
Reengineered PFA: An Approach for Reinvention of
Behaviorally-rich Systems

Reuven Gallant1 and Leah Goldin2

1Jerusalem College of Technology, P.O.B. 16031, 91160, Jerusalem, Israel
2Shenkar College of Engineering and Design, 52526, Ramat-Gan, Israel

Abstract. In this Position Paper, one considers application of a reengineered
PFA as a means of reinvent critical parts of a particular class of behaviorally-
rich systems. The implementation of such systems, although not necessarily the
outgrowth of PFA, could plausibly have been such an outgrowth because of the
nature of their behavior and the way they were modeled. The goal of reengi-
neered PFA application for such a system would be to re-examine and re-
design critical behaviors. In particular, if the behaviors of such a system have
been modeled by statechart diagrams, these diagrams can be leveraged to cata-
lyze examination of whether the as-built behavior is in fact the desired behav-
ior.

1 Introduction

The basic underpinning of M. Jackson's Problem Frame Approach (PFA) (Jackson,
1996) is that problem analysis precedes the construction of the solution. In other
words, PFA is originally intended for novel systems prior to solution, rather than
existing normal systems, that presumably, in the course of their evolution, have
achieved mastery of problem complexity. In the same spirit, PFA eschews considera-
tion of software implementation architecture until a thorough problem analysis has
been achieved.

Within PFA for software development, in Jackson’s own words "Development of a
system is regarded as a problem: the task is to devise a software behavior that will
satisfy the requirement—that is, will produce the required effects in the physical
problem world. The complexity of the problem is addressed by decomposition into
sub-problems, and so on recursively.” Each such simple sub-problem can be regarded
as defining a small system to be developed — with its own software behavior.

In this paper we switch the point of view from novel systems to emphasize behav-
iorally-rich systems. This implies a sort of reengineered PFA, which will be formu-
lated and illustrated by a case study.

1.1 Overview of the Paper

Section 2 presents the key elements of PFA: Decomposition, and Recomposition.

Gallant R. and Goldin L..
Reengineered PFA: An Approach for Reinvention of Behaviorally-rich Systems.
DOI: 10.5220/0004181400710078
In Proceedings of the 3rd International Workshop on Software Knowledge (SKY-2012), pages 71-78
ISBN: 978-989-8565-32-7
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Section 3 discusses the differences between behaviorally-poor and behaviorally-rich
systems, and why reengineered PFA is considered more appropriate to the latter.
Section 4 details the meaning we impart to reengineered PFA. Section 5 presents a
case study that, although modest in scope, exhibits the characteristics that the authors
feel makes a system suitable for reengineered PFA. Section 6 contains a discussion
and conclusions.

2 PFA Decomposition and Recomposition

According to traditional requirements engineering, requirements are decomposed
either by refinement, in which a large requirement is divided into constituent parts
that it contains or directly implies, or by derivation, the creation of detailed require-
ments not contained or obviously implied in the original formulation of the require-
ment, but nonetheless necessary to satisfy the original requirement.

In model-driven development, these requirements are allocated to model elements.
For complex systems, the model will also undergo decomposition, and the model
decomposition will typically be influenced by the requirements decomposition, but
there is no clear heuristic linking the two.

2.1 PFA Decomposition

In PFA, decomposition is not applied to requirements, but to the software develop-
ment problem.

Having defined the software development problem as the task of devising a soft-
ware behavior that will produce the required effect (requirement) in the physical
problem world, then decomposition of the physical problem requires the correspond-
ing decomposition of all aspects of the problem (machine, problem world) in step.
That is to say, for each subrequirement, only the relevant part of the physical world is
considered, and a submachine meeting the subrequirement in the partial physical
world is specified.

PFA distinguishes between two different types of decomposition- requirements de-
composition, and instrumental decomposition.

Requirements decomposition decomposes the overall system purpose into a num-
ber of subpurposes necessary to achieve it. For each of the subpurposes, the relevant
subproblem world is delineated and the behavior of a submachine is defined. Re-
quirements decomposition does not address the intrinsic complexity of the problem's
purpose.

In contrast, in instrumental decomposition, for a a not yet decomposed software,
an interface is exposed creating decomposed subproblems. For instance, this interface
may be a shared data structure, or a set of shared events.

Jackson identified two different types of interfaces to be promoted as a result of in-
strumental decomposition – one in a designed domain and another in an analogical
domain.

72

2.2 PFA Requirements Recomposition

Decomposition is an intentional oversimplification, allowing the developer to analyse
and understand in isolation each subproblem in its relevant portion of the problem
world.

This approach defers but does not eliminate the task of recombining the subprob-
lems into an overall coherent requirement. Issues such as read-write contention be-
tween instrumented interfaces, timing, and requirement contradictions must all be
addressed.

Possibly conflicting subproblems are viewed as defining finite state machines,
while the developer can in principle construct their product machine.

The states and events of the product machine can then be examined to identify im-
possible or undesirable events and transitions, and the software behaviours of the
subproblems can be modified to eliminate them.

