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Abstract. Semantic Web technologies have contributed mainly to organize the 
knowledge and to search about this organized knowledge. One of the most 
complex search is to know if two entities are related within a ontology. These 
are called Semantic Associations, which have been classified using operators: 
-path, -join and -iso. Then, a -query will solve any of them. 
Studies about this area offer low performance execution times, but others 
increase the performance with pre-processing, making use of complex 
structures in memory. In this paper, we present semantic associations and 
analyze related studies. We focus on design a simplified representation of the 
ontology that facilitates the navigation and reduce the algorithms complexity to 
solve these operators, starting from the first of them: -path. 

1 Introduction 

To search anything and everywhere became a common habit in the human being, but 
finding what it is needed is a hard work because of the information increasing. 
However, many tools are available in order to accomplish this task, which nowadays 
are based on Semantic Web technologies, i.e. using the ontology. Due to the Semantic 
Web, search is not only about the concepts (or entities) but also about the 
relationships between them, i.e. finding how two entities are related. 

Although, ontologies (in general, Semantic Web Technologies) lead the researches 
to find new ways of searching, such as new visual interfaces to help the user in 
semantic queries [1–7] or semantic query languages (RQL [8], SquishQL [9], 
TRIPLE [10] and others [11–13]), the kind of search described above is not solved 
completely by those. Those approach need that the user knows how the resources or 
entities are related.  

Two entities can be connected by relationships and other entities, which is why it 
is a complex thing, especially when these two entities are too far within the ontology. 
These complex relationships are called Semantic Associations and they have been 
studied and classified using the  operators: -path, -join and -iso. To solve them, 
ontology relationships in the path between X and Y should be evaluated, and also, the 
entities connected by these relationships [14–17]. Therefore, this problem is about 
finding path problems between nodes in a graph, due to this kind of representation 
(the graph) is the main syntax of the ontology [9], [18–20]. 

Consequently, it is about retrieving the set of complete paths of the ontology graph 
that fits the user query in execution time, or even confirm that a path is available. 
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Therefore, a new approach has been developed in this paper based on a 
transformation of the ontology graph; which is explained in section 4. We believe that 
a new representation of the ontology graph will facilitate the navigation and also the 
algorithms to solve  operators.  

2 The Ontology Graph 

 

Fig. 1. Example of RDF graph. 

The RDF1 ontology can be modeled like a tagged directed graph, where triplets 
(Subject, Property, Object) are represented by an arc tagged with the name Property 
connecting the nodes Subject and Object [8], [9], [20], [21]. Therefore, the ontology 
navigation is about traverse the graph ontology. However, the ontology graph has to 
be built following the RDF definitions: Property types and classes are defined en the 
RDF schema (top part of Fig. 1), where a property is described by a domain (the set of 
classes the property applies to) and a range (the literal type or classes with values).  

Classes are defined by their relationships with other classes, i.e. by the property 
rdfs:subclassOf, to be in the right order inside the hierarchy. Also, properties can be 
organized in hierarchies using the property rdfs:subproperty, and the resources are 

                                                           
1Resource Description Framework is a family of World Wide Web Consortium (W3C) specifications, 
originally designed as a metadata data model. 
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defined by their relationships with other resources and by the relationship with the 
classes because they are instances of this classes. Then, the graph ontology built 
following those definitions will be very complex and the algorithms to navigate this 
graph will be computationally expensive [22].  

Fig. 1 is an example of a part of an ontology represented by a tagged directed 
graph. This figure shows at the top part, the ontology schemas (two schemas in this 
case). At the bottom part, there is the data level or the information level, which is 
mostly about the instances of schema items. 

2.1 Semantic Associations 

The Semantic Associations were defined formally in [14], [15] based on the formal 
model described in [8]. In summary, semantic associations were specified using the -
operators described below and the -query will return any of these operators: 

 -pathAssociated: Two entities will satisfy this property if there exists a path 
between them in the ontology graph, which brings from the first entity to the second 
entity or vice versa. For example, in Fig. 1, there is a path between resources &r6 and 
&r8 which represents that a sculptor Michelangelo Buonarotti has a sculpture 
exhibited in Louvre Museum. 

