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Abstract: Access control policies such as role-based access control (RBAC) enforce desirable security properties, in par-
ticular for Web-based applications with many different users. A fine-grained RBAC model gives the developers
of such systems more customization and administrative power to control access to fine-granular elements such
as individual cells of a table. However, the definition and deployment of such policies is not straightforward,
and in many Web applications, they are hand-coded in the database or scattered throughout the application’s
implementation, without taking advantage of underlying central elements, such as the data model or object
types. This paper presents FRBAC, a fine-grained RBAC model for the Web application domain. FRBAC
achieves separation of concerns for enforcing access to a range of objects with mixed-granularity levels. More-
over, it provides a unique testing mechanism that gives a guarantee to the developer about the correctness,
completeness, and sufficiency of the defined FRBAC model, both internally and in the context of its target
application. We use code generation techniques to compile the specification of a FRBAC model down to the
existing tiers of an existing domain-specific Web programming language, WebDSL. We show the benefits of
FRBAC on the development of a departmental Web site.

1 INTRODUCTION

Web applications, such as Facebook, are deployed
on a set of servers and are easily accessible via any
Web browser through an Internet connection. The
availability of a wide range of server-based deploy-
ment mechanisms, such as Google Engine (Sander-
son, 2009), make them a popular and suitable de-
velopment choice for different domains such as e-
business or social networking. However, as the num-
ber of users of a Web application grows, its security
and the privacy of the users’ data become major con-
cerns (Dalai and Jena, 2011). Therefore, there is a
need for controlling the access to shared data, based
on a set of specific policies. One way of doing so is
via one of the many types of access control such as
discretionary, mandatory, or role-based access con-
trol (Samarati and di Vimercati, 2000).

For reasons such as maintainability and cost effec-
tiveness (Connor and Loomis, 2010), role-based ac-
cess control (RBAC) is the most used (Gofman et al.,
2009; Groenewegen and Visser, 2008) access control
mechanism. RBAC (Ferraiolo and Kuhn, 1992) uses
the notion of role as the central authorization element

while other components of the system such as sub-
jects and permissions (describing the allowed op-
erations on objects) are assigned to one or more
roles. However, Web applications typically consist
of elements that have different granularity levels and
are scattered throughout the application code which
makes the access control more difficult. For example,
a page in a Web application can contain smaller ele-
ments such as sections or even more fine-grained ele-
ments such as a date of a record that is retrieved from
the database and displayed in a cell of a table. Cur-
rently, developers need to hand-code the access con-
trol elements around the objects that require access
control, using languages such as Scala (Hortsmann,
2012), XACML (Lorch et al., 2003; Abi Haidar et al.,
2006), or Ponder (Damianou et al., 2001).

However, approaches as those listed above have
three main drawbacks that complicate development of
fine-grained access control models and can easily in-
troduce security holes. First, they lack the right ab-
straction level to define flexible access control mod-
els that allow the specification of different policies for
different individual objects. Second, they lack the sep-
aration of concerns (Win et al., 2002) between access
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control and application (Chen and Huang, 2005). If
we can develop the access control components sepa-
rately, we can check for potential vulnerabilities sep-
arately and mechanically, instead of manually analyz-
ing the access control predicates scattered through-
out the application code, which is an error-prone and
time consuming process. Third, they lack a code
generation mechanism that can automatically trans-
late the specified abstract access control model into
corresponding access control checks and weave these
into the application to enforce the model without in-
troducing coding errors.

Recent studies (Wang et al., 2007) have shown
that although testing the access control model is es-
sential, testing the model on its own is not enough.
Any access control is defined to cover a set of ob-
jects in an application. Therefore, the testing mech-
anism should also take the target application, with
the woven-in access control predicates, into consid-
eration. The testing phase should thus first mechan-
ically verify the correctness and completeness of ac-
cess control model itself and then validate the appli-
cation code based on a set of test cases. These test
cases should cover a set of objects and policy scenar-
ios for which a correct outcome gives the developer
sufficient confidence that the deployed access control
model is appropriate for the given application. For ex-
ample, the system should produce more restrictive test
cases for an application in a medical sector than for an
online forum accessible over the internet.

In this paper we present FRBAC, a fine-grained
RBAC version for the domain of Web applications. It
provides a novel mechanism for declaratively defin-
ing RBAC, policies, and test objectives over a range
of objects with different granularity levels within
a single model. This model can be formally ana-
lyzed and verified. FRBAC is implemented on top of
WebDSL (Visser, 2007), a domain specific language
for Web application development. It uses code gen-
eration techniques to generate and weave the access
control predicates around the objects within the ap-
plication code written in WebDSL. Here we describe
the FRBAC language and the architecture of its code
generator, and show its application in a case study, a
departmental Web site.

2 BACKGROUND AND RELATED
WORK

Our fine-grained FRBAC model is based on RBAC
and its mechanism is implemented as an extension of
a domain specific language, WebDSL. We thus give
an overview of both approaches.