In traditional requirements engineering, the task of requirements derivation in-
cludes requirements decomposition, instrumentation decomposition and requirements
recomposition. The approaches of PFA is to do the easy derivations first, and, only
after these are mastered, to do the hard work of getting everything to work together
coherently

3 Behaviorally-Rich vs. Behaviorally-poor Systems

For systems under development, subsequent to requirements recombination, comes
software recombination in which the subproblems are implemented within a con-
sistent whole software architecture.

What about modification of an existing system?
Our approach assumes that the behavior model of a system is given by a statechart.
We introduce here a novel categorization of existing software systems according

to their behavioral model:
 Behaviorally-rich – are those systems whose behavioral model hints to a

potential richness, not found yet in the current model;
 Behaviorally-poor – are those systems that whose model lacks any hints

to potential richness.
This categorization is obviously dependent on the referred hints. These are heuris-

tic rules – to be collected based upon accumulated experience with software system
modeling.

We propose as a starting point a few such rules to recognize the potential of behav-
iorally-rich software systems in their behavioral model:

1- Number of states – the number of sub-states in any given state is greater than
the number of siblings of the given state;

2- Transition Chain Linearity – the transition chain of events linking a set of
states is linear, without any bifurcation;

3- Transition Chain Cycle – the transition chain of events linking a set of states is
a whole cycle, without any internal bifurcation.

73

The idea is that multiplicity of states in simple looking hierarchies hint at possible
model improvement.

4 Reengineered PFA

Reengineered PFA starts from a new point of view regarding problem analysis for an
existing software system.

Our new approach is based upon the premise that state-based behavioral models
for existing systems facilitate identification and reinvention of critical subproblem
interactions. This, without going through the whole PFA process, since the model is
already existing, perhaps almost fully developed.

A point of central importance is the reuse of past development experience and be-
havioural design patterns. This concerning two aspects:

1- Heuristic rules – to recognize behaviourally-rich software systems, as
seen in the preliminary suggestions of the previous section;

2- Behavioral Design Patterns – these are ready-made behaviour structures
to be inserted into states identified by the heuristic rules as having the po-
tential of model improvement.

Next, we demonstrate the reengineered PFA approach by means a simple case
study.

5 Case study

The case study is the dishwasher taken from samples of the IBM Rational Rhapsody
tool.

It is a sufficiently simple toy problem to be easily understood, but not too trivial,
enabling a clear illustration of the ideas of a behaviourally-rich software system and
its potential improvement.

5.1 The Dishwasher

The Dishwasher Class is the central controller, as seen in Fig. 1.

Fig 1. Dishwasher Software Structure Architecture.

74

The interaction of the dishwasher with its subsystems is governed by the
statecharts of each class.

We focus our attention in the statechart of the dishwasher class – which has the
role of a controller – seen in Figure. 2.

active

doorO pened

doorC losed

off

filling

evS tart/setup();

rinsing

evF ull

w ashing

tm(rinseT ime)

draining

tm(washTime)

dry ing

evEmpty

evC lose

DONE

tm(dryTime)

DONE

evO pen

maintenanceRequired

maintenanceO k

[isInNeedO fServ ice()]
evS erv ice

evS erv ice

maintenance

quickMode

normalMode

evQ uick

evNormal

intensiveMode

ev Intensiv e

evQ uick

ev Intensiv e

evNormal

programming

evO pen

evS tart/setup();

evF ull

tm(rinseT ime)

tm(washTime)

evEmpty

evC lose

tm(dryTime)

[isInNeedO fServ ice()]
evS erv ice

evS erv ice

evQ uick

evNormal

ev Intensiv e

evQ uick

ev Intensiv e

evNormal

Fig 2. Dishwasher Software Behavior Architecture – this is the statechart of the dishwasher
class. The doorClosed state is seen in the left hand side.

5.2 Identifying the Problem

The problem in this case study can be easily identified from domain knowledge as to
clean dishes effectively and efficiently.

It may be nonetheless useful to seek confirmation that this is the problem, prior to
identifying the decompositions in the model of the product to be improved. We are
guided by the proposed heuristic rules for recognition of a behaviourally-rich system,
as suggested above in section 3. The appropriate place to contemplate the highest
level problem would be in the highest-level controller, whose behavior is defined by
the Dishwasher statechart (Fig. 2).

Our attention is immediately drawn to the most populated region of the diagram,
the orthogonal state doorClosed, whose top-to bottom linear sequence fits the “Tran-
sition Chain Linearity” rule.

This, to a certain extent, confirms the hypothesis that the purpose of the system is
“to clean dishes.” The sub-state names, allows refinement of the problem, prior to
decomposition: cleaning of dishes requires rinsing, washing and drying of the dishes
as well as intake and draining of water.

All this is obvious to anyone with domain knowledge, but the fixed sequence of
these activities in the transition linear chain, should lead us to ask whether this se-
quence achieves “effectiveness and efficiency” in all situations, a question we will
return to during decomposition.

75

5.3 Decomposition

The requirements decomposition evident from the Dishwasher statechart has three
parts:

1- the cleaning process;
2- dishwasher programming,
3- dishwasher maintenance monitoring,

each of which is encapsulated in a distinct orthogonal component (doorClosed, pro-
gramming and maintenance, respectively).

