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Abstract: An approximate method for analyzing EM wave propagation and scattering in the presence of temporally 
and spatially varying media is investigated. The method is quasi-relativistic in the sense that for constant 
velocity it reduces to Einstein’s Special Relativity theory to the first order in the normalized speed /v c . 
The present exponential model was previously used for temporally invariant velocity only. The motion must 
be irrotational and the characteristic wavelength and period scales of the mechanical motion must be much 
larger compared to those of the EM field ones. For simple periodic motion it is shown that the EM field is 
modulated by the motion, and a spectrum of discrete sidebands is created, with frequencies separated by the 
mechanical frequencies. The results suggest new approaches to the celebrated Fizeau experiment. Rather 
than using an interferometer setup as in the traditional experiment, the equivalent phase velocity in a 
periodically moving medium can be deduced from the measured. Simple examples are computed: the effect 
of the motion on an initially plane harmonic wave, and scattering by perfectly conducting and refractive 
planes and cylinders. 

1 INTRODUCTION AND 
ABBREVIATIONS 

Scattering of EM waves in the presence of moving 
media and scatterers is of interest for theoretical and 
engineering applications, see (Van Bladel, 1984) for 
a comprehensive introduction to the relevant 
literature. Einstein’s SR; Minkowski, 1908; 
Sommerfeld, 1964; Pauli, 1958) facilitates the 
analysis for problems involving constant velocities. 
Historically this is related to the FE and the 
associated Fresnel drag phenomenon (Einstein, 
1905; Pauli, 1958). Heuristic approximations are 
required for varying velocities, and it stands to 
reason that they will adequately apply to cases 
involving the normalized speed /v c  to the FO only.  

Historically, the present exponential model 
seems to have originated with Collier and Tai 
(1965), and later considered for general temporally 
invariant velocities (Nathan and Censor, 1968; 
Censor, 1969a, 1972). 

1.1 Glossary of Abbreviations 

BC=Boundary Condition/s 

AKA=Also Known As 
BFS= Bessel-Fourier Series 
EM=Electromagnetic 
EX=Exponential Model/s 
FE=Fizeau Experiment/s 
FO=First Order in /v c  
FT=Field Transformation/s 
GT=Galilean Transformation/s 
IT=Inverse Transformation/s 
LT=Lorentz Transformation/s 
MCR= Minkowski Constitutive Relations 
ME=Maxwell Equation/s 
MM=Mechanical Medium 
RE=Relativistic Electrodynamics 
RF=Reference Frame/s 
SC=Scattering Coefficient/s 
SP=Scattering Problem/s 
SR=Special Relativity 
ZO=Zero Order in /v c  
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2 FIRST ORDER RELATIVISTIC 
ELECTRODYNAMICS 

Concepts and notation are introduced via a short 
recapitulation of  the FO RE. The source-free ME in 
a RF ′Γ  are 
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t t∂ ∂ ∂ ∂
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(1) 

 
Fields are functions of native coordinates, e.g., 

( , )t′ ′ ′E r . According to SR, in an inertial RF Γ  we 
have the form-invariant ME, i.e., (1) without 
apostrophes 
 

,
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  (2) 
 where the fields are functions of native coordinates, 
e.g., ( , )tE r . 

The FO LT and its IT are given by 
 

2,t t t c−′ ′= − = − ⋅r r v v r  (3) 
2,t t t c−′ ′ ′ ′= + = + ⋅r r v v r  (3) 

 
respectively. Henceforth the underline notation for 
IT will be understood even without explicitly writing 
out the expressions. Formally, all we have to do is 
exchange primed and unprimed quantities and 
replace v  by −v . Effecting the limit c →∞  in (3), 
(3), yields the GT t t′ = . 

Substituting (3) in the chain rule of calculus 
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and its IT (4) leads to the FO differential LT and its 
associated IT 
 

2 ,t t tc∂ ∂ ∂ ∂ ∂ ∂−
′ ′= + = + ⋅r r rv v  (5) 

2 ,t t tc∂ ∂ ∂ ∂ ∂ ∂−
′ ′ ′ ′= − = − ⋅r r rv v  (5) 

 
respectively. Note that the second formula (5) is in 
fact the “material derivative” or the “moving 
derivate” as referred to in continuum mechanics. In 
the limit c →∞  the first equations in (5), (5) 
become the GT ∂ ∂′ =r r , as usually used in 
continuum mechanics. 

