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Abstract: In this paper, we propose a distributionally robust model for a (0-1) stochastic quadratic bi-level programming
problem. To this purpose, we first transform the stochastic bi-level problem into an equivalent deterministic
formulation. Then, we use this formulation to derive a bi-level distributionally robust model (Liao, 2011).
The latter is accomplished while taking into account the set of all possible distributions for the input random
parameters. Finally, we transform both, the deterministic and the distributionally robust models into single
level optimization problems (Audet et al., 1997). This allows comparing the optimal solutions of the proposed
models. Our preliminary numerical results indicate that slight conservative solutions can be obtained when the
number of binary variables in the upper level problem is larger than the number of variables in the follower.

1 INTRODUCTION

Bi-level programming (BP) is a hierarchical optimiza-
tion framework. It consists in optimizing an objective
function subject to a constrained set where another
optimization problem is embedded. The first level op-
timization problem is referred to as the leader prob-
lem while the lower level, as the follower problem.
Formally, a BP problem can be written as follows

min
{x∈X,y}

F(x,y)

s.t. G(x,y)≤ 0

min
{y}

f (x,y)

s.t. g(x,y)≤ 0

wherex ∈ Rn1, y ∈ Rn2, F : Rn1 ×Rn2 → R and f :
Rn1 ×Rn2 → R are the decision variables and the ob-
jective functions for the upper and lower level prob-
lems, respectively. The functionsG : Rn1×Rn2 →Rm1

andg : Rn1 ×Rn2 → Rm2 denote upper and lower level
constraints. The goal is to find an optimal point such
that the leader and the follower minimizes their re-
spective objective functions subject to their respec-
tive linking constraints (Audet et al., 1997). Ap-
plications of BP include transportation, network de-
sign, management and planning among others. For
more application domains, see for instance (Floudas

and Pardalos, 2001). It has been shown that bi-level
problems are strongly NP-Hard, even for the simplest
case where all the involved functions are affine (Au-
det et al., 1997).

As far as we know, robust optimization ap-
proaches have not yet been reported in the literature
for bi-level programming. Some preliminary works
concerning pure stochastic programming approaches
can be found, for instance, in (Audestad et al., 2006;
Özaltin et al., 2010; Carrion et al., 2009; Kalashnikov
et al., 2010; Wynter, 2009). In (Carrion et al., 2009),
an application for retailer futures market trading is
considered whereas a natural gas cash-out problem is
studied in (Kalashnikov et al., 2010).

Stochastic programming (SP) as well as robust op-
timization (RO) are well known optimization tech-
niques to deal with mathematical problems involving
uncertainty in the input parameters. In SP, it is usually
assumed that the probability distributions are discrete
and known or that they can be estimated (Shapiro
et al., 2009). There are two well known scenario ap-
proaches in SP, therecourse modeland theprobabilis-
tic constrained approach. See for instance (Schultz
et al., 1996; Birge and Louveaux, 1997). Different
from the SP approach, the RO framework assumes
that the input random parameters lie within a convex
uncertainty set and that the robust solutions must re-
main feasible for all possible realizations of the in-
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put parameters. Thus, the optimization is performed
over the worst case realization of the input param-
eters. In compensation, we obtain robust solutions
which are protected from undesired fluctuations in the
input parameters. In this case, the objective function
provides more conservative solutions. We refer the
reader to (Bertsimas and Sim, 2004) and (Bertsimas
et al., 2010) for a more general understanding on RO.

In this paper, we propose a distributionally RO
model for a (0-1) stochastic quadratic bi-level prob-
lem with expectation in the objective and probabilis-
tic knapsack constraints in the leader. To this pur-
pose, we first transform the stochastic problem into an
equivalent deterministic problem (Gaivoronski et al.,
2011). Subsequently, we apply a novel and simple
distributionally robust approach proposed by (Liao,
2011) to derive a distributionally robust formulation
for our stochastic bi-level problem. The latter allows
optimizing the objective function over the set of all
possible distributions in the input random parameters.
Finally, we compute optimal solutions by transform-
ing both problems, the deterministic as well as the
distributionally models into single level optimization
problems (Audet et al., 1997). Preliminary numeri-
cal comparisons are given. The paper is organized
as follows. Section 2, presents the stochastic model
under study and the equivalent deterministic formula-
tion. In section 3, we derive the distributionally robust
formulation. In section 4, we transform the determin-
istic and robust models into single level optimization
problems. Then, in section 5, we provide preliminary
numerical comparisons. Finally, section 6 concludes
the paper.

