
Defining Domain Specific Transformations in Human-Computer
Interfaces Development

Jean-Sébastien Sottet and Alain Vagner
Public Research Center Henri Tudor, 29 Avenue John F. Kennedy, Luxembourg, Luxembourg

Keywords: Human-Computer Interaction, Model-Driven Development, Model Transformation, Domain Specific Trans-
formation Languages.

Abstract: Early model-based approaches for Human-Computer Interaction (HCI) clearly depicted models and frame-
works for generating User Interfaces (UI) but considered model transformations as black-boxes. In the 2000’s,
these approaches were criticized due to the poor quality of the produced UI. One of the main reasons of this
poor quality can be easily observed in state of the art UI transformations: they are the heart of designers’
know-how but are maintained by a minority of specialists. Meanwhile, mainstream UI design methods have
shown a growing number of heterogeneous stakeholders that collaborate to produce modern and qualitative
UI. We claim that these stakeholders must comprehend and interact with transformations and thus we need to
make the transformation language affordable to these stakeholders. Indeed, such a simplification should hide
transformations complexity and burden for any stakeholder, finally focusing on a specific part of the design do-
main: a Domain Specific Language (DSL) for transformations or Domain Specific Transformation Language
(DSTL). We provide in this paper a method and a supporting tool for systematizing and finally executing
DSTL for model-driven UI development. We depict that framework on a proof of concept implementation for
an HCI-specific stakeholder: the usability expert.

1 INTRODUCTION

In the end of the 80’s, the development of Human-
Computer Interfaces (HCI) was not considered as a
particular task: it was done by any of the applica-
tion developers. The complexity and effort needed
for building User Interfaces (UI), like any other part
of information systems, were considerably growing
up during the last decades. In order to solve this com-
plexity issue and reduce the consequent cost, some
tried to generate the user interfaces. These approaches
considered that an important part of the UI has already
been made during the data and functional architec-
ture design. Thus, early academic work in this area
was focused on model-based approaches and frame-
works (Szekely et al., 1992; Vanderdonckt, 1995;
Puerta, 1997) for automatizing the creation of UI.

The focus of these first model-based frameworks
was the establishment of (meta)models (e.g., expres-
sive power, defining the concerns, etc.) whereas trans-
formations were seen as black boxes. More recently,
Model Driven Engineering (MDE) has influenced the
model-based HCI approaches. Transformations have
been more explicitly defined and specifically instru-

mented by tools such as ATL (Botterweck, 2011; Sot-
tet et al., 2007), EMFText and Kermeta (Beaudoux
et al., 2010) or graph transformations (Stanciulescu
et al., 2005). They are thus an important artefact to be
considered in the automation of HCI development.

It is admitted that recent UI design projects (as
in any software part) involve collaboration between
various stakeholders, e.g., graphical designers, us-
ability specialists, analysts, etc. However several au-
thors claimed that using traditional MDE approaches
is a specialist work (e.g., transformation engineers)
that requires an important training. For instance
in (Coutaz, 2010; Panach et al., 2011), the authors
consider that traditional transformation languages re-
quire specific skills and could not be written by any
HCI stakeholder.

As a result, model transformations are very com-
plex to understand for many stakeholders. They could
not use or modify transformations in the same way
they impact models. For instance, a graphical de-
signer is traditionally using a mock-up tool, such as
balsamiq1 which is a domain specific modelling en-

1http://balsamiq.com/

246 Sottet J. and Vagner A..
Defining Domain Specific Transformations in Human-Computer Interfaces Development.
DOI: 10.5220/0004699702460253
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 246-253
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

vironment. Thus, it seems important that designers
could also drive some of the transformation aspects
related to graphical design if we want to build quali-
tative HCI.

In this paper we strive for a better stakeholder in-
volvement (not only the developers) in Model-Driven
Development (MDD) transformation processes for
HCI. To reach this objective we must first (section 2)
find which stakeholders are concerned and understand
the need for building a Domain Specific Transforma-
tion Language (DSTL). We propose such a language
in section 3. Finally, in the section 4, we propose
a systematisation of DSTL construction, making it
more specific to the problem to be addressed. In this
section we also propose an approach to execute the
transformations expressed in our DSTL.

