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Abstract: In the present paper we focus on the performance of clustering algorithms using indices of paired agreement 
to measure the accordance between clusters and an a priori known structure.  We specifically propose a 
method to correct all indices considered for agreement by chance – the adjusted indices are meant to provide 
a realistic measure of clustering performance. The proposed method enables the correction of virtually any 
index – overcoming previous limitations known in the literature - and provides very precise results.  We use 
simulated datasets under diverse scenarios and discuss the pertinence of our proposal which is particularly 
relevant when poorly separated clusters are considered. Finally we compare the performance of EM and K-
Means algorithms, within each of the simulated scenarios and generally conclude that EM generally yields 
best results. 

1 INTRODUCTION 

In the present study we focus on the use of indices of 
paired agreement to measure accordance between 
two partitions of the same data and propose a 
method to handle agreement by chance. 

This contribution aims to fill a gap in the 
literature since recent alternative solutions that have 
been proposed to address this issue - e.g. (Albatineh, 
2010) or (Albatineh and Niewiadomska -Bugaj, 
2011) - are limited in scope. We resort to diverse 
indices of paired agreement – Rand, Russell and 
Rao, Gower and Legendre, Jaccard, Czekanwski, 
Goodman and Kruskal, Sokal and Sneath, Fowlkes 
and Mallows – and illustrate the capacity of the 
proposed method to adjust virtually any index for 
agreement by chance.  

In order to illustrate the usefulness of the 
proposed method we compare the performance of 
two well-known clustering tools: the Expectation 
Maximization (EM) and the K-Means (KM) 
algorithms. The EM provides the estimation of a 
finite mixture model - (Dempster et al., 1977) and, 
for example, (O´Hagan et al., 2012). The KM 
algorithm, a (dis)similarity-based clustering method, 
was independently discovered in different scientific 
fields and is still a widely used clustering tool ((Jain, 
2010), (Shamir and Tishby, 2010)). 

We conduct clustering external validation trying 
to measure the fit between a clustering structure 
captured in cluster analysis and the ground truth. 
The numerical experiments conducted resort to 
simulated data sets and consider diverse clustering 
scenarios.  

1.1 Indices of Paired Agreement 
between Partitions 

Similarity indices have been used in various 
domains for a long time: e.g. in clustering ecological 
species (Jaccard, 1908), in plant genetics (Meyeri et 
al., 2004) or in documents clustering (Chumwatana 
et al., 2010). Several similarity indices can be used 
to measure  the agreement between two partitions of 
the same data  - PK and PQ with K and Q groups, 
respectively. These are generally designated by 
Indices of Agreement (IA) - see ((Gower and 
Legendre, 1986), (Milligan and Cooper, 1986)). 

Some of the IA are based on the number of pairs 
of observations that both partitions allocate (or not) 
to the same cluster – these are Indices of Paired 
Agreement (IPA). In the present study, diverse IPA 
are used to measure the degree of agreement 
between partitions. They can be determined from a 
similarity  matrix A - a 2×2 matrix, where element 
a=A(1,1) represents the number of pairs of 
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observations both partitions agree to allocate in the 
same group; b=A(1,2) represents the number of pairs 
that only belong to the same group in  partition PK; 
c=A(2,1)  represents the numbers of pairs that only 
belong to the same group in  partition PQ; d=A(2,2) 
represents the number of pairs of observations both 
partitions agree to allocate to different groups. The 
values of a, b, c and d can be calculated from the  
cross-classification table between the two partitions 
being considered (see equations 1 to 4). The cross-
classification table is a K*Q  matrix,  whose (k,q)th  
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Table 1: Indices of paired agreement. 

IPA L Family  

R   (Rand, 1971) 

RR   (Russell and Rao, 1940) 

GL × (Gower and Legendre, 1986) 

J × (Jaccard, 1908) 

C   (Czekanwski, 1932) 

GK × (Goodman and Kruskal, 1954) 

SoS × (Sokal and Sneath, 1963) 

SS2 × (Sokal and Sneath, 1963) 

FM   (Fowlkes and Mallows, 1983) 

element - nkq - is the number of observations in the 
intersection of group Ck of PK (k=1…K) and Cq of 
PQ(q=1…Q), nk. and n.q represent the matrix’s rows 
and columns totals (respectively) and n the number 
of observations.  