 Substituting (5) into (1) and regrouping terms 
yields (2), subject to the FO FT  
 

  

2

2

,
,

c
c

−

−

′ ′= + × = − ×

′ ′= + × = − ×

E E v B B B v E
D D v H H H v D

 
 

(6) 

 
and similarly for corresponding IT FT 
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Assuming in ′Γ  simple linear constitutive 
relations 
 ,ε μ′ ′ ′ ′= =D E B H   (7) 

and substituting from (6) into (7) leads to the FO 
MCR (Minkowski, 1908) 
 

 
2

2

/ ( )
/ ( )

c
c

ε

μ

+ × = + ×

− × = − ×

D v H E v B
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  (8) 

 
Although applicable to constant v  only, when 

arbitrarily stipulated to hold for constant local v , it 
provides the basis for many scattering problems 
involving rotating spheres and cylinders (see Van 
Bladel, 1984, pp. 392-3, for relevant articles by D. 
De Zutter and others).  

3 FIRST ORDER RELATIVISTIC 
ELECTRODYNAMICS, 
VARYING VELOCITIES 

Inasmuch as SR deals with constant v  only, there 
exists no exact transition to varying velocity. 
Consequently an heuristically extension of the above 
FO model must be stipulated, e.g., by generalizing 
(5), (5) to 
 
 2 ( , ) , ( , )t t tc t t∂ ∂ ∂ ∂ ∂ ∂−

′ ′= + = + ⋅r r rv r v r  (9)  
 2 ( , ) , ( , )t t tc t t∂ ∂ ∂ ∂ ∂ ∂−

′ ′ ′ ′′ ′ ′ ′= − = − ⋅r r rv r v r (9)  

The correspondence makes (9), (9), plausible. 
Note that terms involving the velocity are already of 
FO, hence ZO coordinates can be dropped or added, 
e.g., ( , ) ( , )t t′ ′ =v r v r . Once again note that (9) 
tallies with the material derivative concept. 

It is easily seen that the form invariance of the 
ME subject to (9), (9) is not preserved here, since by 
substitution of (9) into the ME (1) we encounter 
terms like  
 
    ( ) ( ) , ( , )t t t t∂ ∂ ∂′ ′ ′ ′ ′× = × − × =v E v E v E v v r  (10)  
 
where the term (( ( , ) )t t∂ ′ ′ ′ ×v r E  obviates the 
extension of the FT (6) to varying velocity. 
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However, it is noted that field time derivatives as in 
t∂ ′ ×E  involve wave frequencies, say  ω , while 

( , )t t∂ ′ ′ ′v r   involves MM frequencies. Similarly, 
space derivatives of ( , )t′ ′v r , are characterized by a 
wave number k , while differentiating the velocity 
involves Κ , the MM wave number.  

We conclude that when the length and time 
scales characterizing the velocity are larger than the 
corresponding parameters of the fields, the FT (6), 
and with them the form invariance of the ME (1), 
(2), can be assumed. This also implies that the MCR 
(8) are valid subject to the present restrictions. 

4 THE EXPONENTIAL MODEL 

Previously the EX (Collier and Tai, 1965; Nathan 
and Censor, 1968; Censor, 1969a, 1972) was based 
on the stipulation that (6) remains valid for local 
time independent v , although ( )v r  is spatially 
varying. Since the MCR (8) are already of ZO, they 
can be recast in a simplifies form  
 

 2 2

,

( , )( ), 1 /t C c C

ε μ

με− −

= + × = − ×

= − =

D E Λ H B H Λ E

Λ v r
       (11) 

 
Substituting (11) into (2) yields the relevant FO 

ME for moving media (Tai, 1964; Nathan and 
Censor, 1968) 
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Note that by interchanging , ε μ↔ ↔ −H E  in 
(12), we switch between the two equations. For 
irrotational ( , )tv r  we have 0∂ × =r Λ , entailing a 
conservative field, associated with the scalar 
potential Φ  