 -joinAssociated: Two entities will satisfy this property if there exists a 
connection node between their paths, i.e. the paths converge at some point in the 
graph ontology. For example, in Fig. 1, between &r6 and &r9, there is a connection 
point which is &r8, which represent that the artifact of this two artists (&r6 and &r9) 
are exhibited in the same museum. 

 -cpAssociated: Two entities will satisfy this property if they are descendants of 
the same class and they are at the same level in hierarchy. For example, in Fig. 1, &r1 
and &r6 satisfy this property because they are both artists. 

 -isoAssociated: Two entities will satisfy this property if they have similar 
characteristics, i.e. their properties and classes are similar. For example, in Fig. 1, &r1 
and &r6 are -isomorphic, because they both represent an artist, which creates 
artifacts exhibited in a museum. 

3 Related Work 

In this section we describe some approaches that could be used to solve the 
operators. Firstly, we describe some graph algorithms that could be applied for this 
and secondly, some indexing structures approaches. 

3.1 Transitive Closure Computation Algorithms 

Due to the graph representation of the ontology, a RDF triple (Subject, Predicate, 
Object) will play as a binary relation, so the computation of the transitive closure of 
binary relations could be applied. There are two types of approaches to cope with it: 
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firstly, the matrix-based direct algorithms. This approach does the computation 
process based on the matrix representation of graph relations.  

Several algorithms are in this area, such as [23], solved by linear algebra using 
Gauss-Jordan and Aitkeen methods, with a O(n3) complexity, or [24], where Tarjan 
solved the problem of finding path expressions applied to the single source path 
expression problem2. This study leads him to a demonstration in [25] about the 
mapping of this path expressions to all sorts of path problems, e.g. the shortest path 
search problem.  

Hence, a technique that solves the single source path expression problem can be 
introduced and taken it as a universal solution to the problem of searching Semantic 
Associations as Barton proposed [16], [17], [26]. However, the Warshall algorithm 
[27] is the base of the matrix-based algorithms. It computes the transitive closure by 
traversing the matrix from the top left corner to the bottom right one.  

Secondly, graph-based direct algorithms which normally work with directed 
acyclic graph3 (DAG). A Tarjan transformation of an arbitrary directed graph into 
DAG [28] could be considered to apply this approach. It is about to identify strongly 
connected components and replacing them with a single node (collapsing them). The 
base of this kind of algorithms is found in [29] where processes nodes in reverse 
topological order, and obtain a condensed acyclic graph. Other works [30] 
demonstrate how Tarjan’s algorithm could be improved (in the process order).  

Finally, we can find hybrid algorithms which mix two ideas above. For instance, 
algorithms in [31] works in two phases: First, the condensed graph is obtained by 
collapsing each strongly connected components, and, at the same time, the topological 
sort is obtained. In the second phase, the transitive closure is computed using an 
adjacency matrix4. They use an algorithm similar to the Warshall’s but it is breadth-
first algorithm different from those graph-based algorithms (mostly depth-first) [32]. 

3.2 Index Graph Traversal 

The studies in [14], [15] uses a Schema Path Index (SPI) which provides fast access 
to all possible paths between two classes in a schema, because the ontology has the 
schema part relative smallest than data. However, there are paths that involve 
resources that belong to the data layer.  

They tried to manage these situations and offer the InterClass Index (ISI). This 
index stores the information about the schemas that are linked due to multiple 
classifications (for example, in Fig. 1, &r4 has a multiple classification, because it 
belongs to Museum and Ext. Resource classes), but before they export the nodes at 
the data layer to the schema layer using artificial nodes that collapse the two class 
nodes. 

