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Abstract: This paper proposes a motor learning assist system that estimates the proficiency of trainees in making sports
motions on the basis of variability of his/her own 3D motions in trials captured by a single camera. Most
existing systems assume that a sequence of human poses must be obtained by multiple calibrated cameras
or a marker-based motion capture system. Such systems can be effectively used by professional athletes or
broadcast station personnel who specialize in sports, but not by casual sports fans who have no particular
athletic skills. We propose a method for evaluating proficiency on the basis of obtained for trainees in repeated
trials. Usable by not only elite athletes but also casual sports fans, the method has two important features. First,
it requires only a freely positionable single camera since its 3D pose estimation methodology is independent of
camera position. Second, it estimates proficiency only from a trainee’s own motions and thus does not require
any reference movements. In this paper, the golf swing is used as the target of motor learning. Experiment
results show that variability in 3D motion in trials is inversely proportional to the test subjects’ degree of
proficiency.

1 INTRODUCTION

Computer vision-based sports assistance has been
widely studied in recent years (Yu and Farin, 2005).
Reported techniques, include player tracking (Pin-
gali et al., 1998), semantic annotation of sports game
videos (Assfalg et al., 2002), and sports event detec-
tion (Luo et al., 2003). In addition, a real-time track-
ing technique called Hawk-eye (Owens et al., 2003)
is now being used for assisting umpires in making
judgements.

Computer vision assistance in motor learning for
casual sports fans, amateure sports teams, and artists
has also been considered. Chua et al. proposed a sys-
tem for learning sports motions by using virtual real-
ity (Chua et al., 2003). Choi et al. proposed a sys-
tem that compares the motions of a trainee with those
of an expert to provide information that is useful for
practicing sports (Choi et al., 2008). So far, however,
these systems have rarely been used in practice.

One main reason such systems have not gained
popularity is they require making troublesome prepa-
rations. Most existing systems assume that a sequence
of human poses must be obtained by multiple cali-
brated cameras or a marker-based motion capture sys-
tem. Such systems can be effectively used by pro-

fessional athletes or broadcast station personnel who
specialize in sports, but not by casual sports fans who
have no particular athletic skills.

Aiming to overcome the need for troublesome
preparations, Mikami et al. proposed a method for
analyzing human motions from a video sequence
captured by a single camera (Mikami et al., 2013;
Mikami et al., 2012). Their method enables analysis
of subtle changes in repetitive motions, but to apply
it the relative positions of the camera and the subject
should be the same when capturing motions. To ad-
dress these problems, we propose a system that can
provide assistance in motor learning to all sports fans
without troublesome preparations.

Generally speaking, it can be assumed that motor
learning is divided into three phases: cognitive, asso-
ciative, and autonomous (Schmidt and Lee, 1988). In
the cognitive phase, a trainee seeks to make correct
movements through a trial-and-error process. In the
associative phase, a trainee knows the check points to
follow to make correct movements and how to modify
incorrect movements. In the autonomous phase, the
motions become ingrained; the trainee can make them
almost automatically without thinking about them.

On the basis of this assumption, we propose a
method for evaluating proficiency based on the vari-
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ability of the trial when it is subjected to repeated
trials. When the motor learning is in the cognitive
phase, we assume there is large variation in move-
ments. When the learning progresses and moves to
the associative phase, we assume the variation be-
comes rather small because a trainee gets to know the
check points and how to modify incorrect movements.
Finally, when it reaches the autonomous phase, we as-
sume that the variation in movements becomes quite
small.

To achieve our purpose, we use a markerless mo-
tion capture system proposed by Matsumoto et al.
(Matsumoto et al., 2012) that can obtain human poses
in 3D world coordinates from one camera input that
is robust under camera positions. This feature en-
ables motion variations to be compared from different
views for the same criteria. In this paper, we use the
golf swing as the motor learning target since there are
so many persons who enjoy the game of golf.

The reminder of this paper is organized as follows.
Section 2 overviews the markerless human motion
capture method proposed by Matsumoto et al., Sec-
tion 3 outlines our proficiency estimation method in
detail, Section 4 describes experiments we conducted,
and Section 5 concludes the paper with a brief sum-
mary.