In the present work we consider the indices of 
paired agreement in Table 1. The indices SoS and 
SS2 can be calculated using the equations (5) and 
(6), respectively, the others indices equations can be 
found in references mentioned in Table 1. 

(5) 

2
2
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1.2 Correcting Indices for Agreement 
by Chance 

In the context of clustering validation,  indices of 
agreement (IA) are used to measure the agreement 
between partitions drawn from slightly modified 
data sets to decide upon a clustering solution 
stability, or to measure the agreement between 
clustering solutions and the real partition (external 
validation). The relevance of clustering validation is 
underlined by (Hennig, 2006), for example.  

The agreement between two partitions – 
summarized in the corresponding cross-
classification table –can, however, be due to chance. 
Therefore, in order to adequately evaluate the degree 
of agreement between two partitions, indices of 
agreement must be corrected to exclude agreement 
by change. (Hubert and Arabie, 1985) were the first 
to address this issue regarding the Rand index. For 
correction, they considered the mean of this paired 
index under the null hypothesis (H0) of no 
association between the partitions to be compared, 
conditional on the row and column table totals - 
hypothesis of restricted independence. The adjusted 
index is then: 
 

	
1 	

 (7) 

 

AdjM(IPA) is bounded by 1 and takes the value 
zero when the observed index  - IPA obs– is equal to 
the expected value under H0. 

In general, the exact IPA mean, under H0, can be 
determined considering all the cross-classification 
tables under the hypothesis of restricted 
independence. However, this is only feasible for 
relatively small tables with small observed counts, 
due to computational complexity (Krzanowski and 
Marriott, 1994). 

Under H0, the probability of observing the  
associated cross-classification table can be modelled 
by the Multivariate Hypergeometric distribution 
(Halton, 1969) and the conditional probability of the 
value nkq given the values in the previous rows and 
columns can be modelled by the Hypergeometric 
distribution. Thus, the conditional expected value of 
nkq given previous entries and the row and column  
totals can be calculated under H0. In fact, one can 
determine the means and variation of all IPA that are 
linear functions of the sum of the squares of the nkq 

i.e. all indices belonging to the L Family, namely the 
R, RR, C and FM indices in Table 1- see (Albatineh, 
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2010) for more details. (Albatineh and 
Niewiadomska-Bugaj, 2011) proposed an alternative 
approach for some indices - SS2, J and GL - that are 
not members of the L Family. They expressed J and 
SS2 as functions of C, and GL as function of R, and 
approximately computed their expected values. 

Despite the diverse approaches to handle the 
correction for agreement by chance there are various 
IPA that are not covered by the procedures so far 
proposed - GK and SoS, for example. Therefore we 
propose a methodology that can deal with the 
correction of any IPA for agreement by chance. 

2 THE PROPOSED METHOD  

In the present work, the expected value of each IPA 
is estimated using the average of its values 
corresponding to 17,000 cross-classifications tables 
generated under H0 - see (Amorim and Cardoso, 
2010). For each generated table, the IPA values are 
determined which enables obtaining the empirical 
IPA distribution (under H0) and the corresponding 
descriptive statistics.  

The 17,000 cross-classifications tables generated 
ensure that average estimates have 99% confidence 
(Agresti et al., 1979).  

The advantage of the proposed approach is that it 
can be applied to virtually all indices– see also 
(Amorim and Cardoso, 2012) where a similar 
procedure was used for Mutual Information Indices. 

In order to evaluate the performance of the IPA 
in this study (seeTable 1), several scenarios are 
considered: 

 Simulated data sets with Gaussian 2, 3 and 4 
latent groups with 2, 3 or 4 Gaussian distributed 
variables and with 500, 800 and 1100 observations, 
respectively. 

 Mixtures with balanced and unbalanced 
clusters’ weights. 

 Diverse degrees of clusters’ overlapping: 
poorly-separated, moderately-separated and well-
separated clusters, where the degree of overlap is the 
sum of misclassification probabilities (Maitra and 
Melnykov, 2010). 

