
Sip2Share
A Middleware for Mobile Peer-to-Peer Computing

Gerardo Canfora and Fabio Melillo
Department of Engineering, University of Sannio, viale Traiano 1, 82100 Benevento, Italy

Keywords: Mobile Device Programming, Service Oriented Computing, Peer-to-Peer, Android.

Abstract: The growing success of mobile devices is enabling a new class of applications that overcome the traditional
models of desktop applications and web browsing, and embrace entirely new ways of computing. Service-
oriented computing and the rapidly growing power of mobile devices are the key ingredients of a new gener-
ation of low-cost, lightweight applications where mobile devices are no longer intended as a means to access
server-side data and functionality, but as a source of services that other devices can discover and invoke.
In this paper we introduce Sip2Share, a middleware that allows for publishing, discovering and invoking ser-
vices in a peer-to-peer network of Android devices. A characteristics of our middleware is that services are
advertised, discovered and called using the same native mechanisms of the Android platform, i.e. intent,
manifests and broadcast receivers.

1 INTRODUCTION

Mobile devices, such as smartphones and tablets, are
experiencing a growing popularity, to the point that
in 2010 the number of handled devices sold has ex-
ceeded the sales of personal computers (Maier, 2011).
Most of these devices are increasingly powerful in
terms of computation, data storage and visual dis-
plays, are equipped with a rich array of sensors, are al-
most always connected, and have a good autonomy of
batteries. According to market research(ComScore,
2012), the top 5 smartphone sold in the world have, on
average, 1GHz CPU, 512MB RAM, 1500mAh bat-
tery, WiFi and 3G/4G data connection. Thus, it is
possible to use handled devices as part of a network,
not only as simple users of back-end services, but also
as providers of services.

As a matter of fact, the pervasiveness of mo-
bile devices is enabling a new generation of service-
oriented applications where different kinds of actors,
including people, sensors, and software agents, ex-
change services in dynamic, peer-to-peer overly net-
works. This entails overcoming the traditional ap-
proach of sharing content among devices to move to-
wards environments that allows for publishing generic
services, including human-based services, on smart-
phones. In this paper, we introduce a middleware
architecture to support the development of service-
oriented pervasive applications for mobile devices.

The middleware, named Sip2Share, implements a
peer-to-peer network of services provided by mobile
devices and offers mechanisms to publish, advertise,
discover and invoke the services. Sip2Share has been
designed for the Android1 platform and uses extended
versions of Android native mechanisms, namely in-
tent, manifests and broadcast receivers, to publish,
discover and consume services. Thus, developers
who are familiar with application development for
Android will need very little training to be productive
with our middleware. The choice of using Android
derives from several factors, including the growing
diffusion according to the market data (Pettey, 2011),
Android is the most widespread OS for handled de-
vices, the open-source nature of the platform, and the
fact that it is well supported and easily programmable
using classic IDEs, like Eclipse2, and the Java lan-
guage. A point of strength of our middleware is the
transparency. From a user point of view, spatial, tem-
poral and synchronization transparency is supported
by using a publish/subscribe pattern. In addition, the
middleware supports transparency for software devel-
opers, which allows for easily migrating existing ap-
plications without a need for reengineering.

The middleware has many areas of application,
for example: social and collaborative applications,
health and emergency management and war games.

1http://developer.android.com/index.html
2http://www.eclipse.org

445Canfora G. and Melillo F..
Sip2Share - A Middleware for Mobile Peer-to-Peer Computing.
DOI: 10.5220/0004123004450450
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 445-450
ISBN: 978-989-8565-19-8
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

Whilst the work is still in progress, a stable version
of Sip2Share has been developed and is available for
download at Googlecode 3. To demonstrate the mid-
dleware, we implemented a social application, named
HelpMe!, that supports networks of people sharing in-
terests and expertise to pose and answer questions on
specific topics.