2 HCI DESIGN STAKEHOLDERS
AND THE TRANSFORMATION
PARADIGM

2.1 Model-Based Framework for User
Interfaces Design

HCI research in Model-based UI elicited a common
reference framework: CAMELEON (Calvary et al.,
2003). This framework is made of several metamod-
els (see Figure 1, the 4 core metamodels) in which
different aspects of HCI engineering are represented.
The CAMELEON models correspond to specific do-
mains such as graphical design (Concrete UI model,
CUI), functional analysis (Task Model), domain anal-
ysis (Domain Model), interaction design (Abstract UI
model, AUI), all of which lead to the production of the
UI code (Final UI, FUI).

Each stakeholder has his own background knowl-
edge and expertise domain: usability expert, system
analyst, graphical designer, developer, etc. All these
stakeholders may be disappointed by standard trans-
formation languages, like ATL. In practice they are
not directly involved in the definition of transforma-
tions but, at best, give advice on the transformation
result. For instance, the usability expert would rec-
ommend to use alphabetically ordered lists for the se-
lection of a contact in an address book.

In Figure 1, we show the envisioned distribution of
stakeholders on the design process and their potential
interactions on transformations and models. The main
stakeholders are the following:

Designers: have an interest on the concrete UI:
layout, graphical elements, mock-ups, etc. Thus, de-
signer could have an impact on the transformations

proposed between CUI and FUI.
Developers: classical development process could

start after CUI specification. Developers have an im-
pact on the FUI (e.g., code). On the contrary, in a
transformation-based approach, developers will have
to dig CUI to FUI transformations and tune, if neces-
sary, both transformations and FUI.

Analysts: on the contrary to the developer role,
analysts have an early impact on forward engineering
based on task and domain models. In addition, they
can have an impact on transformations from domain
to AUI.

Usability Experts: have a potential impact on all
transformation steps since usability principles can be
diluted all along the forward engineering steps.

Task &

Domain
CUI FUI AUI

Analyst(s)

Ergonomists

Developer

Designer

Figure 1: HCI Stakeholders interest on transformation pro-
cesses in the CAMELEON Framework.

The CAMELEON framework depicts clearly
(meta)models to be used at each step of the process
(see Figure 1) and it is also quite straightforward to
find which stakeholders will act on which specific as-
pects. We claim that every stakeholder could impact
positively the transformation processes.

2.2 Transformation complexity

As mentioned in (Sendall and Kozaczynski, 2003)
writing transformations requires a clear understand-
ing of input and output semantics. By the way, who
knows and understands the input and output domains?
A relevant answer is certainly: the people who also
participate in modelling activities.

The problem stands not only on (meta)model
understanding but also on transformation languages
complexity. Let’s take for instance the refImmediate-
Composite() symbol, which refers to the immediate
parent of an EMF composition in the ATL language
(Jouault and Kurtev, 2005). It does not directly de-
pend on the input or output models and metamodels
(but on the supporting metametamodel). In addition,
transformations embed some verbosity for technical
(e.g., give name or id to modelling elements) or struc-
tural (e.g., graph search) handling of metamodels. As
we can see on Listing 1, getting a simple label for
a Concrete UI calls for a lot of “structural coding”:

Defining�Domain�Specific�Transformations�in�Human-Computer�Interfaces�Development

247

id, name and content of the label. Most of this code
is certainly a burden for a non-technical stakeholder,
who would rather simply say: “for this particular task
I would like to produce a label which takes the task
name”. Indeed most of the stakeholders are usually
reluctant to learn such “OCL-like” syntax.

Listing 1: Defining a label for a Graphical User Interface.
to out_label : CUI ! Label (

name <�in_tsk . name , --copy the name of the task

id <�in_tsk . getID () , --get the id from task

value <� in_tsk . associations�>first () .
,!manipulatedConcepts . name , --set the

,!content of label

We claim that a collaborative building of transfor-
mations is the clue for more efficient MDD of HCI.
Going in such direction could be an answer to the
bad conclusion of the first generation of model-based
UI approaches (Myers et al., 2000). In order to sup-
port this claim we need to tackle several drawbacks of
classical transformation approaches:

� existing work rarely depicts what information is
added in the transformation processes (e.g., which
know-how to implement). Lot of heuristics are
provided but not necessary implemented, e.g., UI
adaptation (Florins and Vanderdonckt, 2004).