 Assuming that both the maintenance subprogram and the programming subpro-
gram interact in some way with the cleaning program, instrumental decomposition is
necessary to expose the required interface.

As may be discerned from the names of the programming substates, these states
are selectors of timing constants for the fixed-sequence cleaning subprogram. This
would be an appropriate point to reconsider the cleaning process.

Perhaps, instead of the fixed sequence in the transition linear chain, where the
"cleaning programs" are merely variations of the timing constants, greater flexibility
is required, with different state transition sequences for each program, states that a
given "cleaning program" visits more than once, etc. A more complex set of parame-
ters would then be required to support this flexibility, warranting the elevation of the
exposed interface to a "designed domain".

This would also be the point in the reengineering process to think about the
maintenance states. Perhaps the system health is not merely okay or not okay, but has
a number of indicators, appropriately modeled by its own state-machine (or an or-
thogonal component considerable richer than the one given). In which case the ex-
posed interface models the physical state of the mechanical machine as a complex
state machine.

5.4 Recomposition

Recomposition requires the analysis of how the subprograms must work together to
accomplish the system purpose.

Here we must consider not only the subprograms depicted in the Dishwasher
statechart, but also the next level of requirements decomposition, the statecharts de-
fining behavior of the subsystems controlled by the Dishwasher: Tank, Jet, and Heat-
er.

The economies of statecharts are achieved by hiding crucial information, such as:
when does a selection of a new "cleaning program" interact with the "cleaning pro-
cess." The hiding of this information encourages the stakeholder to consider what
should be required before looking what is presently implemented.

The answer to such a question may warrant recursive modification of one or more
subproblems. In our example, it is possible to change the cleaning program directly
from intensive to quick. If such a change goes into effect even when the "cleaning
process" is in progress, it may cause damage to the motor. If so, we may allow direct
transition only from a given speed to the next higher or lower one.

76

Similarly, only in the Dishwasher (Controller) statechart it is evident what happens
when the door is opened.

What happens or should happen to the subsystems when the door is opened?
The absence of an answer on the diagrams stimulates the stakeholders to think

about what they want. As a corollary of this question, if we decide that some but not
all of the subsystems should stop operating when the door opens, what happens when
the door is closed and operation of the entire system resumes. Will there be a syn-
chronization problem?

6 Discussion

In a previous paper based on the same case study, a heuristic was proposed to facili-
tate stakeholder comprehension of overall system behavior and identification of prob-
lems regarding interaction of different behaviors.

The heurisitic imposed some degree of structure to the process by recommending
top-down traversal of the model and its statecharts. However the process of problem
identification proposed, based on a taxonomy of graphical cues was very impression-
istic and intuitive.

Reengineered PFA, to a large extent, replaces intuitive meandering with a highly
focused teleos. As the stakeholder traverses the model, a model reverse engineer-
ing/reinvention occurs. At each stage of the reversal, decomposition (two types) oc-
curs and afterwards recomposition.

Insofar a UML model organized according to behavioral hierarchy will have struc-
ture similar to a PFA hierarchy, two separate notations to depict approximately the
same hierarchy may sow confusion. Until more experience is gained with complex
systems, we would recommend beginning by confining the project to the UML mod-
el, supplemented by stereotypes and tagged values to indicate mappings to PFA ele-
ments and structural correspondences.

With respect to recombination, this requires consideration of collaborations, these
can be captured with UML Sequence diagrams or interaction diagrams. Here we have
a conflict between cognitive and workload issues.

Cognitively, it is easier to contemplate interactions between two behaviors if they
are captured in the same diagram as separate orthogonal components of a single
statechart.

However, if we wish to capture this interaction in a UML Sequence diagram or in-
teraction diagram, we have two choices: either we can manually draw such a diagram,
treating these behaviors as if they were encapsulated in distinct objects, each with its
own statechart, or we can actually decompose the object whose statechart contains the
two orthogonal components into two objects each of which encapsulates a single
behavior in a separate statechart.

The latter approach, imposes a cognitive burden (context switching between two
diagrams) but reduces workload: using an executable modeling tool such as Rhapso-
dy, the collaboration can be automatically generated during graphical simulation as an
animated statechart.

77

6.1 Future Work

The proposals in this Position Paper are still in a preliminary stage. One needs exten-
sive examination of a variety of software systems to validate the approach. The future
systems to be investigated should be of realistic size and complexity. In order to ef-
fectively apply reengineered PFA one would need tools supporting both the recogni-
tion of behaviourally-rich systems and their actual improvement.

Acknowledgements. The authors are grateful to Iaakov Exman for a critical reading
of early versions of the paper.

References

Jackson, M.A., 1996. Software Requirements & Specifications, Addison-Wesley, Boston, MA,
USA.

Jackson, M.A., 2001. Problem Frames: Analysing and Structuring Software Development
Problems, Addison-Wesley, Boston, MA, USA.

Jackson, M.A., 2007. “The Problem Frames Approach to Software Engineering”, in Proc.
APSEC 2007, 14th Asia-Pacific Software Engineering Conference.

78