2.1 Role-based Access Control

RBAC belongs to the grouping privileges class of
access control models (Samarati and di Vimercati,
2000). In this class privileges are collected based on
common aspects, and then authorizations are assigned
to these collections. The fundamental advantage of
using a grouping privileges model is that it factors
out the similarities, and so handles changes better,
which leads to an easier authorization management
(Gorodetski et al., 2001). RBAC is used in many do-
mains and there are number of languages that support
RBAC (Groenewegen and Visser, 2008; Abi Haidar
et al., 2006; Damianou et al., 2001). RBAC uses the
notion of role as the central authorization mechanism
(Ferraiolo and Kuhn, 1992). Intuitively, a role is an
abstract representation of a group of subjects that are
allowed to perform the same operations, on behalf of
users, on the same objects. For example, in an RBAC
model we can define a role supervisor and state that
any user with this role can edit marks, while users
with the role student can only read them. The other
three main elements of RBAC are subjects, objects,
and permissions. A subject is the representation of
an authorized user, an object is any accessible shared
data and a permission refers to the set of allowed op-
erations on objects. In the example above, the subject
could actually be a session that belongs to the user
after authentication and the permissions describe the
allowed operations on the marks objects. RBAC was
standardized by National Institute of Standards and
Technology (NIST) (Sandhu et al., 2000).

2.1.1 Fine-grained Access Control

In the existing literature, the notion of fine-grained
access control refers only to models that can control
access to fine-granular objects but where the policies
themselves remain coarse-grained, and thus lack flex-
ibility. For example, a number of studies (Sujansky
et al., 2010; Zhu and Lu, 2007) discuss fine-granular
access control in the context of databases in terms of
the table structure (i.e., columns, rows, etc.), while
others (Hsieh et al., 2009; Steele and Min, 2010) dis-
cuss it in the context of XML and the hierarchical
structure of XML documents. Our notion is related
to both objects and access control, so that the access
control model itself becomes more flexible and can
provide a more efficient development environment.

Typically, objects are scattered throughout the ap-
plication code; therefore, if the programmer writes
the access control component by hand or uses access
control approaches such as XACML, the access con-
trol predicates will be scattered throughout the appli-
cation code as well (Abi Haidar et al., 2006). This
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is not suitable from many points of views. From a
design point of view, it is hard to track the access
rights for each object wherever it occurs within the
application, and to reason conclusively about its ac-
cess control predicates. From an implementation
point of view, coding and maintenance of the code
will be time-consuming and error-prone (Wurster and
Van Oorschot, 2009). Finally, from a testing point of
view it is hard for the tester to figure out the usage
coverage of hard-coded access control predicates.

2.1.2 Testing Access Control Models

Access control as a software component needs to be
tested (Tondel et al., 2008). Testing needs to consider
three aspects of an access control model, correctness,
completeness and sufficiency. First, an access control
model needs to be correct so that we can derive the
required access control predicates for controlled ob-
jects. Since RBAC has a standard and therefore its se-
mantics is well defined and understood, the correct-
ness of any defined model should be checked based
on the standard. Second, the completeness check of
an access control model is essential. A complete ac-
cess control model covers all possible outcomes of
its defined policies with respect to the RBAC struc-
ture. For example, if we have student and teacher
as two roles in an access control model and there is a
static separation of duty (SSOD) between them, then
the model should cover three cases to be complete:
first, teacher is active and student is not active, sec-
ond, teacher is not active but student is active and
third, neither of them are active. The sufficiency of an
access control depends on its target application and
therefore it should be defined by the developer. For
example, a developer might define an access control
model in a way that gives too much power to a user. In
this case, to overcome the super-user problem (Fer-
raiolo et al., 1999), the developer might check the
application sufficiency against a set of objectives and
discover this issue before application deployment. We
will discuss the correctness, completeness and suffi-
ciency checks of FRBAC in Section 3.2.1.

2.2 WebDSL

WebDSL (Visser, 2007) is a domain-specific language
for creating dynamic Web applications (Groenewegen
et al., 2008). It provides a development environment
with a higher level of abstraction than other Web pro-
gramming languages (e.g., JavaScript), which enables
developers to program abstract components such as
pages and other presentational elements (navigations,
buttons, etc.) for the presentation tier of Web ap-
plications. It also provides developers with the no-

tion of entities for defining a data-model and enforc-
ing data validation on those entities (Groenewegen
and Visser, 2009). WebDSL already supports discre-
tionary, mandatory, and role-based access control, but
only on a coarse level of granularity such as pages
and templates (Groenewegen and Visser, 2008). The
WebDSL compiler uses code transformation tech-
niques (Hemel et al., 2010) to transform the WebDSL
code to mainstream Web application files (HTML,
JavaScript, etc.). It uses these together with other pro-
vided layout resources (image, CSS, etc.) to compile
and package a WAR file, which is later deployed on
a Tomcat server (Brittain and Darwin, 2007) and then
accessible (locally or remotely) via a browser.

The WebDSL compiler is implemented using
SDF (Heering et al., 1989) for its syntax definition
and Stratego/XT (Visser, 2003) for its transforma-
tion rules. WebDSL consists of a number of smaller
domain-specific languages (e.g., user interface, ac-
cess control) that are structured around a core layer.
The transformation rules transform these layers step-
by-step down into the core layer which is finally trans-
formed into the target languages (e.g., JavaScript,
XML, etc.).

