 

The Xor pattern presents tasks running in mutual 
exclusion. Xor pattern is presented in Petri net as 
follows illustrated in Figure 4: 
 

 

Figure 4: Xor pattern. 

The corresponding indirect succesion matrix is 
presented in Table 4: 
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Table 4: Indirect succession matrix for Xor Pattern. 

⋙ A B C D 
A 0 1 1 1 
B 0 0 0 1 
C 0 0 0 1 
D 0 0 0 0 

3.4.4 Loop Pattern 

Loop pattern presented in the following figure can 
be seen as a specific Xor patternt (Task B and task 
C, are in concurrence as they share places P1 and P2). 
 

 

Figure 5: Length two loop. 

The corresponding indirect succesion matrix is 
presented as follows: 

Table 5: Indirect succession matrix for the loop Pattern. 

⋙ A B C D 
A 0 1 1 1 
B 0 1 1 1 
C 0 1 1 1 
D 0 0 0 0 

4 DETECTION FILTERS 

A block as defined earlier is a set of tasks having the 
same behavior with all other tasks of the process 
model.In order to automate blocks detection, we use 
a combinatorial logic operator that extracts the 
difference and the similarity between two binary 
vectors.  

4.1 Logical Similarity Operator 

We use the combinatorial logic operator that gives a 
score of 1 if the two bits used as input are equal and 
0 otherwise. For two tasks, this operator, denoted 
(⊕), is equivalent to Not Xor operator, whose truth 
table is given in Table 6: 

Table 6: Not Xor truth table. 

A B ⨁  
0 0 1 
0 1 0 
1 0 0 
1 1 1 

Where		 	 ⊕ 	 	2 . 
We can generalize our operator to handle more 

than two tasks as follows: 
For a set of tasks : 

⨁

0, 	 0

1, 	 0

 

So⨁ 0		 		∀ 	 0	 	∀ 	 1 
Then⨁ 1 if and only if all  have 

the same value. 

4.2 Detecting the First Task 

Let L be the log file for a given process model P, 
and let M be its indirect succession matrix. 

Theorem1: The task Ai is the first task if and only if 
the sum of the corresponding column values of the 
indirect succession matrix equals 0 (i.e..∑ ,

0). 

4.3 Detecting Last Task 

Theorem2: The task Ai is the last task if and only if 
the sum of the corresponding row in the indirect 
succession matrix equals to 0 (i.e.∑ , 0) 

4.4 Detecting Patterns 

In this subsection, we explain how we can detect 
each one of our patterns and loops using logical 
similarity operator. 

4.4.1 Succession Pattern 

The succession pattern present tasks in succession, 
by applying logical similarity operator to the indirect 
succession matrix. results are given in Table 7: 

Table 7: Logical similarity operator applied to succession 
pattern. 

⋙ A B C D ⨁
A 0 1 1 1 1 
B 0 0 1 1 0 
C 0 0 0 1 1 
D 0 0 0 0 1 
⨁ 1 1 0 1  

The application of logical similarity operator to 
succession pattern gives the following results:  

 B and C have the same behavior with task A, 
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because the index of		 ⨁ 	related to A equals to 
1 in row and in column (see red cells). The same 
for D, so B and C form a block. 

 If we apply the operator for B, C and D, the 
index related to A is equal to 1 in row and in 
column, that means B, C and D are in the same 
block compared with the task A. 

4.4.2 Parallel Pattern 

The parallel pattern represents tasks in competition 
(figure 3). By applying the logical similarity 
operator to its indirect succession matrix we obtain: 

Table 8: Logical similarity operator applied to parallel 
pattern. 

⋙ A B C D ⨁
A 0 1 1 1 1 
B 0 0 1 1 0 
C 0 1 0 1 0 
D 0 0 0 0 1 
⨁  1 0 0 1  

We can conclude from Table 8 that B and C have 
the same behavior with task A and D (see red cells). 

4.4.3 Xor Pattern 

The Xor pattern represents tasks in mutual 
exclusion. By applying the logical similarity 
operator to its indirect succession matrix we obtain 

Table 9: Logical similarity operatorapplied to Xor pattern. 

⋙ A B C D ⨁
A 0 1 1 1 1 
B 0 0 0 1 1 
C 0 0 0 1 1 
D 0 0 0 0 1 
⨁ 	 1 1 1 1  

The application of logical similarity operator to 
Xor pattern gives as result: 

 B and C have the same behavior with task A and 
D (see red cells). 

 In addition, ⨁ 	change signature from one 
pattern to another (see the green cells in the 
different pattern). therefore the pattern detection 
becomes self-evident. 