� transformations are either seen as black-box or ex-
pressed in a complex language for “transforma-
tion experts”. Thus, domain experts are unable to
express their “transformation heuristics”.

� in order to facilitate the adoption and commit-
ment/involvement of stakeholders, transforma-
tions have to be explained to each (collaborating)
stakeholders.

In this paper, we concentrate our effort on in-
volving usability experts in the design of transforma-
tions. Firstly because promising work tries to em-
bed usability criteria (Sottet et al., 2007; Garcı́a Frey
et al., 2011) into transformations but without involv-
ing usability experts directly (e.g., defining criteria of
transformations a priori). Secondly, because usability
experts are certainly the less technical stakeholders.
Their tasks are mainly dedicated to prototype (or end-
product) usability assessments. We are convinced that
they could have an interesting impact in early design
phases and avoid cycles of redesign by re-writing the
transformations.

It seems necessary, in order to involve domain spe-
cialists such as the usability expert to define a Domain
Specific Transformation Language (DSTL). It seems
to be a solution to cope with the complexity of stan-
dard transformation languages.

3 DOMAIN SPECIFIC
TRANSFORMATION
LANGUAGE

In the previous section, we have justified the need
for defining a dedicated language, that should help
stakeholders to participate in the transformation de-
sign process. Notably we want them to understand the
transformation effects and involve them in the trans-
formation design. The idea is not to create a fully
functional language for defining transformations but
to provide handlers (i.e., specific parts of the trans-
formation that drive the transformation heuristics) to
specific stakeholders in order to give them control
only on aspects, that would be of interest to them.

We previously established that the usability expert
is a key stakeholder of the AUI to CUI transformation
(see Figure 1). The transformation vocabulary must
be adapted to the usability expert and the structural
aspects of transformations (syntactic overload) must
be hidden. Most of the usability experts are more used
to unstructured languages. In order to design such a
language, we must address the following points:

� define the input vocabulary: usability experts un-
derstand the “interaction type” notion also called
canonical abstract types (Constantine, 2003) that
are used as a basis for model-based approaches.
For instance, all tasks with type “choice of an el-
ement amongst n” reflect an interaction pattern
known by usability experts.

� define the output vocabulary: an usability expert
understands what the elements of a final user in-
terface are, for instance indexed lists, scroll lists,
etc.

� composing the transformation: the transforma-
tion must be easy to write (e.g., using auto-
completion) and have limited choices (e.g., list
of elements). This can considerably shorten the
learning and design time.

The process2 depicted in figure 2 encompasses
the first important step for transformation simplifi-
cation by simplifying input and output vocabularies,
in other words getting a subset of these metamod-
els. Our input metamodel is named TDA (for Task
Domain Abstraction) and bring together the concepts
coming from CAMELEON task metamodel, domain
metamodel and interaction types (AUITypes). One
has to identify which portion of this input metamodel
is really impacting the transformation. In a previ-
ous project (Sottet and Vagner, 2013), we designed

2This process could be generalized to other kinds of
metamodels and with multiple input/ouput metamodels.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

248

many TDA to CUI transformations with ATL. We
have identified that the “interaction type” is the most
used type in the transformation filter (e.g., the dis-
criminating factor). We have done the same for the
CUI, defining which elements are of importance ac-
cording to the study of existing transformations (see
Reduced M2 TDA/CUI on Figure 2).

12-Jul-13 Presentation Tudor 47

 Subset of

Subset of

from M2’TDA element

To M2’CUI element
M2 TDA

M2 CUI

Reduced

M2 TDA

Reduced

M2 CUI

Figure 2: Process applied for specific transformation build-
ing for Task/Abstract UI model and CUI.

As an example, in natural language, usability ex-
perts usually provide some sentences (i.e., rules) like
“It would be nice if all interactive lists could be dis-
played as indexed lists”. Indeed, such form of sen-
tence requires some advanced techniques in natural
language processing in order to be able to interpret
and execute this sentence. Moreover, some provided
sentences can be contradictory, ambiguous, etc. In
this paper we do not provide such advanced natural
language processing tool but rather a controlled lan-
guage for transformation rules specification by usabil-
ity experts.