2 PROBLEM FORMULATION

We consider the following (0-1) stochastic quadratic
bi-level problem we denote hereby Q0 as follows

max
{x}

E

{

n1

∑
i=1

n1

∑
j=1

Di, j(ξ)xix j

}

(1)

s.t. P

{

n1

∑
j=1

a j(ξ)x j +
n2

∑
j=1

b j(ξ)y j ≤ c(ξ)

}

≥

(1−α) (2)

x j ∈ {0,1}, j = 1 : n1 (3)

y∈ argmax
{y}

{
n2

∑
j=1

d jy j} (4)

s.t.
n1

∑
j=1

Fi, jx j +
n2

∑
j=1

Gi, jy j ≤ hi , i = 1 : m2 (5)

0≤ y j ≤ 1, j = 1 : n2 (6)

wherex ∈ {0,1}n1 andy∈ [0,1]n2 are the leader and
the follower decision variables respectively. In Q0,
(1)-(3) correspond to the leader problem while (4)-
(6) represent the follower problem. The termE{·}
denotes mathematical expectation whileP{·} repre-
sents a probability imposed on the upper level knap-
sack constraint. This probability should be satisfied
at least for(1−α)% of the cases whereα ∈ (0,0.5]
represents the risk. The matricesD,F,G and vectors
a,b,d,h,c are input nonnegative real matrices/vectors
defined accordingly. We assume that the matrix
D = D(ξ), vectorsa = a(ξ),b = b(ξ) and c = c(ξ)
are random variables distributed according to a dis-
crete probability distributionΩ. As such, one may
suppose thata j(ξ), b j(ξ) andc(ξ) are concentrated
on a finite set of scenarios asa j(ξ) = {a1

j , ..,a
K
j },

b j(ξ) = {b1
j , ..,b

K
j } and c(ξ) = {c1, ..,cK} respec-

tively, with probability vectorqT = (q1, ..,qK) such
that ∑K

k=1 qk = 1 andqk ≥ 0. In (Gaivoronski et al.,
2011), the authors propose a deterministic equivalent
formulation for Q0 by replacing the probabilistic con-
straint (2) with the following deterministic constraints

n1

∑
j=1

ak
jx j +

n2

∑
j=1

bk
jy j ≤ ck+Mkzk, zk ∈ {0,1}∀k

K

∑
k=1

qkzk ≤ α (7)

where Mk is defined for eachk = 1 : K by Mk =
∑n1

j=1ak
j +∑n2

j=1bk
j − ck. The variablezk for eachk is

a binary variable used to decide whether a particular
constraint is discarded. This is handled by taking the
risk α in constraint (7).

Analogously, the random variablesDi, j(ξ) are dis-
cretely distributed, i.e.Di, j(ξ) = (D1

i, j , ...,D
K
i, j),∀i, j

such that∑K
k=1 ρk = 1 andρk ≥ 0 whereρ is the prob-

ability vector. Thus, the expectation in the objective
function (1) can be written as

max
{x}

K

∑
k=1

ρk

(

n1

∑
i=1

n1

∑
j=1

Dk
i, jxix j

)

This yields the following deterministic equivalent
problem we denote by QD as follows

max
{x,z}

K

∑
k=1

ρk

(

n1

∑
i=1

n1

∑
j=1

Dk
i, jxix j

)

s.t.
n1

∑
j=1

ak
jx j +

n2

∑
j=1

bk
jy j ≤ ck+Mkzk, ∀k
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K

∑
k=1

qkzk ≤ α

zk ∈ {0,1}∀k

x j ∈ {0,1}, j = 1 : n1

y∈ argmax
{y}

{
n2

∑
j=1

d jy j}

s.t.
n1

∑
j=1

Fi, jx j +
n2

∑
j=1

Gi, jy j ≤ hi , i = 1 : m2

0≤ y j ≤ 1, j = 1 : n2

This model is a deterministic equivalent formulation
for Q0 provided the assumption on the discrete prob-
ability spaceΩ holds.