4.4.4 Loop Processing 

A loop processing can be seen in an event log as 
repeated treatment in the same trace.For exemple the 
log , , , , , , , ,  contains a loop 
because the sequence (a, b, c, b, c, d) contains the 
repeated treatment of the tasks b and c. 

To detect the loop pattern we apply the logical 
similarity operator to its indirect succession matrix, 
the results are as follows:  

Table 10: logical similarity operator applied to the loop 
pattern. 

⋙ A B C D ⨁
A 0 1 1 1 1 
B 0 1 1 1 1 
C 0 1 1 1 1 
D 0 0 0 0 1 
⨁ 1 1 1 1  

 

The differentiation between a loop and an Xor 
pattern can be made by verifying the apparition of 0 
in the four cells of the indirect succession matrix 
(see blue cells in table 10). 

5 BLOCK DISCOVERY METHOD 

Our approach for block discovery aims to extract 
block of tasks from an event log. Because each 
block can be examined independently we’re able to 
reduce the algorithm complexity. We begin by 
finding the biggest block which is the group of tasks 
having a maximum number of successors, equivalent 
in indirect succession matrix, to selecting tasks 
having row’s sum maximal. 

5.1 Block Detection Steps 

The algorithm presented in (Boushaba et al., 2013) 
is unable to deal with loops; in this paper we extend 
our method by adding filters (section 4) to 
differentiate between a loop and an Xor Pattern. To 
achieve this purpose the following steps are 
executed:  

 First step: compute the indirect succession 
matrix, and calculate the sum of its rows and the 
columns; 

 Second step: select the group of tasks (two or 
more) having maximum values in rows sum; 

 Third step: for the selected tasks, we apply the 
logical similarity operator;  

 Fourth step: if the selected tasks are in a block, 
we try to detect its type:  
o First, we look for Xor pattern and loops else 

we jump to next step; 
o Second, we look for the parallel pattern else 

we jump to next step; 
o Third, we assume that it is a succession 

pattern; 
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 Fifth step: create a frame of discovered Petri Net 

 Sixth step: we repeat all steps for the unselected 
tasks. 

 Seventh step: we regroup the result frames of the 
Petri net 

5.2 Application for Block Detection 

We implemented the algorithm, subject of this 
paper, in a web application. (Html/ JavaScript) The 
latter takes as input an event log and returns:  

 The corresponding indirect succession matrix,  

 First tasks of the process, 

 The last tasks of the process,  

 And compute the logical similarity operator. 

6 CASE STUDY 

To verify our method we use the following event log 
which is not representative for real-life event log in 
terms of size and complexity. However, because of 
its simplicity, it serves as a suitable illustration of 
our concepts. 

L=[(A,B,D,E,G,H),(A,B,C,B,D,E,G,H),(A,B,D,
G,E,H),(A,B,C,B,D,G,E,H),(A,B,D,F,H),(A,B,C,
B,D,F,H)(A,B,C,B,C,B,D,F,H)] 

We compute the indirect succession matrix (using 
our application for block discovery presented in 
subsection 5.2) 

Table 11: Indirect succession matrix of L. 

⋙ A B D E G H C F ∑ 

A 0 1 1 1 1 1 1 1 7 

B 0 1 1 1 1 1 1 1 7 

D 0 0 0 1 1 1 0 1 4 

E 0 0 0 0 1 1 0 0 2 

G 0 0 0 1 0 1 0 0 2 

H 0 0 0 0 0 0 0 0 0 

C 0 1 1 1 1 1 1 1 7 

F 0 0 0 0 0 1 0 0 1 

∑ 0 3 3 5 5 7 3 4 

The application generates the first task (task A) 
and last task (task H). 

We select the group of tasks having (∑row 
maximal) (A, B, C having ∑row= 7) and we apply 
the logical similarity operator (We note	ABC 	 ⊕
⊕ ): 

Table 12: Logical similarity operator applied to tasks A, B 
and C. 

⋙ A B D E G H C F ∑ ABC
A 0 1 1 1 1 1 1 1 7 0 
B 0 1 1 1 1 1 1 1 7 0 
D 0 0 0 1 1 1 0 1 4 1 
E 0 0 0 0 1 1 0 0 2 1 
G 0 0 0 1 0 1 0 0 2 1 
H 0 0 0 0 0 0 0 0 0 1 
C 0 1 1 1 1 1 1 1 7 0 
F 0 0 0 0 0 1 0 0 1 1 
∑ 0 3 3 5 5 7 3 4  
ABC 1 1 1 1 1 1 1 1   

The selected tasks have the same behavior with 
the rest of tasks (value 1 in red boxes) which implies 
that the tasks A, B and C are in a block. To 
determine the nature of this block, let’s extract the 
sub matrix composed of the three tasks: 

Table 13: Sub-matrix related to tasks A, B and C. 