Consequently, when a query involves resources that belong to classes (that do not 
have any paths between them or belong to different schemas), the ISI is searched to 
                                                           
2Given a graph G = (V,E) and a distinguished source vertex s, find a regular expression P(s, v) for each 
vertex v which represents all paths from s to v in G. 
3It is a directed graph with no directed cycles, i.e. there is no way to start at some vertex v and follow a 
sequence of edges that eventually loops back to v again 
4An n x n adjacency matrix of elements aij of a graph having n nodes is a matrix with aij having the value of 
1 if there is an arc between i and j, and 0 otherwise. 
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find candidate nodes that if collapsed may result in a path. If no candidate node exists, 
an empty set is returned as a result. This idea here is finding all alternative paths that 
reach the terminus node from the origin node, and evaluating each one to get the final 
result according the  operator searched. To do that, they do a pre-process to store all 
paths between classes at the schema level in matrices. Thus, the computational 
complexity will be O(|V||V|) [32]. 

Another research [16], [17] propose an index of a condensed graph. The complete 
graph is transformed recursively to get a tree or a forest of trees, by collapsing the 
strongly connected components into a single node, i.e. uses the hybrid-based 
algorithms ideas. In each transformation, an extended signature is created to store the 
information about the nodes that were problematic.  

They focus on the design of a new index structure and specially on solving ρ-
pathAssociated and ρ-joinAssociated under the idea that searching a tree is easier than 
searching a graph. They based on the signature defined for trees in [33]. The 
information of the transformation is stored in two inverted files: one with the multiple 
nodes and their corresponding signatures, and the second with the signature with the 
list of multiple nodes. At the end, they affirm that the transforming time of the 
ontology into the forest of tress is about O(2n) and the creation time of the signature 
for each node is O(n). These times are smallest than [15].  

To solve the ρ-pathAssociated, they present an algorithm that works in one 
direction. However the algorithm to solve ρ-joinAssociated is based on evaluating 
each multiple node, finding if there is a path between this multiple node and each 
node the origin and the terminus. Hence, this algorithm will have high computational 
times. 

This work uses a matrix in each transformation to represent the transitive closure. 
Though, the final graph is smallest than the original, at the end the process of 
searching semantic associations have to extend recursively each component to get the 
original graph. Therefore, the computational time depends of the size of the matrices 
in each transformation. They called this approach as -index [26]. 

4 Our Approach 

The transitive closure algorithms could be applied but do not solve the problem of 
returning paths under certain conditions. They obtain all the paths between nodes in 
the original graph. That is why other approaches, although they use some of transitive 
closure algorithms, they create specific indexes by preprocessing the graph. This idea 
is the most interesting part of the related research section. Another important point 
will be the transformation of the graph to simplify the algorithms. Therefore, we 
present a transformation that will be obtained in a previous graph processing. 

4.1 Transforming into a DAG 

We consider approaches in [16], [17], but we follow a different idea. Instead of 
collapsing the strongly connected components, we make copies of the important 
nodes inside them, located these copies under the node on which they depend. It is 
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also about to obtain a forest of tree, where exits a root node and all the real nodes are 
dependent of it, so there will not be a recursive process. 

Therefore, a node that belongs to two or more classifications, i.e. two or more 
classes, will be duplicated in the new graph and each copy will be located depending 
of the corresponding classification. As it is shown in Fig. 2, the nodes Sculpture and 
Painting are duplicated due to their multiple classifications, and also the node String 
that depends of Painting. 

 

Fig. 2. Example of Transformation into DAG. 

Fig. 2 is an example of a transformation of the schema part of the ontology in Fig. 
1, but also, the data layer will be transformed following these ideas. The root node 
will be always the node Thing. Therefore, at the end we obtain one model which 
represents all the ontology. 

 

Fig. 3. Transformation of graph cycles. 

We also recognize the graph cycles which maybe exist in the ontology [16], but in 
our case, the node will be copied many times as it is necessary to represent its 
dependence respect the other nodes, as it is shown in Fig. 3. 

4.2 Transformation into a Numeric Representation 

In the Semantic Search area, a field that involves Semantic Associations, we can find 
some representations, especially in complex search as [34]. They uses suffix arrays to 
process all the paths in the ontology graph. They use only DAG with algorithms with 
O(|R||E|), i.e. the resources in G. They assign number to the nodes for a quick access. 