, d∂= Φ Φ = ⋅∫rΛ Λ l        (13) 
 

therefore the path integral (13) depends on limits 
only. Accordingly (12) can be recast as 
 

* , *
* 0, * 0, *

t t

t

∂ μ∂ ∂ ε∂
∂ ∂ ∂ ∂ ∂

× = − × =

⋅ = = = − ×
r r

r r r r

E H H E
E H Λ

    (14) 

 
Incorporating the time scales argument as in 

(10), whereby the velocity’s time-derivative is 

neglected, solutions of (12), (14), can be constructed 
in the form 
 

1 1,

, 0,

t te e

d

∂ ∂

∂ ∂

Φ Φ= =

Φ = ⋅ × = = Φ∫ r r

E E H H

Λ l Λ Λ
           (15) 

 
The operator exponential is understood as a 

symbolic Taylor series 1 ...t
te ∂ ∂Φ ≡ +Φ + . The ZO 

fields 1 1,E H  satisfy the ME  
 

1 1 1 1

1 1

,
0, 0

t t∂ μ∂ ∂ ε∂
∂ ∂
× = − × =

⋅ = ⋅ =
r r

r r

E H H E
E H

         (16) 

 
Inasmuch as the operator te ∂Φ  acts on the ZO 

fields, for time harmonic fields possessing the factor 
1i te ω−  with frequency 1ω , we identify 
 

1 1, *t i i∂ ω ∂ ∂ ω↔ − = + ×r r Λ             (17)  
 

Thus the EX is a perturbation scheme whereby 
we start with well-known solutions of the ME in 
media at rest (16), and with the exponential operator  
(15) as a factor, a FO solution of the ME in moving 
media is created. Of course, BC, where applicable, 
must be taken on the complete fields (15). For 
simplicity, incompressible media are considered 
here, therefore Φ  satisfies the Laplace equation 

2 0r∂ Φ = . 
 Once (11)-(16) are accepted as our working 

formalism, everything takes place in the 
“laboratory” unprimed RF. 

5 PLANE WAVE PROPAGATION 
IN OSCILLATING MEDIA 

Consider a plane harmonic wave satisfying (16) 
 

1 1
1 1 1 1 1 1 1 1 1

ˆ ˆ, ,i iE e H e tθ θ θ ω= = = ⋅ −E E H H k r     (18)  
 
with mutually perpendicular 1 1 1, ,k E H , launched 
into the moving medium. The medium time-
dependent velocity is given according to (11), (13), 
as 
 

0( ) cos ,t t d= Ω Φ = ⋅ = ⋅∫Λ Λ Λ l Λ r      (19) 
 
It follows that the solution of the ME (15) is given 
by 
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1 1 1 1

1 1 0 1 1 0

ˆ ˆ,
cos cos

i iE e H e
t t

θ θ

θ θ ω θ ω ξ
= =
= − ⋅ Ω = − Λ Ω

E E H H
Λ r

     (20)  

 
where ξ  is the coordinate in the direction of Λ . 

Note that in (19), (20), r  can assume any value, 
therefore ⋅Λ r  is not necessarily small, in spite of 
Λ  being FO. This is a consequence of choosing a 
time-dependent velocity as in (19) (cf. (23) below). 
Recasting ie θ  in terms of  a BFS (e.g., see Stratton, 
1969) yields 
 

1
1 0

1

, ( ) ( )

,

ni i ti n
n n n n

n
n n n

e F e F i J

n

νθ ω ξ

ν ω

⋅ −

=∞
=−∞

= Σ = − Λ

= − Ω Σ = Σ

k r

      (21)  

 
revealing the spectral structure the plane wave 
assumes in the moving medium, with the initial 
carrier frequency 1ω  for 0n =  and additional 
discrete sidebands nν  for integers n . Throughout 

qJ  denotes the non-singular Bessel function of order 
q . Thus (20) can be recast as 
 