2 GPDM-BASED MARKERLESS
MOTION CAPTURE WITH
SINGLE CAMERA

Our method uses a GPDM-based markerless motion
capture system proposed as a method for obtain-
ing human poses under robust camera position (Mat-
sumoto et al., 2012). Consisting of a training step and
a pose estimation step, it estimates the poses made
when subject movements are similar to trained move-
ments.

The method we propose has two principal fea-
tures. First, it requires only a single camera to work
well. Due to the innate characteristics of single cam-
era input, it is unable to obtain depth information.
To compensate for this, it includes a training step
in which use is made of 3D motion data captured
by a marker-based motion capture system. 3D mo-
tion data of various motions in sports can be found
in databases that are publicly available. For exam-
ple, the CMU mocap library includes motions of golf
swings, basketball dribbles, and soccer ball kicks.
Our method can employ 3D motion data from such
motion databases and thus skirt troublesome prepara-
tions. Second, it is robust against differences in the

relative positions of the camera and the target human.
The GPDM-based markerless motion capture method
learns the state dynamics of all possible views. In
the pose estimation step, it jointly estimates a 3D hu-
man pose and the camera position relative to it. This
enables robust tracking against camera position. The
following subsections describe each of these steps in
more detail.

2.1 Training Step

The GPDM-based markerless motion capture method
uses sequences of 3D human poses in the training
step. That is, it requires pose sequences obtained
by a marker-based motion capture system or a multi-
camera system. Note that since our system is de-
signed for specific motor learning, this requirement
is not especially problematic.

The training step actually comprises three steps.
The first is estimating a view-dependent trajectory. It
should be noted that the a view-dependent observa-
tion can be virtually generated from training data be-
cause it consists of 3D motion data. The second is
reducing the dimensionality of data by using GPDM
(Wang et al., 2005). The third is learning the state dy-
namics for each view. Through this training step, the
view-dependent dynamics of human movement in a
low-dimensional feature space are obtained.

2.2 Pose Estimation Step

In the pose estimation step, state parameters, i.e., view
and pose parameters trained in the training step, are
estimated by particle filtering (Isard and Blake, 1998)
of a video sequence captured by a single camera. Be-
cause this step estimates not only pose parameters but
also the view (i.e., the relative positions of human and
camera), it is robust with respect to the latter. An
HSV histogram of joints was used for the observation
model.

3 PROPOSED METHOD

This section outlines the details of the proficiency es-
timation system we propose for assisting motor learn-
ing. It has been said that motor learning can be di-
vided into three phases: cognitive, associative, and
autonomous (Schmidt and Lee, 1988). On the basis
of this knowledge, the proposed method estimates a
trainee’s proficiency in making motions from the vari-
ability of his/her own movements.

Figure 1 shows the system environment that we
assume. The proposed method uses a single cam-
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Figure 1: Assumed system environment. The proposed
method captures a trainee’s movements with a single cam-
era. The video is transferred to a PC, which then estimates
3D human poses and the view on the basis of a pre-training
3D motion model. Through multiple pose estimation trials,
the variability of movements is calculated and then profi-
ciency is estimated and displayed. This simple setting is a
most important feature in practical use.

era to capture a trainee’s movements. The video is
transferred to a PC, which then uses the method de-
scribed in Sect. 2 to estimate 3D human poses and the
view on the basis of a pre-training 3D motion model.
Through multiple pose estimation trials, the variabil-
ity of movements is calculated and then proficiency is
estimated and displayed.

The variability estimation step consists of a phase
division step and a variability calculation step. The
proposed method first divides the movements into
predefined phases. The variability calculation step
then calculates variabilitices of duration, trajectory,
and pose at the switching point of phases. Specif-
ically, for a motion that has N phases, the method
yields 3N +1 variabilities:N for duration,N for tra-
jectory, andN+1 for poses of terminal points. Figure
2 illustrates the proposed variability estimation.

3.1 Phase Division Step

Phase division is motion dependent and requires
knowledge of the motions being made. In this sub-
section, we use the swinging of a golf club and the
throwing of a ball to show examples of phase divi-
sion. Note that the phase definitions given are merely
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(a) For each trial, a motion is divided into phases; in this fig-
ure, the two trials (Trial 1 and Trial 2) displayed are divided
into four phases. The variability estimation step calculates
variabilities of duration, trajectory, and pose at the switching
point of the phases.
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(b) Duration varies by trial. Therefore, to calculate the vari-
ability of trajectory, the proposed method coordinates thedu-
rations of trials. It then resamples by a specified time step.