3 THE DISTRIBUTIONALLY
ROBUST FORMULATION

In this section, we derive a distributionally RO model
for QD. For this, we assume that the probability dis-
tribution of the random vectorsρT = (ρ1, ..,ρK) and
qT = (q1, ..,qK) are not known and that they can be
estimated by some statistical mean from some avail-
able historical data. Thus, we consider the maximum
likelihood estimator of the probability vectorsρT and
qT to be the observed frequency vectors.

3.0.1 The Distributionally Robust Model

In order to formulate a robust model for QD, we write
its objective function as follows

min
{x}

max
{π∈Hβ}

K

∑
k=1

πk

(

n1

∑
i=1

n1

∑
j=1

−Dk
i, jxix j

)

(8)

and the left hand side of constraint (7) as the maxi-
mization problem

max
{p∈Hγ}

K

∑
k=1

pkzk (9)

where the setsHβ andHγ are defined respectively as

Hβ =

{

πk ≥ 0,∀k :
K

∑
k=1

πk = 1,

K

∑
k=1

|πk−ρk|√ρk
≤ β

}

and

Hγ =

{

pk ≥ 0,∀k :
K

∑
k=1

pk = 1,

K

∑
k=1

|pk−qk|√
qk

≤ γ

}

whereβ,γ ∈ [0,∞). Now, let δk = πk −ρk, then the
inner max problem in (8) can be written as

max
{δ}

K

∑
k=1

(δk+ρk)

(

n1

∑
i=1

n1

∑
j=1

−Dk
i, jxix j

)

s.t.
K

∑
k=1

|δk|√ρk
≤ β (10)

K

∑
k=1

δk = 0 (11)

δk ≥−ρk, k= 1 : K (12)

The associated dual problem is

min
{w1,ϕ1,v1}

K

∑
k=1

ρk

(

n1

∑
i=1

n1

∑
j=1

−Dk
i, jxix j

)

+

K

∑
k=1

ρkw
1
k +βϕ1

s.t. ϕ1 ≥√
ρk

(

v1+w1
k−

n1

∑
i=1

n1

∑
j=1

Dk
i, jxix j

)

,∀k

ϕ1 ≥−√
ρk

(

v1+w1
k −

n1

∑
i=1

n1

∑
j=1

Dk
i, jxix j

)

,∀k

w1
k ≥ 0, ∀k

and ϕ1,v1,w1 are Lagrangian multipliers for con-
straints (10)-(12), respectively. Similarly, we obtain
a dual formulation for (9) as follows

min
{w2,ϕ2,v2}

K

∑
k=1

qkz
k+

K

∑
k=1

qkw
2
k + γϕ2

s.t. ϕ2 ≥√
qk
(

v2+w2
k + zk

)

,∀k

ϕ2 ≥−√
qk
(

v2+w2
k + zk

)

,∀k

w2
k ≥ 0, ∀k

where ϕ2
,v2

,w2 are Lagrangian multipliers associ-
ated with its primal constraints. Now, replacing these
dual problems in QD gives rise to the following distri-
butionally robust formulation we denote by QR

D

max
{w1,ϕ1,v1,w2,ϕ2,v2,x,z}

K

∑
k=1

ρk

(

n1

∑
i=1

n1

∑
j=1

Dk
i, jxix j

)

−
K

∑
k=1

ρkw
1
k −βϕ1

s.t.ϕ1 ≥√
ρk

(

v1+w1
k −

n1

∑
i=1

n1

∑
j=1

Dk
i, jxix j

)

,∀k

ϕ1 ≥−√
ρk

(

v1+w1
k−

n1

∑
i=1

n1

∑
j=1

Dk
i, jxix j

)

,∀k

w1
k ≥ 0, ∀k (13)
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n1

∑
j=1

ak
jx j +

n2

∑
j=1

bk
jy j ≤ ck+Mkzk, k= 1 : K

zk ∈ {0,1} k= 1 : K
K

∑
k=1

qkzk+
K

∑
k=1

qkw
2
k + γϕ2 ≤ α

ϕ2 ≥√
qk(zk+ v2+w2

k), ∀k

ϕ2 ≥−√
qk(zk+ v2+w2

k), ∀k

w2
k ≥ 0, ∀k (14)

x j ∈ {0,1}, j = 1 : n1

y∈ argmax
{y}

{
n2

∑
j=1

d jy j}

s.t.
n1

∑
j=1

Fi, jx j +
n2

∑
j=1

Gi, jy j ≤ hi , i = 1 : m2

0≤ y j ≤ 1, j = 1 : n2

In the next section we transform both models: QD and
QR

D into single level optimization problems. More
precisely, we obtain Mixed Integer Linear program-
ming problems (MILP) (Audet et al., 1997).