⋙ A B C ∑ ⊕  
A 0 1 1 2 1 
B 0 1 1 2 1 
C 0 1 1 2 1 
∑ 0 3 3  
⊕ 1 1 1   

Tasks B and C have the same behavior with A 
(value 1 red box), and are in loop or Xor (blue 
boxes).The green square correspond to a loop 
pattern. We reduce the matrix by substituting B, C 
by a unique activity denoted BC: 

Table 14: Indirect succession matrix related to tasks A and 
block B and C. 

⋙ A BC 

A 0 1 

BC 0 0 

The Petri net corresponding to this matrix is 
 

 

Figure 6: Petri net corresponding to table 17. 

By replacing the block BC by the two tasks that 
are in loop, the previous Petri net becomes:  

 

Figure 7: Splitting the block BC. 

Now we extract the sub matrix D, E, G, H and F 

BC A 
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constituting a block as follows: 

Table 15: Indirect succession matrix for L. 

⋙ D E G H F ∑ ⊕
D 0 1 1 1 1 4 1 
E 0 0 1 1 0 2 0 
G 0 1 0 1 0 2 0 
H 0 0 0 0 0 0 1 
F 0 0 0 1 0 1 1 
∑ 0 2 2 4 1   
⊕  1 0 0 1 1   

 

We select E and G having an equal value in sum 
of the rows, by computing the logical similarity 
operator, we detect that these two tasks are in a 
parallel block. By substituting tasks E and G by a 
unique activity EG, our indirect succession matrix 
becomes: 

Table 16: Indirect succession matrix (reduced). 

⋙ D EG H F ∑ ⊕  

D 0 1 1 1 3 1 

EG 0 0 1 0 1 1 

H 0 0 0 0 0 1 

F 0 0 1 0 1 1 

∑ 0 1 3 1   

⊕  1 1 1 1   

Idem, the tasks EG and F which are in Xor are 
substituted with a representative activity (EFG):  

Table 17: Indirect succession matrix (reduced). 

⋙ D EFG H ∑ 
D 0 1 1 2 

EFG 0 0 1 1 
H 0 0 0 0 
∑ 0 1 2  

The matrix corresponds to succession pattern. 
The Petri representing to the matrix is: 

 
 

Figure 8: Petri Net corresponding to the Matrix. 

As EFG is not an elementary element, we split 
the block EFG into EG and F having an XOR 
relation. The Petri net becomes: 

 

Figure 9: Petri net after splitting the block EFG. 

As EG is not an elementary element, we split it into 
tasks E and G having parallel relation. So, the Petri 

net becomes:  

 

Figure 10: The Petri net after splitting the block EG. 

Now, we can substitute the two blocks (ABC and 
DEFGH) by the representative elements. So the 
Indirect succession matrix of the log L is: 

Table 18: Indirect succession matrix related to block ABC 
and block DEFGH. 

⋙ ABC DEFGH 
ABC 0 1 

DEFGH 0 0 

The matrix corresponds to succession pattern, 
and the Petri net corresponding to the matrix is 
shown in Figure 11: 

 

Figure 11: Final petri net. 

7 CONCLUSION 

Our approach for block discovery extends the 
algorithm presented in (Boushaba et al., 2013). The 
idea is taking a log file as input to generate a Petri 
net by creating a matrix representation and reducing 
its size iteratively. Filters are added to automate 
detection and loops are also handled. 

The algorithm presented in this paper is more 
efficient than those presented in (Van Der Aalst et 
al., 2004) and (De Medeiros et al., 2003) in the sense 
that it is not necessary to go through the whole log 
file to discover each place and each transition of the 
discovered Petri net. Additionally, our algorithm is 
characterized by its ability to be parallelized in order 
to discover different blocks. Another advantage of 
our algorithm is that by dividing the log into sub 
logs reduces the whole complexity as it is faster to 
process each sub log separately than processing the 
entire log. Finally, our algorithm is O (n2), which 
makes it appropriate to deal with large event logs 
(real logs) that can be composed of thousands 
activities unlike the existing ones (Van der Aalst, 

EFG D H 
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2012). 
In order to enrich our research, we intend to 

introduce the partial block concept, which should 
allow us to deal with incomplete logs. The 
application will be improved to generate all 
relationships and the discovered Petri Net. 
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