Such an approach (grammar definition and text
editor) can be easily obtained by writing Xtext code3

or using other DSL workbenches such as MetaEdit+4.
One can summarise the basic specific HCI transfor-
mation rules (for obtaining simple form-based UI)
as a set of 6 sentences/rules (see listing 2, one for
each interaction type, and APPENDIX 2 for an ex-
cerpt of the related Xtext grammar). In addition to this
syntactical simplification and auto-completion, Xtext
comes with interactive lists (see Figure 3) for limited
choices which considerably reduces the error and time
to write such transformations.

Listing 2: Set of rules for building form-based interfaces
from TDA model to CUI model.

r u l e from Container interactive to Window with
,!A l l Concep t s ;

r u l e from Container notinteractive to Panel with
,! No Concep t s ;

r u l e from Output interactive to Panel with A l l
,!Concep t s ;

r u l e from Input interactive to DataField ;
r u l e from Choice 1 / n interactive to

,!ListElementSelector with A l l Concep t s ;

3http://www.eclipse.org/Xtext/
4http://www.metacase.com/mep/

r u l e from Choice n / n interactive to
,!ListElementSelector with A l l Concep t s ;

15-Jul-13 Presentation Tudor 48

Figure 3: List of possible widgets (output metamodel) to
bind with input Task elements.

We can extend this language to operators (more,
less, equal) that can complete the first part (i.e., from)
like for example: “I want all interactive lists contain-
ing more than 6 elements...”. It makes the language
more complete because some rules have a specific
threshold which can be defined the usability specialist
experience.

Obviously this solution considerably reduces the
expression power of these transformations, but this
helps the stakeholders to better grasp the effects/re-
sults of the transformation. In order to support the
execution of these transformations, we have to com-
plete them by generic code expressed in the underly-
ing transformation language (see section 4).

4 SYSTEMATISATION AND
EXECUTION

As mentioned in (Mernik et al., 2005) developing a
DSL is not for free. A lot of inherent costs have been
identified in the development of DSL like: (1) the
training of the community and (2) the implementa-
tion of an interpreter/compiler for execution purposes.
The cost of training the usability expert to our DSTL
would certainly not exceed the training to standard
transformation tools.

In order to simplify the development of such a
transformation DSL we provide a way to systema-
tise some of its construction aspects (See Section 4.1).
It encompasses the automatic extraction of input and
output patterns directly from metamodels. Finally we
provide an Higher Order Transformation (Tisi et al.,
2009) - HOT - (i.e., transformations which process
other transformations) to support the execution of
DSTL using existing transformation technologies (see
Section 4.2).

4.1 Systematisation

Our DSTL, see Listing 2, is obtained by analysing
both input and output metamodel elements (see Fig-
ure 2). This is a kind of HOT, which acts as

Defining�Domain�Specific�Transformations�in�Human-Computer�Interfaces�Development

249

a parametrization of a transformation (Tisi et al.,
2009). As we already mentioned in the previous sec-
tion, for the input metamodel (e.g. Task-Domain-
Abstraction), we use the interaction type as the trans-
formation rules key input (e.g., it is the discriminat-
ing factor that drives the transformations). The output
metamodel contains a structured list of Concrete UI
elements (e.g., set of description of widgets to be dis-
played such as a button, a list, a menu, etc.). These
CUI elements are the choice that the usability expert
will have to do when generating user interfaces.

15-Jul-13 Presentation Tudor 48

M2 TDA

M2 CUI

M2 DSTL

DSTL

generated

DSTL

handwritten

EMF Xtext Grammar

ATL

ATL

Acceleo

+

Figure 4: Automation of the creation of the DSTL grammar.

The idea is not write Xtext grammar code5 but to
partially generate the grammar from the two meta-
models. The core idea (see figure 4) is to extract the
information from each metamodel in order to obtain
the input and output vocabularies for our DSTL (see
Section 3).

To perform this task we firstly transform (using
ATL transformations) the selected elements from two
metamodels into a DSTL specification. This specifi-
cation is an EMF model conform to our DSTL meta-
model. From the TDA metamodel (see Listing 3),
we select the “AUIType” (i.e., the canonical abstract
type) as the DSTL input pattern based on the enumer-
ation literals. From the CUI metamodel we extract
each element (i.e., graphical widgets such as button,
list, etc.). Once we got this DSTL (EMF) model built,
we extract from it a partial Xtext grammar thanks to
an Acceleo template. The two examples of generated
excerpts are available on Figure 5 in the lower left and
lower right boxes. These models are later combined
with a generic core transformation grammar (see 5
middle part) into the final DSTL grammar.