The R MixSim package is used to obtain the 
simulated data (Maitra and Melnykov, 2010). Thirty 
simulated data sets are obtained in each of the 18 
scenarios. Cluster analysis is performed using the 
Expectation-Maximization algorithm implemented 
in the Rmixmod package (Lebret et al, 2012) and the 
K-means algorithm implemented in the IBM SPSS 
Statistics software. 

3 DATA ANALYSIS AND 
RESULTS 

In this section we present the results referring to the  
simulated 3 clusters’ data sets. The corresponding 
distributional parameters are presented in Tables 2 
and 3. The results obtained refer to all scenarios 
previously indicated in section 2.  

Table 2: Balanced simulated data sets distributional 
parameters. 

Data set Poor Moderate Weel 

Group Variable Mean Var Mean Var Mean Var

1 
(30%)

X1 10.5 3.5 11.9 1.1 10.5 1.0

X2 2.3 0.5 2.5 0.3 2.5 1.3

X3 7.8 2.0 8.0 0.9 4.3 1.8

2 
(30%)

X1 10.0 3.0 9.8 1.2 15.0 2.2

X2 2.5 0.3 1.5 0.3 4.0 1.2

X3 7.0 1.0 6.8 0.7 7.0 1.5

3 
(40%)

X1 9.5 2.0 11.8 1.4 7.0 2.3

X2 2.0 0.4 2.0 0.4 6.2 1.6

X3 7.5 1.2 8.9 0.7 2.5 1.7

Average overlap 0.633 0.140 0.019 

Max.  overlap 0.653 0.516 0.029 

Table 3: Unbalanced simulated data sets distributional 
parameters. 

Data set  Poor Moderate Weel 

Group Variable Mean Var Mean Var Mean Var

1 
(60%) 

X1 11.0 2.2 12.3 1.1 14.3 0.7

X2 5.3 0.8 6.4 0.6 7.0 0.2

X3 7.8 1.8 8.8 1.1 9.2 0.3

2 
(30%) 

X1 10.0 2.0 11.0 1.0 12.7 0.5

X2 4.5 0.5 5.0 0.5 5.0 0.4

X3 7.2 1.4 7.5 0.8 7.6 0.3

3 
(10%) 

X1 9.4 1.8 9.5 0.9 11.0 0.5

X2 4.0 0.4 3.7 0.4 3.5 0.3

X3 7.0 1.5 6.6 0.7 6.0 0.2

Average overlap 0.632 0.143 0.021 

Max. overlap  0.868 0.215 0.115 
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Table 4: IPA simulated, distributional and approximated expectations (values are averaged over the 30 datasets and 
correspond to external validation of EM clusters). 

D
ataset- 

IPA 

Dataset  - separation 

Poor Moderate Weel 

sim distrib approx sim distrib approx sim distrib approx 

B
alanced 

Rand 0.464 0.464 0.521 0.521 0.552 0.552 

RR 0.209 0.209 0.148 0.148 0.115 0.115 

GL 0.632 0.631 0.684 0.687 0.711 0.716 

J 0.275 0.270 0.232 0.224 0.204 0.195 

C 0.431 0.431 0.376 0.376 0.339 0.339 

GK 0.000 0.000 0.000 

SoS 0.212 0.228 0.224 

SS2 0.160 0.140 0.132 0.106 0.114 0.086 

FM 0.453 0.453 0.381 0.381 0.339 0.339 

U
nbalanced 

Rand 0.500 0.500 0.505 0.505 0.504 0.504 

RR 0.229 0.229 0.206 0.206 0.209 0.209 

GL 0.666 0.668 0.671 0.673 0.670 0.672 

J 0.313 0.309 0.293 0.289 0.296 0.292 

C 0.476 0.476 0.453 0.453 0.457 0.457 

GK 0.000 0.000 0.000 

SoS 0.246 0.248 0.248 

SS2 0.186 0.172 0.172 0.155 0.174 0.157 

FM 0.477 0.477 0.454 0.454 0.457 0.457 

Table 5: IPA simulated, distributional and approximated expectations (values are averaged over the 30 datasets and 
correspond to external validation of KM clusters). 