Figure 2: Variability estimation of our method.

examples.

3.1.1 Golf Swing

As shown in Fig. 3, a golf swing consists of three
phases: backswing, downswing, and follow-through.
The backswing starts with the picture labeled “setup”
and ends with the one labeled “to”. The downswing
goes from “top” to “impac” and the follow-through
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Figure 3: Three phases of golf swing; back swing, down
swing, and follow-through.
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Figure 4: Four phases of ball throwing: take-back, cocking,
acceleration, and follow-through.

from “impact” to “finish”.

3.1.2 Ball throwing

As shown in Fig. 4, the action of throwing a ball con-
sists of four phases: take-back, cocking, acceleration,
and follow-through.

These phase definitions are associated with body
configuration parameters. Therefore, by using the se-
quence of pose estimates, automatic phase division
can be executed.

3.2 Variability Calculation Step

The variability calculation step calculates variabili-
ties of durationV (d), trajectoryV (t), and pose at the
switching point of phasesV (p). Because the motions
are divided into phases in the phase division step, vari-
abilities of durationV (d) and poseV (p) can be cal-
culated by normal form.

For calculating the variability of trajectoryV (t),
the proposed method uses a three-step solution. First,
it coordinates the durations of trials. Second, it re-
samples by a specified time steps. If a resampled
time does not have an observed pose data, it estimates
the pose by interpolation. Finally, it calculates the av-
erage of variabilities at resampled time steps.

4 EXPERIMENTAL

To verify the effectiveness of the proposed method,
we conducted experiments in which the golf swing

was used as the target motion. In this section we first
show the experimental settings and then the results.

4.1 Experimental Settings

4.1.1 Subjects

In the experiments, each subject was asked to swing a
golf club ten times. The subjects varied in their expe-
rience in playing golf as shown in Table 1. Since the
main topic of this study was proficiency estimation,
we asked the subjects to wear colored bands on their
wrists and ankles to facilitate stable tracking.

4.1.2 Motion Data and Capturing

We used golf swing data of an adult male of average
build from the CMU motion capture library (Subject
#64) in the training step. The frame rate of this motion
data was 120 fps.

We captured videos of the subjects’ motions with
two cameras at different angles with 640 x 480 pixel
resolution. Capturing frame rate was 30 fps and each
trial had about 60 frames.

We downsampled the motion data to eliminate the
gap between its frame rate and that for the captured
videos.

4.1.3 Calculation

We used an Intel Core i7 3.20GHz CPU for calcula-
tion. For all experiments, 3000 particles were used
for the particle filtering to estimate 3D human pose.
The phases were automatically divided on the basis
of the pose estimates; the phase lengths were normal-
ized in 5 samples. We caluculated the variability from
ten trials in each phase.

4.2 Result of 3D Pose Estimate

Snapshots of captured videos are shown in Fig. 5. The
overlay lines denote pose estimates. Note that the es-
timates included 3D pose information and the view;
the lines were generated from 3D poses and projected
on the basis of the estimated view. We verified that
we successfully obtained correct 3D poses despite the
difference of view point. Figure 6 (the solid lines)
shows left hand horizontal positions in 3D pose co-
ordinate. The different markers on the lines denote
camera location. The estimated positions were almost
same results in despite of a different camera position.

We also calculated 2D color tracking results to
show the benefit of using 3D poses in Fig. 6 (the dot-
ted lines). The position provided at a different camera
place was different in the timing of the peak. This is
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Table 1: Subject s golf experiences.

Subjects Experience years Frequency Average score
A 18 Once a week 95
B 7 Five times a year 118
C 0 None None

Figure 5: Results of 3D pose estimation shown by red lines.
Top: Camera 1, Subject C. Bottom: Camera 2, Subject A.

because that information is degenerated nonlinearly
by obtaining 3D position with a camera. This result
affects subsequent calculation, for example, the divi-
sion for a phase. This means that using 3D poses al-
lows an equal trajectory to be obtained independent
of the camera position and that the proposed method
is not affected by the camera position relative to the
trainee; this is an important feature for practical use.