Listing 3: Excerpt of ATL Code for exporting Task (TDA)
model enumeration (EEnumliteral from EMF) of types into
a DSTL input pattern.
r u l e TDAEnumerationTaskToInputElement f

from
inEnumLit : EMF ! EEnumLiteral (inEnumLit .

,!refImmediateComposite () . name=’AUIType’)
to

5This is trivial in this example. However it may be very
error-prone as one could forget to copy some elements.

inPatt : DSTL ! InputElement (
name <� inEnumLit . name ,
elementConcerned <� #” Task ”)

g

15-Jul-13 Presentation Tudor 49

Type :

‘Container’ |

‘Output’ | ‘Input’ |

‘Choice 1/n’

‘Choice n/n’;

Elements :

 ‘Window’ |

‘Panel’ | ‘Sorted List’

| ‘IndexedList’ |

etc…;

Transformation

‘rule’ ‘from’ type=Type

‘to’ el=Elements;

M2 TDA M2 CUI

DSTL

handwritten DSTL

generated
DSTL

generated

+ +

Figure 5: Automation of process from Figure 2.

4.2 Executing the Domain Specific
Transformation Language

The DSTL specified in APPENDIX 2 is a simplifica-
tion of the ATL transformation “from TDA to CUI”.
If the expressive power of such a language is inten-
tionally reduced, the technical and structural aspects
remain hidden behind the scenes in ATL generic code.
Indeed, we provide the stakeholders with a language
that intentionally does not cover all the aspects of a
transformation.

The execution semantics is provided by a general
purpose transformation language (GPTL). Here we
have chosen the ATL transformation language as tar-
get GPTL from our DSTL. In fact, the process that
derives GPTL rules from DSTL rules is also a HOT.
In practice, it consists in combining the DSTL model
(established using the Xtext textual editor from the
generated grammar) and existing core rules (i.e., writ-
ten by transformation specialists).

We have chosen Acceleo6, because (1) it is more
efficient for writing code (i.e., Model to Text) than
ATL itself and (2) it is easier to integrate in the tem-
plate the existing technical ATL code7. We show
an excerpt of the main rule template in the AP-
PENDIX 1 section. It provides, for a DSTL model,
the ATL transformation input-pattern for the AUItype
plus some hand-written filters in order to avoid rules
overlapping (not accepted by the ATL compiler). For
the out-pattern (i.e, after the to) another rule is making
the link between DSTL and ATL-based CUI elements
(cOutPattern).

Finally an ATL transformation is produced: ready
to be compiled and executed. It integrates both previ-
ously implemented ATL transformations (made by a
transformation expert) and ATL code produced from

6www.acceleo.org
7Generic structural manipulations of metamodel in ATL

(e.g., helpers, call of libraries) are provided.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

250

the HCI DSTL transformation. You can find an ex-
ample in the listings 4 and 5.

Listing 4: Example of rule expressed according to the
DSTL
r u l e from Choice 1 / n interactive to

,!ListElementSelector with A l l Concep t s ;

Listing 5: Generated ATL code corresponding to the rule
defined in listing 4.
r u l e selection_1_nToListElementSelector f

from
in_tsk : TDA ! Task (

in_tsk . auiType=#” selection_1_n ”
and in_tsk . isInteractivelyValid ())

to
out : CUI ! ListElementSelector (

name <� in_tsk . name ,
id <�in_tsk . getID () ,
containedElements <� in_tsk . associations�>

,!collect (e j thisModule .
,!DomainAttributeToInteractor (e .
,!manipulatedConcepts)))

g

5 RELATED WORK

Some related work in MDE and HCI engineering pro-
motes the adaptation of transformation languages for
specific purposes.

In (Agrawal et al., 2003), the authors propose a
UML visualisation of graph transformations, that ad-
dresses people who are accustomed to UML syntax.
In the same idea, UMLx (Willink, 2008), provides
a graphical representation of transformations. In-
deed, it is still not adapted to a wide variety of stake-
holders (specifically in UI design), but promotes syn-
tactical simplifications of transformations.