In WebDSL the data model specifies the applica-
tion’s entities and their properties. Listing 1 shows
an example. The properties of an object are speci-
fied by their name and their type. Types can describe
values, sets, and composite associations; in particular,
the type of a property can be another entity. For ex-
ample, in the data model shown in Listing 1 the tutor
property is of type Teacher, and marks is a property
that holds a set of Mark entities.

Listing 1: An entity defined in a WebDSL data model.

entity S t u d e n t f
s t u d e n t I D : : String ( name )
c o u r s e s �> Set<Course>
t u t o r �> Teacher
marks <> Set<Mark> ( inverse = Mark . s t u d e n t s )
g

Even though WebDSL increases the level of ab-
straction in Web application development, it has sev-
eral shortcomings that our work here addresses, in
particular:

� Data-oriented Fine-grained Access Control:
WebDSL has a powerful data model, and even
supports the validation of input data, but its access
control model is oriented towards the presenta-
tional elements (i.e., pages and templates), rather
than the data model, and remains coarse-grained.

� Access Control Correctness: Currently, there is
no support to check the correctness of the access
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control elements or their implementation within
the application code.

3 FRBAC

FRBAC is an approach for declaratively defining and
implementing a flexible, expressive, and high level
RBAC mechanism. It generates access control ele-
ments and then weaves the derived predicates into the
application code in order to enforce the access control
on fine-grained elements of the data model, instances
of the data, template and page elements. Moreover, it
provides a testing mechanism to check the correctness
of the model itself and with regard to its application.
In this section we introduce the language by means of
an example.

3.1 Access Control Model

As Listing 2 shows, a FRBAC model consists of three
main sections: basic RBAC elements (lines 3-11), pol-
icy cases (lines 13-18) and coverage (lines 20-26).

Listing 2: FRBAC example.

1 PhiRBACf
2
3 rolesf t e a c h e r ( 1 0 ) , admin ( 1 ) , manager ( 1 ) ,
4 a d v i s o r ( 1 0 ) , s t u d e n t (� )g
5 hierarchyf ( a d v i s o r ) �> ( t e a c h e r )g
6 ssodf
7 ( t e a c h e r , admin , a d v i s o r , manager ) <�> ( s t u d e n t )
8 g
9 dsodf
10 ( and ( a d v i s o r , t e a c h e r ) , admin ) <�> ( manager )
11 g
12
13 objectsfG ( r o l e A s s i g n m e n t ) , XML ( a d d r e s s ) ,
14 Pe r s on . password , P ( marks )g
15 policiesf t e a c h e r , s t u d e n t , admin , a d v i s o r g
16 casesf (+ ,� ,� ,?) �> ( [ r , u ] , [ r ] , [ s ] , [ r , u ] ) ,
17 (� ,� ,+ ,?) �> ( [ r , u ] , [ r ] , [ s ] , [ i ] )
18 g
19
20 coverage f
21 objectsfP ( r o o t ) , s t u d e n t . marksg
22 policiesfadmin , t e a c h e r g
23 cases f ( + , ? ) �> ( [ r , 1 0 0 ] , [ i ] ) ,
24 (� ,+) �> ( [ i ] , [ u ,( >80 , <=100)])
25 g
26 g
27 g

3.1.1 Basic RBAC Elements

At the core of an FRBAC model are the basic RBAC
elements. The developer first defines roles and their

cardinalities (cf. lines 3 and 4), which specify the
maximum number of subjects that may acquire the
respective roles at any given time. The developer can
also define an optional role hierarchy. In the exam-
ple, the advisor role is defined as a specialization
of teacher (cf. line 5). In addition, the developer
can define optional separation of duty (SOD) con-
straints (Sandhu et al., 2000) (cf. lines 6-8). Static
SOD constraints affect the role assignment (e.g., the
roles admin and student can never be assigned to
the same subject) while dynamic SOD (DSOD) con-
straints affect the role activation. For example, the
DSOD constraint in Listing 2 states that a subject
cannot activate the manager role together with either
admin or both advisor and teacher roles.

We then use a matrix-structure to specify the ac-
tual access control policy as well as the test case cov-
erage. The matrix’ rows and columns labels are given
as the set of controlled objects and the different pol-
icy terms, while the entries of the matrix are given on
a line-by-line basis as policy cases. These show the
relation between the policy combinations and allowed
operations on the respective objects (see Section 3.1.4
for more details).

3.1.2 Controlled Objects

FRBAC supports access control of objects with dif-
ferent types and granularity levels. We can divide
them into data model, page, and template elements.