The paper is organized as follows: section 2 dis-
cusses technologies for mobile peer-to-peer commu-
nication and section 3 introduces the main ideas our
middleware and discusses current implementation, in-
cluding the architecture, APIs, and the communica-
tion among components. Section 4 describes the
HelpMe! application and section 5 concludes the arti-
cle by addressing some technical challenges and pro-
viding a future development roadmap.

2 RELATED WORK

The expansion of mobile communication into IP
based networks, allow for designing complex archi-
tectures also for handled devices. Most research work
has focussed on peer-to-peer communication, due to
the dynamic nature of the domain.

Several researchers use the Mobile Ad-Hoc Net-
work (MANet) paradigm for communication. An ex-
ample is the middleware Rescue (Juszczyk and Dust-
dar, 2008), designed as a support for emergency teams
in the management of natural disaster, a scenario in
which, very often, static internet infrastructures are
not available. Haggle (Nordström et al., 2009) is a so-
lution for sharing content in spontaneous ad-hoc net-
works; it uses pure peer-to-peer communication based
on the publish/subscribe pattern. Each node stores a
graph with the topology of the network; the search
of content is topic based and the range in which the
search is applied is the set of neighborhood nodes
reachable. While these papers present interesting so-
lutions, they do not apply to our idea of building a
peer-to-peer network of services using the Internet for
communication.

Among the solutions designed for the infrastruc-
ture networking mode, many solutions use some form
of proprietary protocols for sharing contents (Kelényi
et al., 2007)(Hulbert, 2006) (Kotilainen et al., 2005)
(Molnr et al., 2007) (Horozov et al., 2002). Other ar-
ticles in he literature have explored the possibility of
publishing traditional web services on mobile phones
(Srirama et al., 2006). Some optimization have been
applied to reduce consumption of resources on the de-
vices; as an example, the Wireless SOAP (WSOAP)

3http://sip2share.googlecode.com/svn/trunk/Sip2Share

Figure 1: Communication stack.

protocol (Apte et al., 2005) reduces the dimension of
the message from 3 to 12 times with respect to SOAP.

The PeerDroid project (Picone et al., 2010) imple-
ments the JXTA (Gong, 2001) stack on the Android
platform. PeerDroid has a hybrid peer-to-peer archi-
tecture, with a rendez-vous super-peer for the initial-
ization of the communication; the JXTA standard al-
lows for exchanging data among peers independently
of the underlying hardware structure. However, the
compliance to the standard and the xml-based file ex-
changed tend to be too heavy for many smartphones.

An alternative is to use use the SIP proto-
col,(Rosenberg et al., 2002) as in the case of Sip2Peer
(Picone, 2011), which exploits a simple SIP datagram
to exchange text-based messages among Android
peers. Sip2Peer implements mechanisms to exchange
messages, including JSON-like messages,(Crockford,
2006) between peers with known addresses in a peer-
to-peer network. It also provides a bootstrap peer that
stores the addresses of all the peers registered in the
network. Our work builds on top of the communica-
tion mechanisms of Sip2Peer and adds the additional
resources needed for discovery, publishing and using
services in a network of Android devices.

3 Sip2Share

The main idea of our work is to share services among
peers using the Android platform, and to provide
application developers with an API for remote ser-
vices that resembles the native Android API for inter-
application communication on a single device. In par-
ticular, we use an extension of the intent mechanism
for communication among services on remote peers
in a way that is transparent to both the programmer
and the users.

Figure 1 shows the layers of communication com-
prised in our middleware. An IP network is at the bot-
tom level of the stack; over this layer, there is the SIP
session control, needed for identifying the nodes over
the network. Next layer is Sip2Peer, that uses the SIP

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

446

protocol to send data. Our middleware is positioned
on the top of this stack, and manages the overlay net-
work, with a full duplex communication and the abil-
ity to deploy, publish discover and invoke services on
mobile devices.

The network is hybrid, with peers and super-peers.
The purpose of super-peers is to decouple the peers
from each other by implementing a publish/subscribe
pattern. Peers are associated to service descriptions
that are stored and managed by super-peers; in this
way, a peer that needs to connect to the network of
services only have to send a request to the super-peer
with a description of the services it seeks. The super-
peer will return the addresses of the peers in the spe-
cific overly network related to the request.