RubyTL (Cuadrado et al., 2006) is an implementa-
tion of a transformation language using a specific and
extensible language. Extensibility is another way to
provide more specific transformations (specialized re-
garding in/output metamodels). It provides the trans-
formation designers with more specific rules.

In order to make transformations easier to non-
transformation specialists, one can use natural lan-
guage, giving “more sense” such as in (Störrle, 2013).
For instance, in Natural MDA (Leal et al., 2006), the
idea is to use a controlled natural language for ex-
pressing business rules. We can easily extend that to
transformation rules. Natural MDA approach is simi-
lar to our transformation writing principles. However,
here we propose mechanisms to semi-automatize the
building process of such a language.

In (Sottet et al., 2009), authors propose the notion
of trans-HCI: a specific UI on top of a transformation
language. We implement that idea here using a tex-
tual editor for transformations. (Aquino et al., 2010)
propose a framework for establishing transformation
templates, that are easier to understand and manip-
ulate than standard transformations. These transfor-
mations are edited thanks to the template and then
executed within a standard transformation engine:
proposing an upper-layer above transformations. If
similar to our approach, transformation templates, do
not hide some of technical aspects (e.g., necessity to
provide types for values: real, string, boolean) which
may confuse the stakeholders.

The paper of (Tisi et al., 2009) provides examples
and a classification of Higher Order Transformation
(HOT). We have been inspired by several kinds of
HOT, notably the (Muliawan, 2008) approach. It is
used to simplify and to make existing transformations
more specific while keeping them executable. As in
this paper, we transform input and output metamodels
to pre-configure a transformation. Nevertheless, we
go a step further defining a domain specific transfor-
mation language and thus we provide a specific syntax
dedicated to particular stakeholders concerns. We use
another kind of HOT in order to generate ATL code
from our DSTL.

As a summary, related work address technolo-
gies to make transformations clearer, notably through
adapted syntaxes (either textual or graphical) and by
proposing extension and specialization mechanisms.
We could indeed use these mechanisms to improve
some parts of our work: graphical syntax, exten-
sion mechanisms, enhancing our HOT approach, etc.
However, related approaches do not explicitly address
human-centric aspects e.g., the stakeholders skills.
For instance, the transformation template approach
embed too much concerns into the transformation that
could be a burden for stakeholders. On the con-
trary we deliberately give a simplified transformation
model to avoid technical burden.

6 CONCLUSIONS

The integration of MDE in the HCI community is not
uniform: although models found rapidly acceptance
it is not the same for transformations. The poor qual-
ity of some generated UI and the opaque definition of
transformations make them hardly accepted by some
HCI stakeholders and researchers. People would pre-
fer to use their standard design/implementation pro-
cesses instead of something they do not understand
clearly.

Defining�Domain�Specific�Transformations�in�Human-Computer�Interfaces�Development

251

In this paper, we claim that stakeholders knowl-
edge and know-how are first order citizen to build
more efficient transformations for more qualitative
UI. We have to aim not only at people that are trained
to write transformations but to all kinds of HCI stake-
holders. As a result, we will naturally refer to the
definition of a stakeholder (i.e., domain) specific lan-
guage for designing transformations. Domain spe-
cific transformations tend to be closer to the stake-
holder vocabulary and to be enough focused on the
transformation rationale. They thus provide targeted
stakeholders with a support to express transformation
heuristics and participate to the transformation de-
sign.

Our DSTL implementation (and related gener-
ation/extraction transformations) targets a specific
stakeholder: the usability expert. To our experience,
this is certainly the most representative case for HCI
building: (1) the classic usability expert profile is ori-
ented towards social science and (2) usability qual-
ity is crucial in HCI design. We provide the usability
expert with a very simple language (controlled natu-
ral language), that helps in the generation of adapted
(i.e., more usability regarding the situation) widgets.

We do not redesign a complete transformation lan-
guage but rather provide some handlers for specific
stakeholders. Such stakeholders act only on the spe-
cific transformation part while hiding the transforma-
tion inner mechanisms inside a traditional transforma-
tion in “back-end”. Thus, there is still room for code
transformation to be written by an expert (e.g., struc-
tural information).

On the HCI engineering side, our DSTL approach
provides a way to: (1) capture specific know-how
(this is usually done as assessment report after pro-
duction of prototype) and make it executable, (2) in-
volve more stakeholders in the MDE transformation
design (3) by this involvement, provide a better ac-
ceptance of MDE approaches for HCI.