1 1
1 1

1 1

ˆ ˆ,
/ /

n ni i t i i t
n n n n

n n n

E e H e
E E H H F

ν ν⋅ − ⋅ −= Σ = Σ
= =

k r k rE E H H
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The time periodic velocity (19) can be 

generalized 
 to a MM space and time harmonic plane 
velocity wave 
 

0( , ) cos( ), | | 2 / mt t π λ= ⋅ −Ω =Λ r Λ Κ r Κ      (23) 
   

with mλ  denoting the MM wavelength. For 
longitudinal compression waves  0,Κ Λ  are parallel, 
hence we have 
 

0

0
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sin( ) 0

t
t

∂ ∂× = × ⋅ −Ω
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r rΛ Λ Κ r
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          (24) 

  (24) 
as prescribed for (13). Furthermore (15) prescribes 
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with ξ  defining the coordinate in the direction of 

0,Κ Λ . Instead of (20) we now have  
 

1 1 1 1

1 1 0

ˆ ˆ,
, ( / )sin( )

i iE e H e
t

θ θ

ξ ξθ θ ω ξ
= =
= − Φ Φ = Λ Κ Κ −Ω
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For 0Κ → , i.e., for mλ →∞ , the problem reduces 
to (19)-(22).  

The analog of (21) is now 
 

1 0

1 1 1

,
( / ),

ˆ,

nii
n n

n n n n n
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e G e
G J t

n n n
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ν ω
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It is noted that even though the Bessel functions 
argument (27) is of FO, it involves the ratio of the 
MM and EM wavelengths 1 1/ /mk λ λΚ = , which is 
not necessarily small and must be assessed for each 
concrete case. The analog of (22) is now 
 

1 1

1 1

ˆ ˆ,
, / /

n ni i
n n n n

n n n n n n

E e H e
t E E H H G

θ θ

θ ν
= Σ = Σ
= ⋅ − = =
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κ r
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In (27), (28), in addition to the temporal 

spectrum nν , we have a discrete spatial spectrum of 
nκ . Due to the vector character of nκ , when 1k  is 

not parallel to Κ , each spectral component 
propagates in a slightly different direction, 
possessing a different phase velocity according to 
 

1 1/ | | ( )/ | |n n nC n nν ω= = − Ω −κ k Κ      (29) 

6 IMPORT FOR NEW FIZEAU-
 TYPE EXPERIMENTS 

Doppler Effect frequency shifts are usually 
associated with moving sources or boundaries. It is 
therefore of interest to note, as shown in (28) that 
wave-fronts in moving media can also create a 
spectrum, without involving moving material 
boundaries. As far as this author is aware, this 
phenomenon was not documented before in the 
present EX context. In a sense, it is akin to some 
acousto-optics experiments involving interaction of 
sound and EM waves, but rather than having 
constitutive parameters modulated by sound, here 
medium velocity is involved. The present results 
might suggest new approaches to the celebrated FE.  

The classical FE (e.g., Van Bladel, 1984, p. 
120ff.) measures the EM wave effective phase 
velocity effC  in a column of a moving medium 
(water in the original FE), characterized by C  in the 
rest RF. The results tally with the SR velocity 
addition formula (Pauli, 1958). Consider (18)-(22), 
or (23)-(28), with 0Κ → , for parallel velocity and 
propagation directions, and 0Ω = . From θ  (20) or 
(26) we then find effective values 
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1 1 0 1 1 0/effk k Cω ω ω= − Λ = − Λ              (30) 

 
1

1 0

2 2
0 0

/ / 1/ ( )

v (1 1/ )
eff eff effC k c n C

C C C n

ω −= = = −Λ

≈ + Λ = + −
     (31)  

 
with index of refraction /n c C=  in the rest RF. 
This is the basis for the classical FE. Essentially, 
with C  known, the quest is for the value of 0Λ  in 
order to compute effC  or vice-versa. 