3.1 Communication among Services
using Intents

Sip2Share uses intents as a mechanism for commu-
nication among services on remote peers. To help
understanding our communication mechanism, we
briefly recall how native Android intents work in the
local scenario.

Android allows applications on a device to com-
municate with each other by means of Intents, i.e. ab-
stract descriptions of an operations to be performed
on some pieces of data 4. This mechanism is halfway
between message passing and publish-subscribe and
provides a facility for performing late runtime binding
between different applications. An application that
desires to communicate with other applications pre-
pares an intent with the data and the action to be en-
acted on those data, and sends the Intent to Android,
which will search, among the registered applications,
those that can satisfy the request. BroadcastReceivers
are used to receive intents sent by other applications,
and bind the abstract operation to an actual piece of
code that implements it. Intents are filtered by An-
droid based on the action they request; only match-
ing actions are sent to the respective receiver. In this
way, the applications are loosely coupled because the
developer does not need to know which applications
are installed on a device; she only sends an Intent to
whom can handle it, and the target application is dis-
covered at execution time.

We adopted the same philosophy in our middle-
ware. Sip2Share uses remote intents for discovery
and invocation of services. A peer prepares the in-
tent and, through Sip2Share, sends it in broadcast to
the peers in the network; if the sending peer already

4http://developer.android.com/guide/topics/intents/inten
ts-filters.html

Class_middleware_simplepackage Data []

Activity

BroadcastContentPeer

ServiceDescriptor

RemoteBroadcaster

GenericRemote

ResultReceiver
FactoryRemote

Peer

ServiceInfo

Converter

SuperPeer

˙use¨

˙use¨

˙use¨

0..*

Figure 2: Sip2Share main classes.

knows the address of other peers that can respond to
the particular request, then it can send it directly. Oth-
erwise, it has to send some data (the service descrip-
tor) to the super-peer, and to wait for a reply with the
addresses of the peers to contact. All the commu-
nications are asynchronous and the peers are alerted
by push notifications. Our aim is that, if a devel-
oper is already skilled in Android development, she
does not have to learn another technology, because
Sip2Share uses the same Android’s patterns for re-
mote communications among devices as for commu-
nication among applications on the same device.

3.2 Architecture

Figure 2 shows the main classes of the middleware; its
boundaries are marked by the Activity and the Peer
classes, the first belongs to the user application, the
second one to the Sip2Peer middleware.

The developer is provided with a class,
RemoteBroadcaster, that has the methods for
sending intents across the networks of peers, using
the same signature of the local method. The rest
of the classes and operations are hidden from the
developer, that will be notified asynchronously
when a request is completed. The core classes
are two: BroadcastContentPeer and Converter.
BroadcastContentPeer is the part of the middleware
responsible for communication; it uses the Converter
for marshaling and un-marshaling the messages.
When a request is dispatched, ResultReceiver is
responsible for collecting the results and delivering
them to the service that originated the request.
Services are modeled by a ServiceDescriptor, which

Sip2Share�-�A�Middleware�for�Mobile�Peer-to-Peer�Computing

447

is a nested class of ServiceInfo. Based on this
informations the super-peer can seek the right peer,
comparing the requested and published actions.

3.3 Application Interface

For a developer, it is easy to migrate a local applica-
tions to a peer-to-peer architecture using Sip2Share.
In fact, there are very few additional actions to
be performed with respect to the local scenario.
First, the current implementation of our middleware
needs a peer for initializing the connections; we pro-
vide a super-peer implementing a syntactic match-
ing among actions, and the pattern for push notifi-
cations, all for the standard Java environment. Once
set up the super-peer, the developer has to create a
RemoteBroadcaster, using FactoryRemote. Then she
can send the Intent. An example is in the following
fragments of code, that compare the local scenario
with the remote one.
/*LOCAL*/
1. Intent intent=