Technically, on the MDE side, we propose a
generic approach for systematising the definition of
DSTL based on HOT principles that: (1) provides
a reduced set of input/output metamodels (that are
specific to the stakeholder job), (2) derives (semi-
automatically) a textual syntax to specify simplified
transformation rules and (3) allows the execution of
transformations.

This work is a first proof of concept in the HCI
domain and more specifically addressing usability ex-
perts concerns. During this research process we did
ask some usability experts their feeling about the stan-
dard transformation tools and they helped us design-
ing the DSTL. However, we need more stakeholders
to validate our approach regarding the HCI commu-

nity. We try to present an initial instrumented method-
ology that can be generalised to other stakeholders
and domains. Future work will concentrate on pro-
viding other DSL for other types of stakeholders and
will try to address collaboration issues during trans-
formation design.

ACKNOWLEDGEMENTS

This work has been partially supported by the Lux-
emburgish FNR MoDEL project (C12/IS/3977071).

REFERENCES

Agrawal, A., Karsai, G., and Shi, F. (2003). A uml-
based graph transformation approach for implement-
ing domain-specific model transformations. Interna-
tional Journal on Software and Systems Modeling.

Aquino, N., Vanderdonckt, J., and Pastor, O. (2010). Trans-
formation templates: adding flexibility to model-
driven engineering of user interfaces. In Proceedings
of the 2010 ACM Symposium on Applied Computing.

Beaudoux, O., Blouin, A., and Jézéquel, J.-M. (2010). Us-
ing model driven engineering technologies for build-
ing authoring applications. In DocEng ’10: Proc. of
the 2010 ACM symposium on Document engineering.

Botterweck, G. (2011). Multi front-end engineering. In
Model-Driven Development of Advanced User Inter-
faces, pages 27–42. Springer.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouil-
lon, L., and Vanderdonckt, J. (2003). A unifying ref-
erence framework for multi-target user interfaces. In-
teracting with Computers, 15(3):289–308.

Constantine, L. (2003). Canonical abstract prototypes for
abstract visual and interaction design. In Interactive
Systems. Design, Specification, and Verification.

Coutaz, J. (2010). User interface plasticity: Model driven
engineering to the limit! In Int. Conf. on Engineering
Interactive Computing Systems (EICS 2010). Keynote
paper.

Cuadrado, J. S., Molina, J. G., and Tortosa, M. M. (2006).
Rubytl: A practical, extensible transformation lan-
guage. In Rensink, A. and Warmer, J., editors, Model
Driven Architecture Foundations and Applications.

Florins, M. and Vanderdonckt, J. (2004). Graceful degra-
dation of user interfaces as a design method for multi-
platform systems. In IUI, volume 94, pages 13–16.

Garcı́a Frey, A., Céret, E., Dupuy-Chessa, S., and Calvary,
G. (2011). QUIMERA: a quality metamodel to im-
prove design rationale. In Proc. of the third ACM
SIGCHI Symp. on Engineering Interactive Computing
Systems (EICS).

Jouault, F. and Kurtev, I. (2005). Transforming mod-
els with atl. In Proceedings of the 2005 interna-
tional conference on Satellite Events at the MoD-

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

252

ELS, MoDELS’05, pages 128–138, Berlin, Heidel-
berg. Springer-Verlag.

Leal, L. N., Pires, P. F., Campos, M. L. M., and Delicato,
F. C. (2006). Natural mda: controlled natural lan-
guage for action specifications on model driven de-
velopment. In On the Move to Meaningful Internet
Systems 2006: CoopIS, DOA, GADA, and ODBASE.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344.

Muliawan, O. (2008). Extending a model transformation
language using higher order transformations. In Re-
verse Engineering, 2008. WCRE’08. 15th Working
Conference on, pages 315–318. IEEE.

Myers, B., Hudson, S. E., and Pausch, R. (2000). Past,
present, and future of user interface software tools.
ACM Transactions on Computer-Human Interaction
(TOCHI), 7(1):3–28.

Panach, I., Aquino, N., and Pastor, O. (2011). A model for
dealing with usability in a holistic mdd method. User
Interface Description Language (UIDL).