Any Web application that is more than just a set
of linked static pages needs a supporting data manip-
ulation mechanism, e.g., a relational database. The
data structure is defined in a data model, which is
then translated into a database type, such as tables
in a relational database. The main benefit of using
the data model as a part of controlled objects is that
we can define access control on the data model el-
ements without considering where or by whom they
are used within the application code. FRBAC thus
allow the data model elements as part of its con-
trolled objects. It supports both coarse-grained ele-
ments such as the student entity shown in Listing
2 or more fine-grained components such as speaker
property of the entity Seminar. It is important to
note that FRBAC consequently supports relations,
such as inheritance, between data-model components
as well. For example, the type of the speaker prop-
erty can be the Person entity. If this entity is access-
controlled, then FRBAC automatically adds all the
access control predicates from the Person entity to
speaker’s predicate. However, the different proper-
ties and entities to be joined may have conflicting ac-
cess control predicates, which can make a controlled
object inaccessible. Such conflicts are checked during
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the testing phase (see Section 3.2.1).
Currently, WebDSL supports access control on the

pages and templates of a Web application. Since we
do not want to force the developer to use FRBAC and
the existing access control to declare two different
types of access control model, these coarse-grained
components are also supported within our model as
controlled objects. Moreover, we support more fine-
grained components of pages and templates. For page
elements the developer can use G(GroupNames) to
define a set of group names and B(BlockNames) to
define the block names which are used by an exter-
nal CSS-style. In WebDSL we can use XML hierar-
chies within the template code, and the developer can
use XML(NodeNames) to declare a set of XML node
names as controlled objects.

3.1.3 Policy Terms

A developer can select an arbitrary number of desired
policy terms (i.e., activated roles), following the poli-
cies keyword (see Listing 2 lines 15 and 22). The ac-
tual policy is then defined case-by-case, dependent on
the logical status of the policy terms. The logical sta-
tus is either activated (represented as + in FRBAC),
not activated (-) or don’t care (?). Note that don’t
care is not required but simplifies the specification of
complex policies.

3.1.4 Policy Cases

As shown in Listing 2 (see lines 16-18), the developer
can specify an arbitrary number of cases. Each case
defines a combination of logical states for creating an
access control predicate and the set of allowed opera-
tions on the controlled objects. These operations are:
� Create (c): is used to denote that users with the

appropriate roles are allowed to create an instance
of the controlled objects or a set of objects that
are embedded within the controlled objects. For
example, if the controlled object is an entity, this
case controls the create operations of this entity
throughout the application; if the controlled object
is a page, we look at the embedded objects within
the page, and see if there is any create operation
related to them.

� Read (r): refers to read operations of the con-
trolled object itself or its embedded objects (i.e.,
properties as sub-elements).

� Update (u): refers to update operations of the con-
trolled object itself or its embedded objects.

� Delete (d): refers to the delete operations related
to the controlled object itself or its embedded ob-
jects.

� Secret (s): is used for hiding the content of the ob-
ject itself or its embedded objects. For example,
if the controlled object is User.username then its
instance will be hidden to the user, regardless of
the specified operations (i.e., create, read, update,
delete).

� Ignore (i): states that the defined policy states of
this case do not effect the predicates of the con-
trolled object.

Note that all of these operations are used in relation
to the defined predicates. For example, Listing 2 line
16 shows that when the user has the role teacher but
not student or admin, he/she cannot see the users’
password.

3.1.5 Coverage Cases

This part of the model (see lines 20-26 in Listing 2)
helps the developer to define a set of independent
cross checks on the FRBAC model and thus get as-
surance about the functional coverage of access con-
trol predicates over the controlled objects. In particu-
lar, we allow the developer to specify for each com-
bination of policy terms to which extend the occur-
rences of an object within the target application are
controlled. This can be seen as a summary that is inde-
pendent of the actual access control mechanism. We
allow the developer to define the coverage cases by
hand because only the developer knows about the con-
text of the target application, its security goals, and in
what granularity level both defined FRBAC and the
target application need to be checked.

The developer defines a number of cases, which
each check the relative coverage of a set of controlled
objects and their related operations for a combination
of logical states (similar to Section 3.1.3). For exam-
ple, line 23 in Listing 2 states a user with the activated
role admin must have read access to all the controlled
objects defined in the root page. In other words, all
predicates that are derived from the policy cases (cf.
line 17 in Listing 2) and will be woven around the
objects within the root page, must be true for a user
with the role admin activated. If we for example as-
sume that the controlled object user.password is de-
fined in the root page; then our first coverage case
fails: based on the second defined policy case, a user
with the activated role admin cannot see the instances
of user.password. The coverage cases help the de-
veloper to check the defined FRBAC model, based
on a different view, with respect to the target appli-
cation. For example, in Listing 2, the policy cases do
not directly cover the controlled object student.marks.
However, in the second coverage case, we check its
coverage range based on a case where the user has an
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activated role teacher (see the related part in Section
3.2.1 for more details).

3.2 FRBAC Architecture

The FRBAC architecture (see Figure 1) is divided
into a testing and a transformation phase. The aim of
the testing phase is to verify and validate the access
control model itself and its integration into the target
application. As the FRBAC model is defined sepa-
rately from the application code, the aim of the trans-
formation phase is to first generate the access control
elements (e.g., data model, access control predicates,
etc.) and then to weave them into the target applica-
tion code.

Figure 1: An overview of the FRBAC generation pipeline.