D
ataset- 

IPA 

Dataset – separation 

Poor Moderate Weel 

sim distrib approx sim distrib approx sim distrib approx 

B
alanced 

R 0.552 0.552 0.551 0.551 0.552 0.552 

RR 0.115 0.115 0.116 0.116 0.115 0.115 

GL 0.711 0.716 0.710 0.715 0.711 0.716 

J 0.204 0.195 0.205 0.196 0.204 0.195 

C 0.339 0.339 0.341 0.341 0.339 0.339 

GK 0.000 0.000 0.000 

SoS 0.224 0.225 0.224 

SS2 0.114 0.086 0.114 0.087 0.114 0.086 

FM 0.339 0.339 0.341 0.341 0.339 0.339 

U
nbalanced 

R 0.515 0.515 0.514 0.514 0.506 0.506 

RR 0.152 0.152 0.158 0.158 0.198 0.198 

GL 0.680 0.683 0.679 0.681 0.672 0.674 

J 0.239 0.231 0.246 0.238 0.285 0.280 

C 0.386 0.386 0.394 0.394 0.443 0.443 

GK 0.000 0.000 0.000 

SoS 0.235 0.237 0.246 

SS2 0.136 0.110 0.140 0.115 0.166 0.148 

FM 0.390 0.390 0.398 0.398 0.444 0.444 
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Table 6: IPA observed and adjusted Means and the corresponding coefficients of variation (values are averaged over the 30 
datasets and correspond to external validation of EM clusters). 

D
ataset- 

IPA 

Dataset – separation 

 Poor  Moderate  Weel 

obsM cv adjM cv obsM cv adjM cv obsM cv adjM cv 

B
alanced 

R 0.483 0.131 0.038 0.655 0.710 0.102 0.400 0.236 0.974 0.006 0.943 0.014 
RR 0.219 0.262 0.012 0.629 0.242 0.124 0.110 0.205 0.327 0.015 0.239 0.018 
GL 0.649 0.091 0.050 0.642 0.828 0.068 0.464 0.219 0.987 0.003 0.955 0.011 
J 0.293 0.108 0.024 0.658 0.459 0.085 0.293 0.249 0.927 0.018 0.908 0.022 
C 0.453 0.084 0.038 0.655 0.628 0.060 0.400 0.236 0.962 0.009 0.943 0.014 

GK 0.101 0.555 0.101 0.554 0.724 0.175 0.724 0.175 0.998 0.001 0.998 0.001 
SoS 0.234 0.199 0.028 0.636 0.485 0.146 0.333 0.257 0.943 0.014 0.927 0.018 
SS2 0.172 0.126 0.014 0.661 0.299 0.107 0.191 0.262 0.864 0.033 0.847 0.038 
FM 0.476 0.121 0.040 0.637 0.636 0.051 0.406 0.225 0.962 0.009 0.943 0.014 

U
nbalanced 

R 0.605 0.062 0.211 0.362 0.847 0.025 0.690 0.064 0.990 0.004 0.980 0.009 
RR 0.282 0.152 0.069 0.373 0.377 0.056 0.215 0.072 0.452 0.029 0.307 0.021 
GL 0.753 0.039 0.260 0.348 0.917 0.014 0.747 0.053 0.995 0.002 0.985 0.006 
J 0.416 0.126 0.151 0.384 0.711 0.053 0.591 0.083 0.979 0.009 0.970 0.013 
C 0.585 0.091 0.211 0.362 0.830 0.032 0.690 0.064 0.989 0.005 0.980 0.009 

GK 0.409 0.338 0.409 0.338 0.934 0.025 0.934 0.025 1.000 0.000 1.000 0.000 
SoS 0.366 0.128 0.158 0.381 0.715 0.051 0.621 0.077 0.981 0.008 0.974 0.011 
SS2 0.264 0.156 0.096 0.403 0.553 0.078 0.460 0.107 0.959 0.018 0.950 0.021 
FM 0.587 0.093 0.212 0.362 0.831 0.032 0.690 0.063 0.989 0.005 0.980 0.09 

Table 7: IPA observed and adjusted Means and the corresponding coefficients of variation (values are averaged over the 30 
datasets and correspond to external validation of KM clusters). 