Puerta, A. R. (1997). A model-based interface development
environment. Software, IEEE, 14(4):40–47.

Sendall, S. and Kozaczynski, W. (2003). Model transfor-
mation: The heart and soul of model-driven software
development. Software, IEEE, 20(5):42–45.

Sottet, J.-S., Calvary, G., Coutaz, J., and Favre, J.-M.
(2007). A model-driven engineering approach for the
usability of plastic user interfaces. In Engineering In-
teractive Systems, pages 140–157. Springer.

Sottet, J.-S., Calvary, G., Favre, J.-M., and Coutaz, J.
(2009). Megamodeling and metamodel-driven en-
gineering for plastic user interfaces: mega-ui. In
Human-Centered Software Engineering, pages 173–
200. Springer London.

Sottet, J.-S. and Vagner, A. (2013). GENIUS: Automati-
cally generating usable user interfaces. Technical re-
port, PRC Henri Tudor, Luxembourg.

Stanciulescu, A., Limbourg, Q., Vanderdonckt, J., Mi-
chotte, B., and Montero, F. (2005). A transformational
approach for multimodal web user interfaces based on
usixml. In Proc. of the 7th inter. conference on Multi-
modal interfaces, ICMI ’05, pages 259–266.

Störrle, H. (2013). Making sense to modelers: Presenting
uml class model differences in prose. In 1st Interna-
tional Conference on Model-Driven Engineering and
Software Development (MODELSWARD 2013).

Szekely, P., Luo, P., and Neches, R. (1992). Facilitating
the exploration of interface design alternatives: the
HUMANOID model of interface design. In Proc. of
the SIGCHI conf. on Human factors in computing sys-
tems.

Tisi, M., Jouault, F., Fraternali, P., Ceri, S., and Bézivin, J.
(2009). On the use of higher-order model transforma-
tions. In Model Driven Architecture-Foundations and
Applications, pages 18–33. Springer.

Vanderdonckt, J. (1995). Knowledge-based systems for au-
tomated user interface generation: the trident experi-
ence. In Proceedings of the CHI, volume 95. Citeseer.

Willink, E. D. (2008). On challenges for a graphical trans-
formation notation and the umlx approach. Electronic
Notes in Theoretical Computer Science, 211:171–179.

APPENDIXES

1. Acceleo template for ATL code generation from a
DSTL model.

[t e m p l a t e private gRule (rule : Rule)]
rule [rule . auitype . concat (’To’) . concat (nameString

,! (rule . uielement)) /] f
from

in_tsk : TDA ! Task ([i f (rule . auitype .
,!equalsIgnoreCase (’Root’))]

(maintsk . superOperator . oclIsUndefined
,! ()) [e l s e]

in_tsk . auiType =#”[rule . auitype /] ”
[i f (rule . interactivelyValid .

,!equalsIgnoreCase (’interactive’))
,!]

and in_tsk . isInteractivelyValid ()
[/ i f]
[i f (rule . interactivelyValid .

,!equalsIgnoreCase (’notinteractive
,!’))]

and in_tsk . type=#” abstract ” and in_tsk .
,!isNotLeafNorRoot ()

[/ i f]
[/ i f])

to

[rule . uielement . cOutPattern () /]
g

[/ t e m p l a t e]

2. Excerpt of the DSTL Xtext grammar.

Rule :
’rule from’ auitype=Type (’and’

,!interactivelyValid=Valid) ? ’to’

,!uielement=UIElement ’;’ ;
Type :

’Choice n/n’ j ’Choice 1/n’ j ’Container’ j ’

,!Input’ j ’Output’ j ’Command’ j ’

,!Navigation’ j ’Root’ ;
UIElement :

Window j ListElementSelector j Button j Panel

,! j DataField j ImageField j TextField j
,!TextArea ;

Window :
’Window’ label+=Label ? ’with’

,!containedElements+=Concept ;
Panel :

’Panel’ label+=Label ? ’with’ containedElements

,!+=Concept ;
ListElementSelector :

’ListElementSelector’ label=Label ? (’with’
,!containedElements+=Concept) ? ;

Concept :
’All Concepts’ j ’No Concepts’ j selection+=

,!SelectedConcept � ;

Defining�Domain�Specific�Transformations�in�Human-Computer�Interfaces�Development

253