=new Intent("org.unisannio.somethinghappens");
2. intent.putExtra("myLabel", "theValue");
3. this.sendOrderedBroadcast(intent , null,

myBroadcastReceiver ,null, Activity.RESULT_OK , null,
null);

/*REMOTE*/
1. Intent intent=

=new Intent("org.unisannio.somethinghappens");
2. intent.putExtra("myLabel", "theValue");
3. RemoteBroadcast remoteBroadcaster=(new FactoryRemote())

.getRemoteBroadcaster(this);
4. remoteBroadcaster.sendRemoteOrderedBroadcast(intent ,

null, myBroadcastReceiver , null, Activity.RESULT_OK ,
null, null);

It is evident that local and remote broadcasting of
events use the same approach, although there are lit-
tle differences between the two fragments of codes, in
line 3 and 4. Also the remote publication of a service
is very similar to the local scenario, requiring only
the definition of the actions that the device can man-
age. The following fragment of code shows how a
peer publishes its own service, which will be reach-
able in response to the particular action defined in the
descriptor.
1. RemoteBroadcast remoteBroadcaster=(new FactoryRemote())

.getRemoteBroadcaster(this);
2. ServiceInfo sinfo=new ServiceInfo();
3. sinfo.addDescriptor("org.unisannio.somethinghappens",

null, null, null);
4. remoteBroadcaster.sendToSuperPeer(sinfo ,

Converter.PUBLISH);

3.4 Super-peers and Service Discovery

In addition to the middleware, we provide a super-
peer that can handle several types of messages,
needed for discovering and publishing services. Our
super-peer is an abstract class that needs to be imple-
mented, either in Android or standard Java, to imple-
ment specific matching and discovery algorithms. A

peer that is seeking some service sends a request to the
super-peer; this returns the data needed by the peer to
contact the other devices that offers services eligible
for satisfying the peer request.

Figure 3: High level operations.

Figure 3 shows an an example. A peer is looking
for a service in a new network; it sends a subscribe
request to the super-peer (1), if there are some peers
that can handle the request the super-peer returns their
addresses (2), and the peer can contact them directly
(3). Otherwise, the peer request will be stored on the
super-peer, and the peer will be notified when another
peer will have published the requested service.

A peer can publish a service by sending a message
to the super-peer with its service descriptor. A service
descriptor is a structure in which are stored the action
and tags; the action is the same as the Android actions,
the tags are possibly used by the super-peer to match-
ing requests against available services. The message
sent to the super-peer may differ, according to the pur-
pose of the communication: publishing or retracting
a service, subscribe or unsubscribe a service or a cat-
egory of services.

Figure 4: Possible interactions.

As an example, Figure 4 depicts an interaction
scenario between two requesting peers, a super-peer

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

448

and a peer that offers a service that march the requests.
The main steps are: (a) peer A subscribes for a service
x; (b) the super-peer looks for a match, there are no
results for that request, then no address is returned;
(c) another peer, B, publishes a service descriptor for
x; (d) the super-peer finds a match and notifies peer
A with the address of B; (e) A and B communicate
using Sip2Share; (f) a new peer, C, subscribes for x;
(g) the super-peer finds a match and notifies C with
the address of B; (h) C and B communicate using
Sip2Share. If the peers which offer services match-
ing the request of the requesting peer are more than
one, steps (e) and (h) use an ordered broadcast to send
the message; all responses are addressed only to the
original requester.

4 AN EXAMPLE OF
APPLICATION: HelpMe!

In this section we describe a simple application that
exploits the Sip2Share middleware to publish human-
based services. The basic idea is to help people to
share knowledge with other members of a thematic
network. Knowledge sharing happens in the form of
threads of queries and answers. As an example, a
user, globally connected, is in a shopping mall to buy
a camera and, in front of several offers, she needs a
suggestion from an expert to make a decision. She
can use HelpMe! to broadcast a query on the topic
Photography; all the peers that have registered as ex-
perts on the same topic will receive the query, and can
answer it. All the answers will be collected by the
original requester device and the user will be alerted
using notifications.