D
ataset- 

IPA 

Dataset – separation 

 Poor  Moderate  Weel 

obsM cv adjM cv obsM cv adjM cv obsM cv adjM cv 

B
alanced 

R 0.567 0.007 0.035 0.272 0.704 0.019 0.341 0.083 0.968 0.008 0.929 0.017 
RR 0.123 0.024 0.009 0.273 0.193 0.037 0.087 0.080 0.323 0.014 0.235 0.018 
GL 0.724 0.005 0.044 0.269 0.826 0.011 0.400 0.075 0.984 0.004 0.944 0.014 
J 0.221 0.024 0.021 0.275 0.394 0.044 0.238 0.095 0.910 0.021 0.888 0.028 
C 0.362 0.020 0.035 0.272 0.565 0.032 0.341 0.083 0.953 0.011 0.929 0.017 

GK 0.077 0.269 0.077 0.268 0.635 0.062 0.635 0.062 0.997 0.001 0.997 0.001 
SoS 0.243 0.023 0.025 0.275 0.438 0.045 0.276 0.093 0.930 0.017 0.910 0.022 
SS2 0.124 0.027 0.012 0.278 0.246 0.055 0.148 0.106 0.836 0.039 0.815 0.045 
FM 0.362 0.020 0.035 0.272 0.565 0.032 0.341 0.082 0.953 0.011 0.929 0.017 

U
nbalanced 

R 0.550 0.018 0.072 0.223 0.695 0.048 0.373 0.182 0.943 0.100 0.883 0.218 
RR 0.170 0.032 0.020 0.219 0.249 0.089 0.108 0.189 0.416 0.162 0.274 0.234 
GL 0.710 0.011 0.092 0.217 0.820 0.028 0.439 0.161 0.968 0.057 0.901 0.188 
J 0.274 0.029 0.046 0.228 0.450 0.108 0.272 0.219 0.889 0.196 0.850 0.270 
C 0.430 0.022 0.072 0.223 0.620 0.073 0.373 0.182 0.930 0.127 0.883 0.218 

GK 0.155 0.218 0.155 0.218 0.682 0.114 0.682 0.114 0.967 0.075 0.967 0.075 
SoS 0.274 0.032 0.051 0.231 0.469 0.105 0.304 0.207 0.895 0.184 0.862 0.250 
SS2 0.159 0.033 0.026 0.232 0.292 0.143 0.177 0.256 0.834 0.271 0.804 0.325 
FM 0.435 0.023 0.073 0.222 0.625 0.070 0.378 0.177 0.932 0.123 0.884 0.214 

In Tables 4 and 5 we present the comparative  
precision of the proposed simulation based 
approach: the corresponding averages (under H0) 

match the distributional  averages whenever they are 
available - see (Albatineh, 2010) – and are similar to 
the approximated expected values - see (Albatineh 
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and Niewiadomska-Bugaj, 2011). The correction of 
observed indices values, in Tables 6 and 7,  obeys to 
formula (7). 

The results regarding external validation of EM 
and KM clustering algorithms are reported in Tables 
6 and 7. The diverse IPA are affected differently  by 
the adjustment - the GL index is clearly the most 
affected by correction. Also, correction for change is 
particularly essential when considering poorly 
separated clusters. 

As expected, the averages of simulated values, 
under H0, of the GK index are null (Goodman and 
Kruskal, 1954). The R and C indices values are 
equal after adjustment which is in accordance with 
(Albatineh and Niewiadomska-Bugaj, 2006). We 
also conclude that, after adjustment, FM values are 
very similar to R and C values. 

4 DISCUSSION AND 
PERSPECTIVES 

In the present paper we focus on the correction of 
indices of paired agreement (IPA) between two 
partitions. 