4 EQUIVALENT MILP
FORMULATIONS

Since the follower problem is the same for both QD
and QR

D, we derive equivalent MILPs by replacing the
follower problem with its primal, dual and comple-
mentarity slackness conditions. These conditions can
be written as

n1

∑
j=1

Fi, jx j +
n2

∑
j=1

Gi, jy j ≤ hi , i = 1 : m2 (15)

0≤ y j ≤ 1, j = 1 : n2 (16)

m2

∑
i=1

λiGi, j +µj ≥ d j , j = 1 : n2 (17)

λi ≥ 0, i = 1 : m2 (18)

µj ≥ 0, j = 1 : n2 (19)

λi

(

hi −
n1

∑
j=1

Fi, jx j −
n2

∑
j=1

Gi, jy j

)

= 0,

i = 1 : m2 (20)

µj (1− y j) = 0, j = 1 : n2 (21)
(

m2

∑
i=1

λiGi, j +µj −d j

)

y j = 0,

j = 1 : n2 (22)

where (15)-(16) and (17)-(19) are the primal and dual
follower constraints, respectively. Note that con-
straints (20)-(22) are quadratic constraints. In (Audet
et al., 1997), the authors propose a splitting scheme
to linearize these complementarity constraints. The
approach introduces binary variables as follows

hi −
n1

∑
j=1

Fi, jx j −
n2

∑
j=1

Gi, jy j +ν1
i L ≤ L,

i = 1 : m2 (23)

λi ≤ ν1
i L, i = 1 : m2 (24)

ν1
i ∈ {0,1}, i = 1 : m2 (25)

1− y j +ν2
j L ≤ L, j = 1 : n2 (26)

µj ≤ ν2
j L, j = 1 : n2 (27)

ν2
j ∈ {0,1}, j = 1 : n2 (28)

m2

∑
i=1

λiGi, j +µj −d j +ν3
j L ≤ L,

j = 1 : n2 (29)

y j ≤ ν3
j L, j = 1 : n2 (30)

ν3
j ∈ {0,1}, j = 1 : n2 (31)

where constraints (23)-(25), (26)-(28) and (29)-(31)
replace the single constraints (20), (21) and (22), re-
spectively. The parameterL is a large positive num-
ber.

Finally, let ψi, j = xix j be a linearization variable
for each quadratic term in QD and QR

D (Fortet, 1960).
Thus, a MILP formulation for QD can be written as

max
{x,y,z,ψ,λ,µ,ν1,ν2,ν3}

K

∑
k=1

ρk

(

n1

∑
i=1

n1

∑
j=1

Dk
i, jψi, j

)

s.t.
n1

∑
j=1

ak
jx j +

n2

∑
j=1

bk
jy j ≤ ck+Mkzk, ∀k

K

∑
k=1

qkzk ≤ α

zk ∈ {0,1}∀k

ψi, j ≤ xi , i, j = 1 : n1 (32)

ψi, j ≤ x j , i, j = 1 : n1 (33)

ψi, j ≥ x j + xi −1, i, j = 1 : n1 (34)

ψi, j ∈ {0,1}, i, j = 1 : n1 (35)

x j ∈ {0,1}, j = 1 : n1
n1

∑
j=1

Fi, jx j +
n2

∑
j=1

Gi, jy j ≤ hi, i = 1 : m2

0≤ y j ≤ 1, j = 1 : n2
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m2

∑
i=1

λiGi, j +µj ≥ d j , j = 1 : n2

λi ≥ 0, i = 1 : m2

µj ≥ 0, j = 1 : n2

hi −
n1

∑
j=1

Fi, jx j −
n2

∑
j=1

Gi, jy j +ν1
i L ≤ L,

i = 1 : m2

λi ≤ ν1
i L, i = 1 : m2

ν1
i ∈ {0,1}, i = 1 : m2

1− y j +ν2
j L ≤ L, j = 1 : n2

µj ≤ ν2
j L, j = 1 : n2

ν2
j ∈ {0,1}, j = 1 : n2

m2

∑
i=1

λiGi, j +µj −d j +ν3
j L ≤ L,

j = 1 : n2

y j ≤ ν3
j L, j = 1 : n2

ν3
j ∈ {0,1}, j = 1 : n2

where constraints (32)-(35) are Fortet linearization
constraints. We denote this model by MIPD. Con-
sequently, a MILP distributionally robust model for
QR