3.2.1 Testing Phase

A number of studies (Montrieux et al., 2011; Martin
et al., 2006; Masood et al., 2009) highlighted the fact
that developing an access control mechanism is error-
prone and the result therefore needs to be tested. Un-
like the prior approaches, we emphasize the fact that
correctness and completeness of the access control
model on its own is not enough and the target applica-
tion must be considered as well based on the defined
access control model. The access control predicates
are derived from the access control model and need
to be implemented (in our case generated) around the
desired objects. Even partially failure of doing so will
result in application code that is compilable but has
a number of security holes that need to be closed af-
ter application deployment. This leads to high test-
ing and maintenance costs after the deployment of the
application. It is ideal to give a full guarantee to the
developer for the defined access control model and its
target Web application before deployment phase.

The testing phase consists of three consecutive
white-box testing steps (see Figure 1). Failure of each
step will terminate the rest of the compilation and its
related error messages will be given to the developer.
In the first step, we verify the defined FRBAC model
using model checking. Second, we validate the ap-
plication code with respect to the defined FRBAC
model. Third, we check the coverage against the de-
fined objectives.
Model Verification. This step mechanically veri-
fies the correctness and completeness of an FRBAC
model using an SMT solver, Z3 (de Moura and
Bjørner, 2008). Z3 takes a representation of the model
in first-order logic (FOL) and decides its satisfiability.
Here, we first verify the correctness of the defined ba-
sic RBAC elements and of each individual case de-
fined in the policy and coverage cases. Second, we
check the completeness of the policy and coverage
cases. For these two steps we generate a number of
FOL formulas for Z3 to check them individually and
then we mechanically analyze Z3’s output results to
come to a conclusion about the correctness and com-
pleteness of the original FRBAC model.

The basic RBAC elements can create conflicts in
the model. For instance if a role supervisor inher-
its from a role teacher but these two have also an
DSOD relation between them, then this specification
creates a conflict and consequently an error in the
model, because these two roles must be activated (due
to the inheritance relation) and deactivated (due to
the DSOD) at the same time. To check the correct-
ness of the basic RBAC elements, we first mechan-
ically check if there are any undefined roles in in-
heritence, SSOD, and DSOD relations. Second, we
check for possible conflicts between the hierarchy and
SSOD respectively, DSOD constraints by generating
two FOL models to check with Z3. If the result is un-
satisfiable (UNSAT) then there is an error in the de-
fined basic RBAC structure. However if all the results
are satisfiable (SAT) then the structure of basic RBAC
elements is correct and we consequently go to the next
step to check the correctness and completeness of the
defined cases.

The defined policy and coverage cases can create
three types of errors that need to be checked:
� Incorrect Case: The policy terms and their signs

create an access control predicate for each case.
These signs could create an error based on the
defined basic RBAC elements. For example, if
there is a SSOD relation between teacher and
student roles, a case cannot define a predicate in
which both of them are active, so it is an error in
the model if each has + for their policy sign.

� Overlap: If two cases create the same access con-
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trol predicates, then we have an overlap between
these cases. Two cases create an overlap conflict,
if they are syntactically equal or one of them uses
the don’t-care state (?) for a set of policy terms
while the other case has active (+) or not-active
(-) state for those policy terms.

� Incompleteness: If the defined policy or coverage
cases do not fully cover all the possible cases, then
we have incompleteness.

Figure 2: Overlapping and incompleteness verification
pipeline.

To check these three cases, we generate three FOL
formulas, and individually check their satisfiability
using Z3. We then generate the error and success mes-
sages in terms of the defined FRBAC model instead
of the model checking results.

In case of the correctness, we generate a FOL for-
mula, for each case that contains the basic RBAC el-
ements and uses the truth values corresponding to the
policy signs for each policy term. Then we call Z3
to check the satisfiability of the formula, where SAT
means that we have a correct case, and UNSAT means
that we have an error because of an incorrect case.
For example, to check the correctness of the case de-
fined in Listing 2 line 17, in addition to the defined
RBAC structure (Listing 2 lines 3-11) we transform
its definition into a FOL formula that states admin
is true, and teacher and student both have a false
value. In this case with respect to the RBAC model,
the SMT solver gives us a SAT result, because the
formula did not create a conflict based on the defined
RBAC model.

In checking the overlap and incompleteness of the
policy and coverage cases, as Figure 2 shows, we use
a number of sub-steps to check these both issues and
then notify the developer about the possible errors.
For overlap checks, we pair any two cases and gen-
erate a FOL formula in which there is a conjunction
between these two cases and their sub-elements. Then
we check each pair for satisfiability; (UN)SAT means

that the two cases are (not) overlapping. As Figure 2
shows, the overlapping check is repeated until all
combinations are covered. For example for a policy
set fteacher, studentg, if we have two cases (+,-)
and (+,?), then their FOL formula will be (teacher
&& not student) k (teacher), in which the SMT
solver will give a SAT message that results in an error
message because these two cases are overlapping. In
case of incompleteness checks, we disjunctively link
the negation of all of the cases and conjunction with
the policy signs of each negated case. We then call
Z3 to check the model for satisfiability. If the result
is SAT, then there is a missing case and Z3 gives a
counterexample for it. Since this produces the miss-
ing cases one-by-one, we need to respectively update
and re-check the model, until Z3 finds no more miss-
ing cases (see Figure 2)

All steps mentioned above happen during
compile-time. Since the developer does not know
about Z3 and its results, we need to interpret these
results for the user in terms of the FRBAC elements.
As Figure 2 shows, during the last step, we parse
the model checking results (UNSAT, SAT) and by
retrieving its representation elements in AST we
give the error during the compilation based on the
FRBAC elements.