Another research [35] is based on solve the transitive of hierarchical relationships 
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(is-a) in KOS (Knowledge Organization Systems). One of their objectives is support 
the modifications of the ontology structure, because although they are less frequent, 
they should be solved with a minor cost. An interesting objective we share and we try 
to follow in our representation. 

They apply a compression schema for trees which they called range compression. 
It is based on assign numbers to nodes according to their post-order. Then, each node 
will have an index that contains the minor post-order number of its descendants which 
with its post-order form an interval. Besides, each node will have the intervals of the 
nodes that can be reached and are in other tree, i.e. with a different post-order.  

At the end, they increment the intervals in order to reflect the ontology 
modifications at minor cost. For example, the interval [1,5] will be [10,50]. This work 
gives us an idea of its application to semantic associations, especially to solve the -
pathAssociation. The intervals will be evaluating to know if two nodes are connected 
and the paths will be obtained easily.  

 

Fig. 4. Numeric representation. 

Therefore, we base our work on the preceding ideas. To create our index, we 
traverse the graph following the preorder. So, we begin in the root node, assigning to 
it 0. Then, we visit the left node assigning to it the same: 0. If this node does not have 
descendants, the second number of the index will be the first number plus 1.  

After that, we visit the right node, which will have the first number of the index 
equal to the second number of the left node, and its second number will be the first 
number plus 1 if it has not more descendants. At the end, we will visit each node 
twice if it has descendants and once if it has not. Finally, the root will have the second 
number equal to the mayor second number of its descendants. 

Fig. 4a represents a part of ontology transformed in Fig. 2 with a numeric index 
(an interval), following the instructions we have described before. As we can observe, 
to solve the -pathAssociation, we just could evaluate the indexes of the nodes and 
find if one of them is within the interval of the other, e.g., Sculpture and Artist. 

However, in this representation there are many nodes with the same indexes that 
could lead us to confusion when nodes have to be located. Due to the necessity of a 
unique representation of each node, we introduce the level of dependency to the root, 
as it is shown in Fig. 4b. Additionally, because one of our objectives is to manage 
future ontology modifications with a minor cost, we will leave some space in the 
intervals. Therefore, if a node or several nodes are added like descendant of another 
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node, they could take as intervals the numbers in the space. Fig. 5 shows the new 
representation. 

 

Fig. 5. Numeric Representation with space. 

5 Proposed Evaluation 

Because this paper is only at proposal stage, in this section we will describe the 
experiments planned to prove it: 
- Experiment 1: Comparison between preprocessing times, execution times and total 
times for each technique applied to one ontology. We expect to obtain the same 
results for each -operator in each technique, but with different times. Our technique 
is expected to perform better than the others. 
- Experiment 2: Comparison between execution times for each technique applied to 
different size ontologies. We expect to get a higher time with a larger ontology. We 
will demonstrate that our times are smallest. 
- Experiment 3: Comparison between total times for each technique applied to a 
modified ontology. We expected that the ontology modification makes the other 
techniques do the whole process again. Our technique will need a little adjust. 
- Experiment 4: Comparison between algorithms to calculate the space within 
intervals. We expected to choose the optimal algorithm to support future changes in 
ontology. 

6 Conclusions 

To solve Semantic Associations is a very complex task that needs high computational 
capabilities, because of the nature of the graph ontology. A transformation of this 
graph is presented in this paper which simplifies the navigation. This transformation 
is obtained by two phases: first, we transform the graph into a DAG, and second, we 
assign a numeric representation to each node. 

The created index (i.e. the numeric representation) is based on an interval and the 
level of root dependence. It will facilitate the construction of algorithms regarding to 
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the resolution of  operators. An example of the procedure of one algorithm for -
pathAssociation is mentioned: a path between two entities is finding when one of 
them is within the interval of the other and with different level of dependence. 

Future works will base on development the rest of the  operators. Besides, we 
need to do real experiments in a framework by implementing all the semantic 
associations’ approaches and compare us with each of them to measure time and 
complexity of each technique. 
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