D can be written as follows

max
{ϒ}

K

∑
k=1

ρk

(

n1

∑
i=1

n1

∑
j=1

Dk
i, jψi, j

)

−
K

∑
k=1

ρkw
1
k −βϕ1

s.t.ϕ1 ≥√
ρk

(

v1+w1
k −

n1

∑
i=1

n1

∑
j=1

Dk
i, jψi, j

)

,∀k

ϕ1 ≥−√
ρk

(

v1+w1
k −

n1

∑
i=1

n1

∑
j=1

Dk
i, j ψi, j

)

,∀k

w1
k ≥ 0, ∀k

n1

∑
j=1

ak
jx j +

n2

∑
j=1

bk
jy j ≤ ck+Mkzk, k= 1 : K

K

∑
k=1

qkzk+
K

∑
k=1

qkw
2
k + γϕ2 ≤ α

zk ∈ {0,1} k= 1 : K

ϕ2 ≥√
qk(zk+ v2+w2

k), ∀k

ϕ2 ≥−√
qk(zk+ v2+w2

k), ∀k

w2
k ≥ 0, ∀k

ψi, j ≤ xi , i, j = 1 : n1

ψi, j ≤ x j , i, j = 1 : n1

ψi, j ≥ x j + xi −1, i, j = 1 : n1

ψi, j ∈ {0,1}, i, j = 1 : n1

x j ∈ {0,1}, j = 1 : n1
n1

∑
j=1

Fi, jx j +
n2

∑
j=1

Gi, jy j ≤ hi, i = 1 : m2

0≤ y j ≤ 1, j = 1 : n2
m2

∑
i=1

λiGi, j +µj ≥ d j , j = 1 : n2

λi ≥ 0, i = 1 : m2

µj ≥ 0, j = 1 : n2

hi −
n1

∑
j=1

Fi, jx j −
n2

∑
j=1

Gi, jy j +ν1
i L ≤ L,

i = 1 : m2

λi ≤ ν1
i L, i = 1 : m2

ν1
i ∈ {0,1}, i = 1 : m2

1− y j +ν2
j L ≤ L, j = 1 : n2

µj ≤ ν2
j L, j = 1 : n2

ν2
j ∈ {0,1}, j = 1 : n2

m2

∑
i=1

λiGi, j +µj −d j +ν3
j L ≤ L,

j = 1 : n2

y j ≤ ν3
j L, j = 1 : n2

ν3
j ∈ {0,1}, j = 1 : n2

whereϒ = {w1,ϕ1,v1,w2,ϕ2,v2,x,y,z,ψ,λ,µ,ν1,ν2,
ν3}. We denote this model by MIPRD.

In the next section, we provide numerical com-
parisons between MIPD and MIPR

D. This allows mea-
suring the conservatism level of MIPR

D with respect
to MIPD. The conservatism level can be measured by
the loss in optimality in exchange for a robust solution
which is more protected against uncertainty (Bertsi-
mas and Sim, 2004). This means, the less conser-
vative the robust solutions are, the better the RO ap-
proach.

5 NUMERICAL RESULTS

In this section, we present preliminary numerical re-
sults. A Matlab program is developed using Cplex
12.3 for solving MIPD and MIPR

D. The numerical ex-
periments have been carried out on a Pentium IV, 1.9
GHz with 2 GB of RAM under windows XP. The in-
put data is generated as follows. The probability vec-
tors ρ and q are uniformly distributed in[0,1] such
that the sums are equal to one. The parameterα is
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set to 0.1. MatricesF,G and vectorsak,bk,∀k are
uniformly distributed in[0,1]. The symmetric matri-
cesDk,∀k and vectord are uniformly distributed in
[0,10]. The scalarsck,∀k and the vectorh are gener-
ated respectively as

ck =
1
2

(

n1

∑
j=1

ak
j +

n2

∑
j=1

bk
j

)

, ∀k

and

hi =
1
2

(

n1

∑
j=1

Fi, j +
n2

∑
j=1

Gi, j

)

, ∀i = 1 : m2

In table 1, columns 1-4 give the size of the instances.
Columns 5-6 provide the average optimal solutions
over 25 different sample instances. Finally, column 7
gives the average gaps we compute for each instance

as (MIPD−MIPR
D)

MIPD
·100%. These results are calculated

for different values ofβ and γ. From table 1, we

Table 1: Average comparisons over 25 instances.