 Exploiting the present theory, rather than 
using an interferometer setup and measuring the 
displacement of diffraction fringes, as done in the 
traditional FE, 0Λ  can be found from measurements 
of spectral components. Thus by measuring the 
amplitude of waves, and solving for relevant 
arguments of ,n nF G  in (22), (28), respectively, the 
value of 0Λ  can be extracted. Using (30), (31), the 
effective parameters can be computed. One can 
envision a medium set into periodic motion as in 
(19) or (23). The EM wave propagated through the 
medium will display a spectrum of discrete 
frequencies nν , (21), (27). In both cases the 
cumbersome interferometer setup involving a 
moving water column is obviated. This also solves 
the problem of the irregular flow at the source and 
sink regions where the fluid is injected and drained, 
as in the classical FE. Better resolution (AKA 
selectivity) of sidebands can be attained by 
electronically down-shifting frequencies after 
detection (AKA mixing, or heterodyning) employed 
in radio communications techniques. 

7 SCATTERING PROBLEMS 

SP for the EX with time-independent v  have been 
discussed before (Collier and Tai, 1965; Censor, 
1969; Censor, 1972).  

As in the FE and other cases (Censor, 1969b), 
fluid-dynamics continuity problems of the medium 
flow in the presence of the scatterer are arbitrarily 
ignored, assuming that the flow is maintained as if 
the material scatterer has no effect. Otherwise 
complicated problems ensue that cannot be tackled 
with the analytical tools employed here. Realistic 
flows have been considered in (Censor, 1972).  

7.1 Scattering by Plane Interfaces  

As the simplest example for a SP consider a 
perfectly conducting plane at 0x = , with a 
perpendicularly incident wave as in (26) with xΦ  
replacing ξΦ  

 

1 1

1 1 1 1 1

ˆ ˆ,

, / /

i ii i
i i

i x

E e H e

k x t E H

θ θ

θ ω ω μ ε η

= = −

= − − Φ = =

E z H y
   (32) 

 
the ratio η  defining the medium impedance in the 
region 0x < .  

The reflected wave rE  must satisfy the BC 
0|r i x== −E E . The BC prescribe identical time 

variation for all waves at the boundary 0x = , hence 
 

1 1

1 1 1

ˆ ˆ,r ri i
r r

r x

E e H e
k x t

θ θρ ρ
θ ω ω

= =
= − − − Φ

E z H y
         (33) 

 
with 1ρ = −  denoting the reflection coefficient.  

Consider next a refractive medium in the region 
0x > , with frequency dependent rest RF 

constitutive parameters ( )μ ν , ( )ε ν . 
Correspondingly the RF phase velocity, impedance, 
are ( ) 1/C ν με= , ( ) /η ν μ ε= , respectively. In 
the region 0x <  the parameters 1( )μ ω , 1( )ε ω , 
remain dependent on the excitation frequency 1ω  
only, in order to satisfy the ME  subject to  the EX, 
(15). 

The EX solutions (32), (33), are recast in 
spectral components as in (28) 

 
, ,

,

ˆ ˆ,n i n ii i
i n n i n n

n i n n

E e H e
x t

θ θ

θ κ ν
= Σ = − Σ

= −

E z H y
 

 
(34) 

 
, ,

,

ˆ ˆ,n r n ri i
r n n n r n n n

n r n n

E e H e
x t

θ θρ ρ
θ κ ν

= Σ = Σ

= − −

E z H y
 

 
(35) 

 
and the transmitted wave is given by 
 

, ,

,

ˆ ˆ, ,

, / , ( )

/ , /
( ), ( )

n t n ti i
t n n t n n n n n

n t n n n n n n n

n n n n n n n

n n n n n

E e H e E E

x t C C C

E H H H

θ θ τ

θ κ ν κ ν ν

η τ η η
μ μ ν τ τ ν

= Σ = − Σ =

= − = =

= =
= =

E z H y

   (36)  

 
The solution for ,n nρ τ , are given by the familiar 

formulas 
 

( ) / ( ), 2 / ( )n n n n n nρ η η η η τ η η η= − + = +    (37) 

7.2 Scattering by Circular Cylinders  

For the SP of a perfectly conducting circular 
cylinder of radius a , the incident excitation plane 
wave is once again given by (32). Leaving the EX 
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factor intact and recasting the ZO solution 1ik xe  in 
BFS yields, (15)-(17), in cylindrical coordinates 
 

1 1 1

1

1 1

1

,1 1
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ˆ
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x x

x
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i i im i t
i i m m
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ω ω ψ ω

ω
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∂
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− Φ −

= = Σ

= ×

= Σ

= = ×

r

r

E E z

H E

L

L z

       (38)  

 
Accordingly we construct the scattered wave as 
 

 

1 1

1 1

1

1

1

(1)
1

ˆ
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x

x
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s m m m
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∂
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E z

H M
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        (39)  

 
with (1)

mH  denoting the first kind Hankel functions. 
On application of the BC |r i r a== −E E , the EX 
factor cancels and we find  
 

(1)
1 1( ) / ( )m m ma J k r H k r= −  (40) 

 
the familiar SC of the ZO problem. 