Figure 5 illustrates an example of use of HelpMe!
The first peer submit a query to the peers network on a
particular topic, in this case Photography [5(a)]. The
scenario assumes that there are no peers registered on
the topic. Later, peer B publishes services for two
topics, Computer and Photography [5(b)]; the super-
peer checks the matches of the new services with the
stored queries, and send a notification to peer A. The
middleware component on peers A receives the list
of peers of interest – in this case only peer B – and
sends the query. Peer B receives a notification with
the query and can answer it [5(c), 5(d)]. In case of
multiple peers that match a query, each answer pro-
duces a notification on peer A, and all the answers are
shown in a list below the correspondent query [5(e),
5(f)].

Figure 6 shows the structure of the application.
Thanks to RemoteBroadcaster, the application needs
only the main Activity and the specific receivers: the

(a) A1. (b) B1. (c) B2.

(d) B3. (e) A2. (f) A3.

Figure 5: Simple question and answers.

middleware hides from the developer all the complex-
ity of discovery, notification and communication.

The application, while simple, illustrates the typi-
cal structure of a Sip2Share application, which com-
prises middleware components on the devices and a
super-peer, deployed in a remote machine reachable
by an IP connection. On the device, the application
provides users with the possibility of: setting manu-
ally the bootstrap super-peer address, sending a query,
reading the answers, registering as an expert for a
given topic, answering queries. We have implemented
a simple super-peer, using standard Java, MySql5 and
the Hibernate framework6, that implements a pub-
lish/subscribe model where look up and matching is
performed syntactically upon topics.

Architecturepackage HelpMe[]

RemoteBroadcaster

ResponseReceiverQuestionReceiver

HelpMeActivity

0..* 0..*

Figure 6: HelpMe structure.

5 CONCLUSIONS

The paper has introduced a middleware, named
Sip2Share, for peer-to-peer computing in a network
of mobile devices running Android. The middleware
allows discovery, publishing and invoking remote ser-
vices using the same native mechanisms of the An-
droid platform, i.e. intent, manifests and broadcast
receivers. The use of the middleware has been illus-
trated with a simple application, HelpMe!, that sup-

5http://www.mysql.com/
6http://www.hibernate.org/

Sip2Share�-�A�Middleware�for�Mobile�Peer-to-Peer�Computing

449

ports knowledge sharing within a thematic network.
Whilst HelpMe! uses human-based services, the mid-
dleware can be used to publish automated services:
for example, in a war game on a closed field, the ap-
plication can query the devices of its own team, to
know the GPS positions.

In the current implementation, data items are ex-
changed using JSON based messages; for the future,
we are working towards providing developers with
methods for sending large-size data. In particular,
we are exploring two directions: (i) using TCP based
communication, which implies bypassing Sip2Peer
communication and developing a proprietary low-
level communication layer; (ii) fragmenting the data
to be sent into several chunks, and implementing a
layer to reconstruct the original data onto the receiver
device. Another area of investigating is binary object
management, such as images or videos. Currently, the
exchange of binary files is handled outside the mid-
dleware, and diverges slightly from the Android ap-
proach. In fact, on a single device, Android does not
need to transfer the whole file, but only its reference,
which is stored in the device. In the remote scenario,
the middleware needs to transfer the file, or to upload
it on some server known to the network of peers.

In the current version of the middleware we have
neglected the privacy aspect of peer-to-peer for the
future, the middleware will need to support privacy
and security policies for peer interactions. We in-
tend to include in Sip2Share a trust component that
can block some peers, and in general assigns ranks to
peers, based on past activities; e.g. in the HelpMe!
example a particular peer that sends a lot of spam for
many different topics.

REFERENCES

Apte, N., Deutsch, K., and Jain, R. (2005). Wireless SOAP:
Optimizations for Mobile Wireless Web Services. In
Proceedings of the 14th international conference on
World Wide Web, Chiba, Japan, pages 1178–1179.