Instance size Avg. Opt. Sol.
Avg. GapRn1 n2 K m2 MIPD MIPR

D
β = 50 andγ = 50

10 10 10 5 300.09 267.31 10.85 %
10 10 30 5 283.95 229.39 21.88 %
10 10 10 10 322.94 284.46 11.98 %
20 10 10 5 985.82 917.55 6.95 %
10 20 10 5 152.09 115.25 22.12 %

β = 100 andγ = 50
10 10 10 5 313.29 258.47 17.74 %
10 10 30 5 272.49 212.07 22.05 %
10 10 10 10 320.94 290.30 9.29 %
20 10 10 5 990.99 931.64 5.93 %
10 20 10 5 138.99 100.97 27.53 %

β = 50 andγ = 100
10 10 10 5 290.98 255.61 12.06 %
10 10 30 5 278.32 197.80 28.66 %
10 10 10 10 311.54 282.26 9.08 %
20 10 10 5 1013.41 958.89 5.23 %
10 20 10 5 169.78 89.12 47.33 %

mainly observe that the solutions tend to be more con-
servative when a) the number of scenariosK is larger
thann1,n2 andm2 and b) when the number of vari-
ables of the follower problem:n2 is larger thann1,K
andm2. On the opposite, we see slight conservative
solutions when the number of binary variables:n1 is
larger thann2,K andm2. The variations ofβ andγ do
not seem to affect these trends. However, they seem to
affect the conservatism level in each case. For exam-
ple, the average increases significantly up to 47.33%
whenβ < γ andn2 is large. Same remarks whenK is
large.

In order to see how the parametersβ and γ af-
fect the conservatism levels, we solve one instance

for each row in table 1 while varying onlyβ andγ.
These results are shown in tables, 2, 3, 4, 5 and 6,
respectively. All columns in these tables provide the
same information for each instance. In columns 1-2,
we give the values ofβ andγ. Columns 3-4 give the
optimal solutions for MIPD and MIPR

D, respectively.
Finally, in column 5, we give the gap we compute

as (MIPD−MIPR
D)

MIPD
·100%. In table 2, we observe that

Table 2: Instance # 1:n1 = n2 = 10,m2 = 5, K = 10.

Robustness Optimal Solutions
GapRβ γ MIPD MIPR

D
0 0

328.37

328.37 0 %
0 30 328.37 0 %
0 60 328.37 0 %
0 90 328.37 0 %
30 0 301.18 8.28 %
30 30 311.27 5.21 %
30 60 315.48 3.93 %
30 90 315.48 3.93 %
60 0 290.70 11.47 %
60 30 291.79 11.14 %
60 60 311.04 5.28 %
60 90 311.04 5.28 %
90 0 302.53 7.87 %
90 30 309.27 5.82 %
90 60 309.27 5.82 %
90 90 290.54 11.52 %

whenβ = 0, then augmenting the values ofγ does not
affect the optimal solutions. This is not the case when
γ = 0 andβ > 0. Next, when bothβ > 0 andγ > 0,
the optimal solutions are affected. In particular, we
observe that the parameterβ affects more the optimal
solutions thanγ does. For example, whenβ goes from
30 to 60, we observe an increment of 5.93% while
from 30 to 90, we observe an increment of 0.61%.
This is not the case whenγ increases. In this partic-
ular case, we observe a decrement of 1.28% in each
case. The increase ofγ seems to produce the opposite
effect than incrementingβ. For example, we notice
that whenβ = 30,60,90 andγ goes from 0 to 30, 60
or 90, the gaps are decremented except in the worst
case when both,β = γ = 90.

Similar observations are obtained for instances 3
and 5 in tables 4 and 6, respectively. Instances 2 and
4 in tables 3 and 5 respectively, provide additional in-
formation. Table 3 corresponds to the case where the
number of scenariosK is larger compared ton1,n2
and m2. In this case, increasingγ when β = 0 af-
fects the optimal solutions. In particular, whenβ = 0
andγ goes from 60 to 90, we have a large increase of
31.04% in the conservatism level. This is repeated for
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Table 3: Instance # 2:n1 = n2 = 10,m2 = 5, K = 30.