When comparing two partitions – e.g. when 
performing clustering validation and comparing 
clusters estimated and real clusters – agreement 
between them may be due to chance. This issue was 
first addressed by (Hubert and Arabie, 1985) 
referring to a specific measure of agreement - the 
Rand index of paired agreement. These authors 
provided a new adjusted Rand index excluding 
agreement by chance. Naturally, there are numerous 
IPA and this issue should be addressed when using 
any index. Recently, (Albatineh, 2010), for example, 
identified a family of paired indices and provided 
analytic formulas for their correction,  using the 
corresponding averages under the hypothesis of 
independence. However, analytic correction cannot 
be provided for many indices – e.g. for the Jaccard 
index (a very old and well-known index) or the 
Gower and Legendre index, a more recent one.  

As an alternative approach for IPA correction, 
we propose using the simulation of crosstabs to 
estimate the average of any index under the 
hypothesis of restricted independence i.e. subject to 
constraints of marginal totals (including the number 
of observations in the known clusters and the 
estimated ones). We generate 17,000 tables for the 
estimation of each average. Finally, we correct the 
observed IPA using their estimated average and use 
normalization so that all values can be compared. 

Nine IPA are analysed. The main contribution of this 
study is therefore to provide a method that is able to 
correct virtually any IPA for agreement by chance. 
When an analytic solution is available for correction 
(based on distributional assumptions), the 
differences between IPA analytic averages and 
averages provided by the proposed method are 
insignificant (at most 0.0001) which shows the 
method’s precision. 

To illustrate the usefulness of the proposed 
method for the indices' adjustment, we conduct 
external validation of the EM and KM algorithms 
within diverse scenarios. 

According to the results obtained we identified 
notorious differences between the observed and 
adjusted  indices when trying  to capture a clustering  
structure originated in a poorly separated original 
mixture. This fact clearly demonstrates the 
pertinence of indices’ correction. In fact, for difficult 
(impossible?) clustering tasks the observed indices 
clearly overestimate the clustering performance, 
while the adjusted indices translate the poor 
agreement with original clusters, despite of some 
variability which, we believe, is realistic. 

For the moderately  separated components, the 
agreement by chance factor yields minor correction 
to the paired indices, and when “easy” clusters  
(with a good separation) are considered, correction 
for chance is almost insignificant.  

Performance of the EM algorithm is generally 
better. The gap between EM and KM is clearer in 
the case of unbalanced clusters. For “easy” 
clustering tasks, the KM and EM perform alike.   

The results obtained underline the need to use 
adjusted indices, corrected for agreement by chance 
when conducting evaluation of (any) clustering 
algorithms’ performance based on agreement with 
the original structure. Additional clustering 
algorithms and indices can be used in the future.   

In future research, the distributions of alternative 
corrected indices should be further investigated for 
electing the most useful ones – those evidencing the 
least biased distributions and the easiest to interpret. 

REFERENCES 

Agresti, A., Wackerly, D. & Boyett, J. M., 1979. Exact 
conditional tests for cross-classifications: 
approximation of attained significance levels. 
Psychometrika, 44, 75-83. 

Albatineh, A. N., Niewiadomska-Bugaj, M. & Mihalko, 
D., 2006. On Similarity Indices and Correction for 
Chance Agreement. Journal of Classification, 23, 301-
313. 

Paired�Indices�for�Clustering�Evaluation��-�Correction�for�Agreement�by�Chance

169



 

Albatineh, A. N., 2010. Means and variances for a family 
of similarity indices used in cluster analysis. Journal 
of Statistical Planning and Inference, 140, 2828-2838. 

Albatineh, A. N. & Niewiadmska-Bugaj, M., 2011. 
Correcting Jaccard and other similarity indices for 
chance agreement in cluster analysis. Advances in 
Data Analysis and Classification, 5, 179-200. 

Amorim, M. J. &Cardoso, M. G. M. S., 2010. Limiares De 
Concordância Entre Duas Partições. Livro de Resumos 
do XVIII Congresso Anual da Sociedade Portuguesa 
de Estatística, 47-49. 

Amorim, M. J. P. C. & Cardoso, M. G. M. S., 2012. 
Clustering cross-validation and mutual information 
indices. In: Ana Colubi, K. F., Gil Gonzalez-
Rodriguesand Erricos John Kontoghiorghes, ed. 20th 
International Con-ference on Computational Statistics 
(COMPSTAT 2012), 2012 Limassol, Cyprus. The 
International Statistical Institute/International 
Association for Statistical Computing, 39-52. 