For a material cylinder we start with (38), (39), 
and recast 1 xie ω− Φ  in BFS 
 

1 0( / ) sin( ) ( cos )

, , ,, ( ) ( )

i x t in r t
n n

in t ip p
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e G e

G e P e P i J n r

ω ψ

ψ

− Λ Κ Κ −Ω − Κ −Ω

Ω
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Hence  
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n
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Similarly, (39) becomes 
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, , , , , ,

ˆ
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n

n

i p m i t
s n p m n p m n p m

i p m i t
s n p m n p m n p m

n p m n n p m n p m n n p m

E a S e
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E z
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In the cylinder’s interior r a<  fields are obtained as 
a superposition of regular cylindrical waves of 
modes u , at frequencies nν , satisfying the ME (16) 
with rest RF parameters  ( ), ( )n nμ ν ε ν  
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On application of BC  
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prescribing the fields continuity on the interface, the 
orthogonality of  angular modes iue ψ  prescribes 
nonzero coefficients , 0n ub ≠  for u p m≠ + . Hence 
(44) can be recast to include the constraint 
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where δ  denotes the Discrete Kronecker Delta 
Function. For each spectral component n , and 
angular mode u  the BC lead to an infinite set of 
equations, which can only solved if properly 
truncated.  

Consider (41)-(46) for the case of a monopole 
0u p m= = = . This only works for thin cylinders, 

hence n  must be properly truncated, otherwise 
higher multipole terms must be included. 
Accordingly 
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and similarly 
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From (45) and (47)-(49), we get explicit 

equations for the SC 
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with the prime denoting differentiation with respect 
to the argument. In form (50) is similar to the 
classical SP, but including the present velocity 
effects, therefore solving for the coefficients ,n na b  
is straightforward. 

8 SUMMARY AND 
 CONCLUDING REMARKS 

The advent of SR (Einstein, 1905) facilitated the 
analysis of SP involving moving objects and media. 
However, SR is founded on the concept of inertial 
RF moving at constant v . 

A multitude of scientific and engineering 
problem involve varying velocities. Heuristic 
models that in the case of constant v  merge into 
exact SR are not unique. Presently the Quasi Lorentz 
Transformation (Censor, 2005, 2010) (9) is 
employed. Subject to the constraint of MM and EM 
space and time scaling, the FO ME and FT (1), (2), 
(6), apply to varying ( , )tv r . 

The EX, originating with Collier and Tai (1965)  
provides FO SR solutions to ME in moving media. 
The method is generalized here to time-dependent 
irrotational velocity fields. Previously (Collier and 
Tai, 1965) only time-independent velocity systems 
have been considered.  

In periodically moving media the solution for the 
ZO case of plane waves displays discrete sideband 
spectra. This provides new approaches to the FE. 
Unlike the original FE, employing interference 
experiments, the present results suggest 
measurements based on analysis of the spectra 
created by periodical mechanical flows or waves.  

Canonical SP examples are given for scattering 
by plane interfaces and by circular cylinders, in the 
presence of periodically moving embedding media. 
It is shown that opaque objects, like the perfectly 
conducting interfaces above, yield the classical SC 
for media at rest, involving only the excitation 
frequency 1ω . On the other hand, refractive 
scatterers are excited by the frequencies created by 
the MM motion, (37), (43), displaying SC depending 
on the sideband frequencies. 

The results suggest new methods for remote 
sensing the material parameters of objects that are 

not directly accessible. To further investigate the 
present model, more canonical SP will have to be 
investigated, with various MM motional modes. 
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