Listing 3: Nested controlled objects and their related predi-
cates may create a set of conflicts.

1 if ( P1 )f
2 group ( ” groupOne ” ) f
3 if ( P2 )f
4 for ( u : User )f
5 output ( u . username ) / / c o u l d be u n r e a c h a b l e
6 g
7 g
8 g
9 g

Web Application Validation. In our automation
mechanism, the access control predicates are woven
into the application code around the controlled ob-
jects. These controlled objects and consequently their
predicates may be nested within each other and so cre-
ate a set of conflicts. For example, in Listing 3, we
have two different controlled objects, in which the in-
stances of all users’ username are embedded within
the sub-element of the page groupOne. We have P1
that protects groupOne and P2 that protects the in-
stances of users’ username. Moreover, P1 indirectly
protects P2 as P2 is nested within P1. Let us assume
that P1 and P2 can conflict. For instance, P1 is true
for the users with the activated role teacher and P2
is true for the users with the activated role admin but
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in the access control model there is also an SSOD rela-
tion between role teacher and admin. It is clear that
users with the activated role admin can never access
the instances of users’ username, even though they
have a right to do so. We called these unreachable ar-
eas dead authorization code and the following steps
are used for finding such areas.

� Sorting and Pairing: First, we sort all policy cases
based on the controlled objects, their related op-
erations and predicates. Then, for each possible
pairs of objects, we create a list that is the union
of all related predicates for that pair.

� Potential Conflicts: We check for conflicts be-
tween the predicates of each pair with respect to
the defined RBAC structure. For this reason, for
each pair, we transform their predicates and the
defined RBAC structure into a FOL formula and
check its satisfiability by using Z3; in case of UN-
SAT, we have a conflict.

� Conflict Detection: Now, we have a list of pairs in
which the predicates create a conflict. We finally,
check the application’s AST such that if the paired
objects are embedded within each other, we create
an error with respect to the FRBAC model and the
location of objects in the target application.

Coverage. The aim of this step is to check the re-
quired access control coverage based on the defined
policy and coverage cases, and to provide feedback
to the developer about the potential shortcomings of
the defined FRBAC model. A coverage percentage
shows what percentage of an object occurrences in
the application is protected directly or indirectly by
the derived access control predicates that are defined
in the policy cases. For each controlled object used in
the coverage cases, the coverage percentage is calcu-
lated. The following three steps show in details how
we calculate the coverage percentage for each con-
trolled object:

� Sorting and Pairing: We sort both coverage and
policy cases into two lists. We then pair each cov-
erage case with all the policy cases.

� Finding Related Cases and Partial Coverage:
Then, we need to find all the related policy cases
for each coverage case based on the access con-
trol predicate. For this, we transform each pairs
of cases into a FOL formula such that, the policy
case?s predicate is used as it is but we transform
the negation of the coverage predicates. Then we
call Z3 to check the satisfiability of the formula. If
it is SAT, we omit the paired cases from the cover-
age computation, as they are not related; however
in case of UNSAT, the predicates are related and

we use the corresponding object and operation to
calculate the coverage of the object based on that
particular related predicate.

� Overall Coverage: We continually repeat the last
step to find out all the direct and indirect cover-
age of each (object,oper) pair based on the defined
policy cases. Then, we divide the total value of
the computed coverage by the total number of the
occurrences for the object throughout the applica-
tion.

If the computed coverage is outside the specific
range we give an error in terms of FRBAC elements
and terminate the compilation. Therefore, the devel-
oper can fix the coverage errors based on the defined
FRBAC model and/or the target application.

3.2.2 Transformation Phase

As Figure 1 shows, the transformation phase is di-
vided into generating the required elements and then
weaving them throughout the Web application code.
These elements are related to the RBAC and access
control predicates of the system that are defined in the
FRBAC model.
RBAC Generation. RBAC generated elements first
have to be a part of the Web application’s data model
for providing the data manipulation mechanisms for
roles and their required activities, such as maintaining
list of assigned roles for each user. Second, these gen-
erated elements have to provide a role management
mechanism for the authenticated users of the applica-
tion. This mechanism consists of the role assignment
and activation modules that are based on the overall
defined RBAC structure in FRBAC model.