ComScore (2012). 2012 Mobile future
in focus. WhitePaper Available at
http://www.comscore.com/Press Events/Presentations
Whitepapers/2012/2012 Mobile Future in Focus

(last checked: 24/04/2012.
Crockford, D. (2006). RFC 4627 - The application/json

Media Type for JavaScript Object Notation (JSON).
In Internet Engineering Task Force IETF Request for
Comments, pages 1–11. Internet Engineering Task
Force.

Gong, L. (2001). Industry report: Jxta: A network pro-
gramming environment. IEEE Internet Computing,
5(3):88–95.

Horozov, T., Grama, A., Vasudevan, V., and Landis, S.

(2002). Moby - a mobile peer-to-peer service and data
network. In 31st International Conference on Paral-
lel Processing (ICPP 2002), Vancouver, BC, Canada,
pages 437–444.

Hulbert, D. (2006). Wizbit: A bittorrent client for
s60 symbian smartphones using python. [Avail-
able at https://sites.google.com/site/dave1010/wizbit]
(Last checked: 20/04/2012).

Juszczyk, L. and Dustdar, S. (2008). A middleware for
service-oriented communication in mobile disaster re-
sponse environments. In 6th International Workshop
on Middleware for Pervasive and Ad-hoc Computing,
December 1-5, 2008, Leuven, Belgium, pages 37–42.

Kelényi, I., Csúcs, G., Forstner, B., and Charaf, H. (2007).
Peer-to-Peer File Sharing for Mobile Devices. In
Fitzek, F. and Reichert, F., editors, Mobile Phone
Programming, chapter 15, pages 311–324. Springer
Netherlands.

Kotilainen, N., Weber, M., Vapa, M., and Vuori, J. (2005).
Mobile chedar - a peer-to-peer middleware for mo-
bile devices. In 3rd IEEE Conference on Pervasive
Computing and Communications Workshops (PerCom
2005 Workshops), HI, USA, pages 86–90.

Maier, D. (2011). Sales of Smartphones and
Tablets to Exceed PCs. Available at
http://www.practicalecommerce.com/articles/3069-
Sales-of-Smartphones-and-Tablets-to-Exceed-PCs-
(last checked: 24/04/2012).

Molnr, B., Forstner, B., and Kelnyi, I. (2007). Symella 1.40.
Available at http://symella.aut.bme.hu (last checked:
23/04/2012).

Nordström, E., Gunningberg, P., and Rohner, C. (2009).
A search-based network architecture for mobile
devices. Department of Information Technol-
ogy, Uppsala University, Tech. Rep [Available at
http://www.it.uu.se/research/publications/reports/200
9-003/2009-003-nc.pdf] (last checked: 24/04/1012).

Pettey, C. (2011). Gartner Says Android to Command
Nearly Half of Worldwide Smartphone Operating
System Market by Year-End 2012. [Available at
http://www.gartner.com/it/page.jsp?id=1622614]
(Last checked: 20/04/2012).

Picone, M. (2011). sip2peer Tutorial An-
droid Example Outline. [Available at
http://code.google.com/p/sip2peer/wiki/sip2peerTu
torial] (Last checked: 20/04/2012).

Picone, M., Farber, B., and Hu, L. (2010). In-
troduction to Peerdroid. [Available at
http://dsg.ce.unipr.it/userfiles/file/peerdroid/
PeerdroidPresentation 03 2010.pdf] (Last checked:
20/04/2012).

Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
Peterson, J., Sparks, R., Handley, M., and Schooler, E.
(2002). SIP: Session Initiation Protocol. RFC 3261.
Internet RFCs.

Srirama, S. N., Jarke, M., and Prinz, W. (2006). Mo-
bile web service provisioning. In Advanced Inter-
national Conference on Telecommunications and In-
ternational Conference on Internet and Web Applica-
tions and Services (AICT/ICIW 2006), 19-25 Febru-
ary 2006, Guadeloupe, French Caribbean, page 120.

ICSOFT�2012�-�7th�International�Conference�on�Software�Paradigm�Trends

450