4.3 Result of Proficiency estimation on
the Basis of Motion Variability

Figure 7 shows the estimated variability of motions.
The variability was calculated from results obtained
in seven trials (out of ten, after removal of unstable
tracking). As Fig. 7 shows, the well experienced sub-
ject A showed very small variability of motions, while
the beginner subject C showed large variability. The
tendency that dispersion became small so that an ac-
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Figure 6: Results of left hand horizontal position calculated
from 3D estimated pose in 3D pose coordinate and 2D color
tracking results in image coordinate. Solid lines denote 3D
estimated pose, dotted lines denote 2D color tracking, and
different markers on lines denote camera location. The po-
sition provided at a different camera place was the same by
3D pose evaluation substantially, but the timing of the peak
is different in the 2D tracking.

quisition degree became higher was provided.

4.4 Discussion

In these experiments, the elapsed time for proficiency
calculation from ten trials was about fifty minutes.
Since we will attempt to use this system to obtain
real-time feedback for assisting motor learning, we
assume we need to obtain about a 50-fold reduction in
the computational time. This would appear to be quite
difficult but we believe it is not unachievable. Particle
filters are very suitable for use in parallel computing
techniques. In recent research there have been many
reports of using GP-GPU to achieve a more than 10-
fold increase in particle filter computation speed.

To enable the proposed method to estimate profi-
ciency with greater precision, we consider it needs to
be able to deal with two important types of informa-
tion that it currently does not. One is the variability
of motions within a phase. The method currently cal-
culates the variability of trajectory on the basis of the
average of pose variabilities within a phase. How-
ever, the variability of motions within a phase may
also be informative. An example illustrating this point
is shown in Fig. 8. The results show that the well
experienced subject A showed small variability at all
times, while subjects B and C showed significant vari-
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V(p) V(d) V(t) V(p) V(d) V(t) V(p) V(d) V(t) V(p)

Set-up Back-swing Top Down-swing Impact Follow-through Finish

Subject A 0.33 2.12 0.69 0.14 2.49 0.44 0.70 1.06 2.07 0.81

Subject B 18.61 26.48 8.41 18.12 34.94 9.37 33.96 15.11 10.33 64.37

Subject C 34.67 107.14 13.63 37.25 18.08 14.10 74.38 28.35 16.66 80.07
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Figure 7: Estimated variability of motions.V (d) denotes variabilities of duration,V (t) denotes the average of variability of
trajectory at each time step, andV (p) denotes the average of variability of pose at each time step.Experienced subject showed
small variability of motions, while the beginner subject showed large variability.
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Figure 8: Variability of motions within an experiment
phase. Results show that the well experienced subject A
showed small variability at all times, while subjects B and
C showed significant variability with a similar tendency.

ability with a similar tendency. We only show these
results at this time, but more detailed results may be
obtained by using a more precise analysis method in
the acquisition process. The other is coordination be-
tween body parts. It may be considered that the mo-
tion of one part is changed to compensate for that of
another part, so that the total performance is adjusted
well. Therefore, the method’s effectiveness could be
enhanced by enabling it to handle this kind of coordi-
nation between body parts.

5 CONCLUSIONS

We have proposed a motor learning assist system that
estimates the proficiency of trainees in performing
motions such as those made in swinging a golf club or
throwing a ball. In this paper, we proposed a method
for evaluating proficiency on the basis of variability
in 3D motion obtained for trainees in repeated trials,
under the assumption that less variability over a num-
ber of trials correlates with the trainees’ proficiency.
Its principal features are that first, it requires only a
single camera and can be used not only by elite ath-
letes but also by casual sports fans, and second, it esti-
mates proficiency only from a trainee’s own motions
and thus does not require any reference movements.
We found there was a tendency for dispersion over 10
trials to fall in proportion to the increased degree of
proficiency the trainees acquired.

In future work we will need to face two chal-
lenges. One is to validate our assumption that
small/large variability leads to good/poor perfor-
mance. The other is to enhance our system’s effec-
tiveness. We will examine means to accelerate its
calculation speed, perform experiments on it with an
increased number of subjects including experts, and
confirm its applicability to other types of motions. In
addition, we want to inspect vision-feedback methods
to be effective in the improvement of the athletic abil-
ity.
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