To extend the Web application’s data model, we
need to find the entity that represents the users of the
system. In WebDSL, the developer uses the notion of
principal to define the users’ authentication creden-
tials (see Listing 5). The entity that is used for users
is used as a type to represent the users that have the
role (Listing 4 line 4) and also it is extended to store a
set of assigned roles for each user (Listing 4 line 12).
Moreover, the session element must be extended to
hold the activated roles for each user. For example in
Listing 5, the authentication is based on the username
and password properties of the Person entity. In this
case the entity person, represents the user of the sys-
tem, and we extend the data model of the application
by generating the role entity (Listing 4 lines 2-9), ex-
tending the Person entity (Listing 4 lines 10-13); and
extending the Web application session (Listing 4 lines
15-17).

We already checked the correctness of the RBAC
structure defined within the FRBAC model (see
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3.2.1) and as shown in the generated role entity, we
store each role’s characteristics (e.g., SSOD) for the
RBAC management component. The SSOD relations
of each role to the other roles is used in the role as-
signment component which during the run-time of the
system must not allow the admin to assign conflicted
roles to any users of the system. The DSOD relation
between roles is used in the role activation module
of the system, because two roles with DSOD relation
between them cannot be activated in any user’s ses-
sion. The inheritance relation between roles is used
for both role assignment and role activation mod-
ules. These relations must be considered based on the
overall structure of the defined RBAC, as we need to
consider more than the direct impact of defined rela-
tions for each role. For example, if a role advisor
inherits from the role teacher, and teacher has an
SSOD relation to manager, the roles advisor and
manager can never be assigned to one user, even if
the defined model did not explicitly covered the rela-
tion between advisor and manager. To get all direct
and indirect relations of each role, as Figure 3 (second
step) shows, we translate the RBAC structure into a
FOL logic, and at each cycle we give a true value to
the role whose relations, we want to check and use the
SMT solver to get a counterexample in which the re-
lated roles are either true (due to inheritance relation)
or false (due to SSOD or DSOD).

As Figure 3 (cf. third step) shows, we first give
the two steps to the RBAC generator to generate all
the above mentioned elements.

Listing 4: Generated data model elements.

1 / / G e n e r a t e d Role e n t i t y
2 entity Role f
3 name : : String ( name )
4 u s e r s �> Set<Person>
5 i n h e r i t e n c y �> Set<Role> ( optional )
6 s sod �> Set<Role> ( optional )
7 dsod �> Set<Role> ( optional )
8 c a r d i n a l i t y �> Int
9 g
10 / / E x t e n d i n g ’ Person ’ e n t i t y f o r r o l e a s s i g n m e n t
11 extend entity Pe r s on f
12 a s s i g n e d R o l e s �> Set<Role> ( inverse=Role . u s e r s )
13 g
14 / / E x t e n d i n g s e s s i o n f o r a c t i v a t e d r o l e s
15 extend session securityContextf
16 a c t i v a t e d R o l e s �> Set<Role>
17 g

Listing 5: Defined authentication credentials.

principal is Pe r s on with credentials username , password

Predicate Generation. We already tested the
policy cases (see 3.2.1), so at this stage, all the
cases are unique and correct. As mentioned, each
case represents a predicate that should protect the
controlled objects and their related operations. As
Figure 3 shows, before starting to generate the access
control predicates, we first sort the cases based on
controlled objects and operations, by joining their
predicates where there is a same operation on the
controlled object. For example, in Listing 2 for the
controlled object Person.password both defined
cases result in a secret operation. Therefore, the
access control predicate that protects the instances
of Person.password is equal to: (teacher &&
not student && not admin)k (not teacher
&& not student && admin). These sorted cases
will be parsed into an AST which is used by the
predicate generator to generate a set of predicates
that can be woven around the controlled objects in
the Web application’s AST (see fourth step in Figure
3).
Weaving Stage. Weaving is the last step in the
FRBAC transformation phase. In this step, we first
get the result of the RBAC and predicate generators
(see Figure 3). For the RBAC generator, the result is
an AST that represents a number of modules that hold
the generated data model and RBAC management
component of the system. We weave these modules
into the Web application’s AST and we add a navi-
gator to the authentication code to redirect the user
to the role management component after successful
authentication. Any user has access to their role acti-
vation component, however the role assignment com-
ponent is protected, based on the access rights that
are defined in FRBAC model (as shown in Listing
2). In terms of predicates, the generated AST holds
all the predicates sorted based on operations on the
controlled objects. Therefore, we need to weave these
predicates repeatedly, because at each cycle (see step
5.1 in Figure 3) we are passing a set of predicates for
a specific object and its related operation to be recur-
sively woven by the FRBAC weaver to prevent AST
duplications.

As Figure 3 shows, we mechanically pass the up-
dated Web application’s AST to the next step within
the WebDSL compiler that is originally a part of the
WebDSL compiler.

4 CASE STUDY

The aim of this section is to show the benefits and
limitations of the FRBAC modeling language and its
code generation mechanism, based on the evaluation
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Figure 3: FRBAC transformation phase within the extended compiler pipeline.

of a case study. The main objective of the evaluation
is to check the efficacy of FRBAC during the devel-
opment phase of a target application with a reasonably
large data model, based on a rich set of policies. We
chose a departmental Web site as a target application.
Moreover, the goal of the evaluation is to derive a set
of findings that can be used to improve any RBAC-
based access control model, including FRBAC, that
is intended to be used in the Web application domain.