Chumwatana, T., Wong, K. W. & Xie, H., 2010. A SOM-
Based Document Clustering Using Frequent Max 
Substrings for Non-Segmented Texts. J. Intelligent 
Learning Systems & Applications,, 2, 117-125. 

Czekanowski, J., 1932. "Coefficient of racial likeness" and 
"durchschnittliche Differenz". Anthropologischer 
Anzeiger, 14, 227-249. 

Dempster, A. P., Laird, N. M. & Rubin, D. B., 1977. 
Maximum likelihood from incomplete data via the EM 
algorithm.Journal of the Royal Statistical Society. 
Series B (Methodological), 1-38. 

Everit, B., Landau, S. & Leese, M. 2001. Cluster Analysis, 
London, Arnold. 

Fowlkes, E. B. &mallows, C. L., 1983. A method for 
comparing two hierarchical clusterings.Journal of the 
American Statistical Association, 78, 553-569. 

Goodman, L. A. & Kruskal, W. H., 1954. Measures of 
Association for Cross Classifications. Journal of the 
American Statistical Associations, 49. 

Gower, J. C. & Legendre, P., 1986. Metric and Euclidean 
Properties of Dissimilarity Coefficients.  Journal of 
Classification, 3. 

Halton, J. H., 1969. A rigorous derivation of the exact 
contingency formula. In:Proceedings of the 
Cambridge Philosophical Society. Cambridge  Univ 
Press, 527-530. 

Hennig, C., 2006. Cluster-wise assessment of cluster 
stability. Research report nº 271, Department of 
Statistical Science, University College London. 

Hubert, L. and Arabie, P. 1985. Comparing partitions. 
Journal of classification, 2, 193-218. 

Jaccard, 1908. Nouvelles Recerches sur la Distribuition 
Florale. Bulletin de la Societé Vaudoise de Sciences 
Naturells, 44, 223-370. 

Jain, A. K., 2010. Data clustering: 50 years beyond K-
means. Pattern Recognition Letters, 31, 651-666. 

Krzanowski, W. J. & Marriott, F. H. C., 1994. 
Multivariate analysis, Edward Arnold London. 

Lebret, R., S., L., Langrognet, F., Biernacki, C., Celeux, 
G. & Govaert, G., 2012. Rmixmod: The r package of 
the model-based unsupervised, supervised and semi- 

supervised classification mixmod library.http://cran.r-
project.org/web/ packages/Rmixmod/index.html. 

Maitra, R. & Melnykov, V., 2010. Simulating data to 
study performance of finite mixture modeling and 
clustering algorithms. Computational and Graphical 
Statistics, 19, 354-376. 

Meyeri, A. D. S., Garcia, A. A. F., Souza, A. P. & JR., C. 
L. D. S., 2005. Comparison of similarity coefficients 
used for cluster analysis with dominant markers in 
maize (Zea mays L). Genetics and Molecular Biology, 
27, 83-91. 

Milligan, G. W. & Cooper, M. C., 1986. A Study of 
Comparability of External Criteria for Hierarchical 
Cluster Analysis. Multivariate Behavioral  Reserch, 
21, 441-458. 

O’Hagan, A., Murphy, T. B. & Gormley, I. C., 2012. 
Computational aspects of fitting mixture models via 
the expectation–maximization algorithm. Compu-
tational Statistics and Data Analysis, 56, 3843-3864. 

Rand, W. M., 1971. Objective Criteria for the Evaluation 
of Clustering Methods. Journal of the American 
Statistical Association, 66, 846-850. 

RusseL, P. F. & Rao, T. R. 1940. On Habitat and 
Association of Species of Anophelinae Larvae in 
South-Eastern Madras. J. Malar. Inst. India, 3, 153-
178. 

Shamir, O. and tishby, N., 2010. Stability and model 
selection in k-means clustering. Mach Learn, 80, 213-
244. 

Sokal, R. R. and Sneath, P. H., 1963. Principles of 
Numerical Taxonomy, San Francisco CA: Freeman. 

 
 
 
 

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

170