Robustness Optimal Solutions
GapRβ γ MIPD MIPR

D
0 0

181.14

181.14 0 %
0 30 181.03 0.06 %
0 60 179.85 0.71 %
0 90 123.63 31.75 %
30 0 178.82 1.28 %
30 30 177.12 2.22 %
30 60 177.12 2.22 %
30 90 123.67 31.73 %
60 0 176.63 2.49 %
60 30 176.63 2.49 %
60 60 175.07 3.35 %
60 90 123.08 32.05 %
90 0 174.60 3.61 %
90 30 173.15 4.41 %
90 60 173.15 4.41 %
90 90 121.96 32.67 %

Table 4: Instance # 3:n1 = n2 = 10,m2 = 10,K = 10.

Robustness Optimal Solutions
GapRβ γ MIPD MIPR

D
0 0

331.48

331.48 0 %
0 30 331.48 0 %
0 60 331.48 0 %
0 90 331.48 0 %
30 0 316.51 4.52 %
30 30 316.51 4.52 %
30 60 316.51 4.52 %
30 90 311.11 6.15 %
60 0 306.65 7.49 %
60 30 306.65 7.49 %
60 60 306.65 7.49 %
60 90 309.91 6.51 %
90 0 308.84 6.83 %
90 30 308.84 6.83 %
90 60 308.84 6.83 %
90 90 308.84 6.83 %

each value ofβ = 0,30,60,90 whenγ goes from 60 to
90. The worst gap occurs whenβ = γ = 90.

Finally, in table 5 we observe weak conservatism
levels in all cases. In fact, they are lower than 10%.
This instance corresponds to the case when the binary
variables of the leader problem, i.e.n1 are larger when
compared ton2,m2 andK. Notice that whenβ = 0
and γ grows, then the optimal solutions are slightly
affected.

6 CONCLUSIONS

In this paper, we proposed a distributionally robust
model for a (0-1) stochastic quadratic bi-level pro-

Table 5: Instance # 4:n1 = 20,n2 = 10,m2 = 5, K = 10.

Robustness Optimal Solutions
GapRβ γ MIPD MIPR

D
0 0

982.24

982.24 0 %
0 30 965.06 1.75 %
0 60 973.95 0.84 %
0 90 982.24 0 %
30 0 923.13 6.02 %
30 30 934.96 4.81 %
30 60 940.78 4.22 %
30 90 940.78 4.22 %
60 0 940.38 4.26 %
60 30 943.63 3.93 %
60 60 931.84 5.13 %
60 90 902.04 8.16 %
90 0 936.32 4.67 %
90 30 926.40 5.68 %
90 60 929.28 5.39 %
90 90 895.58 8.82 %

Table 6: Instance # 5:n1 = 10,n2 = 20,m2 = 5, K = 10.

Robustness Optimal Solutions GapRβ γ MIPD MIPR
D

0 0

257.00

257.00 0 %
0 30 257.00 0 %
0 60 257.00 0 %
0 90 257.00 0 %
30 0 241.17 6.16 %
30 30 241.17 6.16 %
30 60 241.17 6.16 %
30 90 241.17 6.16 %
60 0 230.29 10.39 %
60 30 230.29 10.39 %
60 60 230.29 10.39 %
60 90 230.29 10.39 %
90 0 223.45 13.06 %
90 30 223.45 13.06 %
90 60 223.45 13.06 %
90 90 223.45 13.06 %

gramming problem. To this end, we transformed the
stochastic bi-level problem into an equivalent deter-
ministic model. Afterward, we derived a bi-level dis-
tributionally robust model using the deterministic for-
mulation. In particular, we applied a distributionally
robust approach proposed in (Liao, 2011). This al-
lows optimizing the problem when taking into ac-
count the set of all possible distributions of the in-
put random parameters. Thus, we derived Mixed In-
teger Linear Programming formulations using Fortet
linearization method (Fortet, 1960) and the approach
proposed by (Audet et al., 1997). Finally, we com-
pared the optimal solutions of this model to measure
the conservatism level of the proposed robust model.
Our preliminary numerical results show that slight
conservative solutions are obtained for the case when

ICORES�2013�-�International�Conference�on�Operations�Research�and�Enterprise�Systems

228



the number of binary variables in the upper level prob-
lem is larger than the number of variables in the fol-
lower problem.
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