We implemented our case study using WebDSL
for the Web elements and FRBAC for the access con-
trol elements of the application. This case study is
created and deployed for a language research group to
cover their internal (e.g., organization of viva) and ex-
ternal (e.g., publications) needs and to provide a fine-
grained access control over the objects.

4.1 Web Application Description

In this case study, the Web application consists of
three main elements, pages and access control. We
divided the data model elements into two categories;
users and activities. Users’ entities belong to differ-
ent types of users in the system such as academics
or visitors. The second set of entities cover the set of
available activities such as adding an interest. The
access control data model is generated at compile
time. The size of the data model is quit large. We
have nine different entities for nine different types of
users (e.g., academic, student, etc.) and 13 enti-
ties that cover the objects involved in activities (e.g.,
publications, etc.). Overall, we have 93 properties
that are related to the 22 entities. These are the unique
fine-grained objects that are used throughout the ap-
plication code for a number of times. We divided the
pages based on different types of users and activities,
regardless of the used operations for the objects of
the system. So, in this case, there is only one page
for each type of data and in that page all the available
operations exist in which each part of the page will be

divided based on the defined policies in FRBAC dur-
ing the transformation phase. The access control ele-
ments for this case study are based on the needs of the
users in a research group. For example, an academic
can be a supervisor of a PhD student however she
cannot be an examiner of a PhD student who she is
supervising.

4.2 Evaluation

To evaluate the FRBAC model and mechanism, we
looked at three aspects: model, testing and transfor-
mation phases. The errors in the model were di-
vided into RBAC and the application errors. Both
RBAC and application based errors were discovered
during the testing phase (see 3.2.1). The transforma-
tion strategies that were used in testing and transfor-
mation phase were tested, in a white-box manner, dur-
ing their development. Also, the correction of the wo-
ven AST was inspected manually to make sure all the
unguarded objects were not covered directly or indi-
rectly within the FRBAC access control policies.

4.3 Findings

We organize the findings into benefits and weaknesses
of FRBAC model and its mechanism.

The benefits are divided into development effi-
ciency and correctness and completeness of the model
and target application before its deployment. Dur-
ing our case study, the FRBAC model was developed
separately from the application code. So, in case of
errors the developer did not need to search through
the scattered access control definitions in the applica-
tion code. Moreover, the FRBAC is developed at the
right abstraction level. In this case, the developer did
not need to use any object or agent oriented termi-
nology to define the access control components and
she just uses these components as they are such as
roles. FRBAC is also a cost effective solution. In
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our case study the compilation time related to our ac-
cess control model was just 3 seconds on a machine
with 4GB RAM and 2.3GHz CPU, to cover instances
of 93 unique objects throughout the application. Cor-
rectness and completeness approach in FRBAC gives
an insurance to the developer about the access control
of the system, so any security failure of the system
during its run-time is not related to its access control
element but to the other security elements of the sys-
tem such as data encryption.

FRBAC’s weakness is originated in the RBAC it-
self. RBAC does not support an ownership notion.
For instance, if in a research group we have a policy
that states that the supervisor can edit their students’
travel allowance, then any user with the role super-
visor can edit the travel allowance of any student in
the group regardless of who is the supervisor of those
students. In order to overcome this flaw, the devel-
oper needs to introduce a number of unnecessary roles
such as supervisorOfStudentA to enforce the men-
tioned policy. So FRBAC would be more efficient if
the developer uses the ownership notion as a policy
term as well.

5 CONCLUSIONS AND FUTURE
WORK

This paper introduced FRBAC, a fine-grained ac-
cess control model for the Web application domain
that enforces separation of concerns between appli-
cation and access control model at the right abstrac-
tion level. FRBAC is implemented as an extension
to a domain-specific language, WebDSL. Its genera-
tor architecture is divided into a testing phase and a
subsequent transformation phase. The testing phase
uses a fast novel mechanism to check the correctness
and completeness of the model and the application via
model-checking techniques. Furthermore, we showed
how dead authorization code could occur in a fine-
grained access control model, and how we checked
for this. We evaluated the approach and its mechanism
based on a real world example. The example demon-
strated the efficacy and benefits of FRBAC in terms
of defining a fine-grained access control model and
checking correctness, completeness and sufficiency.
Furthermore, it showed the applicability of FRBAC
model for large data based on a rich set of policies.

For future work we like to introduce the notion
of ownership (McCollum et al., 1990), as a policy
term, to improve the FRBAC model and its mecha-
nism. Also, we plan to integrate the other well-known
access control models into our access control model,
to achieve access control integration for a domain

of Web applications that are constructed from mixed
sources and require different access control models
for different parts of the application. Moreover, in
terms of the FRBAC architecture, we like to explore
the possibility of generating our access control predi-
cates on top of the database tier so that the application
can retrieve access control settings from the database
at run-time and take advantage of the database tier’s
security options. Furthermore, we will perform more
evaluation of FRBAC based a broader set of Web ap-
plications.
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