
Traceability Support for MDE Development of Home Automation
Systems

Francisca Rosique, Pedro Sánchez, Diego Alonso and Manuel Jiménez
DSIE Research Group, Technical University of Cartagena, Campus Muralla del Mar s/n, Cartagena E-30202, Spain

Keywords: Traceability, Model-driven Development, Home Automation Systems.

Abstract: Traceability is a technique to ease determining the impact of changes in the design of software, to support
their integration, to preserve knowledge, and to assure the quality and accuracy of the overall system. In this
paper, an approach that considers traceability in the context of model-driven development of Home
Automation (HA) systems is presented. This combination enables the development of tools with techniques
for improving the quality both of the process and of the models obtained. To obtain these advantages we
have developed a tool that provides users with traceability reports after applying model transformations.
These reports enable developers to study whether all requirements have been considered, the impact of
changes, and how they are considered both in architectural decisions and code implementations.

1 INTRODUCTION

The Model Driven Approach (MDE) (Selic, 2003),
promotes the use of models as the main artefact in
software development. A model is an abstract
representation of reality that only shows those
aspects that are of interest for a given purpose. A
model is defined according to a meta-model that in
turn defines the abstract syntax of a modelling
language and establishes the concepts and the
relationships among them. Since a system can be
described by means of different models with
different levels of abstraction, model
transformations are one of the key issues of this
approach (Mens and Van Gorp, 2006), since they
encourage models to evolve towards other models
that use concepts of a specific technology and in this
way obtain executable code.

In a MDE process, traceability is crucial due to
the extensive use of transformations (i.e. automated
creation of artefacts). Traceability becomes central
to be able to understand how and why an artefact
was created (Kolovos et al, 2006). Traceability
refers to “the ability to describe and follow the life
of artefacts, in both a forward and backward
direction” (Lagos et al., 2009) Forward traceability
traces the software devices that are obtained in the
normal development process. Backward traceability,
on the other hand, aims to link each software

element with the devices involved in its creation.
The traceability of software artefacts offers much
more detailed information on the adaptation of the
developed system as well as the implications that
any change may have. In (Behrens, 2007) Thomas
Behrens defines several key goals of traceability in
software development. We can summarize these
capacities in the following items:

(i) To validate whether the different requirements
have been taken into account.

(ii) To validate whether the obtained
implementation complies with requirements
and whether they have been satisfied.

(iii) To identify the impact that any requirements
modification may have.

In this context, MDE transformations may record
links (traces) between source and target elements.
These traces can be useful in performing impact
analysis, synchronization between models, model-
based debugging and determining the source or
target of a transformation. Traces make it easier to
validate whether transformations are properly
carried out, obtain support for an integrated
management and evaluation of the impact of
changes at different levels of abstraction
(requirements, architectural design, detailed design
and code).

The DSIE research group at the Universidad
Politécnica de Cartagena has experience in the
development of reactive software systems such as

224 Rosique F., Sánchez P., Alonso D. and Jiménez M..
Traceability Support for MDE Development of Home Automation Systems.
DOI: 10.5220/0004081302240229
In Proceedings of the 7th International Conference on Software Paradigm Trends (ICSOFT-2012), pages 224-229
ISBN: 978-989-8565-19-8
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)

tele-operated service robots (Alonso et al., 2008),
(Iborra et al., 2009), wireless sensors and actuators
networks, and home automation (HA) (Jimenez et
al., 2009). The proposal for HA systems
development uses the Model-Driven Architecture
(MDA) (Mellor et al, 2004) for organizing the
software development in three layers: (1) a
computation-independent model (CIM) represented
by the syntax and part of the semantics of the
defined DSL, (2) a platform-independent model
(PIM) built as a component model and (3) a HA
platform-specific model (PSM). The developer
elicits requirements through the DSL in the CIM
layer. Models from this level are automatically
transformed into architectural components in the
PIM layer. This level is a junction point for different
reactive systems (wireless sensor networks, robotic
systems, artificial vision, etc.). Consequently, the
elements of HA systems designed in this manner can
be integrated as components of a more complex
reactive system. The tool then transforms the
components into executable models for specific
platforms.

The possibility to augment all the models
involved in this process with traceability
mechanisms has motivated the present paper. The
rest of this paper is organized as follows: Section 2
introduces our previous experience with MDE and
HA. Section 3 details the proposed framework for
HA systems. Section 4 describes the integration of
traceability in a MDE framework. Section 5 analyses
other related papers and finally Section 6 presents
the conclusions and further work.

2 TRACEABILITY SUPPORT
FOR HOME AUTOMATION
SYSTEMS

Figure 1 shows the proposed development
framework of HA systems following the MDE
approach, and its extension to include traceability.
As can be seen on the right hand side, the different
MDE levels corresponds to (1) HA requirements, (2)
domain specific languages, (3) a component based
level, and (4) executable code for a specific
platform. Traceability support includes the artefacts
shown in the dashed square on the left hand side of
the figure. As can be seen in the figure, the
correspondences between the requirements and the
DSL level are established manually. In this way, the
partial solutions for each HA requirement are
catalogued. When building a new application, the
user should inspect this catalogue identifying the
requirements that can be reused from previous
applications. From the DSL level, a set of model
transformation automatically generate (1) code
implementation of the application (at the moment
only for the KNX/EIB platform), and (2) a set of
traceability models (left-hand side of Figure 1) of
the whole process. These traceability models are
later processed by TRT (Trace Report Tool) that
provides the user with reports which are useful in
different situations as will be described below.

Home Automation
requirement

model

Requirements
meta-model

conforms to

DSL
model DSL meta-model

V3CM
model

V3 component
meta-model

Home automation
platform-specific

model

Home automation
platform-specific

meta-model

Reuse of DSL
solutions (user guided)

Traceability
meta-model

Traceability
model #2

Traceability
model #3

Traceability
report

Requirement
Tracer Tool (RTT)

generates

analyses

DSL to component
transformation rules
(automatic with EMT)

Component to execution
infrastructure

transformation rules
(automatic with EMT&JET)

conforms to

conforms to

conforms to

Traceability
model #1

Figure 1: Framework for home automation model driven development.

Traceability Support for MDE Development of Home Automation Systems

225

A detailed description of each of the meta-
models falls outside the aim of this paper.
Nevertheless, the relevant details can be consulted in
(Jimenez et al., 2009).

To be able to save and later process the links of
the defined traceability it is necessary to have a
repository of traces among the different software
artefacts generated. In (Kolovos et al, 2006) there
are two main approaches to deal with traceability in
a model based environment. One is to keep the
traceability information embedded in the model
itself as new model elements e.g. as stereotypes. The
other is to keep the traceability information in an
external model. This approach has the advantage of
keeping models clean by facilitating loose couplings
between models and links. The software
development framework presented in this paper
considers the second approach.

2.1 A Meta-model for Traceability

The traceability meta-model detailed in Figure 2 has
been inspired by other works such as (Melby, 2007).
This meta-model contains a Link pointing to any
ModelElement via two references: a source element
and multiple target elements. The ModelElement is
required here because our traceability meta-model
must be able to link to elements of other meta-
models. The idea of the CompositeLink is to be able
to define different granulated levels to arrange Links
in others of more complexity, according to the
overall purpose that is being referred to. The
linkType attribute allows developers to categorize
the existing relationships and to distinguish on what
level of the development process the trace is located.

The process takes into account a traceability
model between each two consecutive levels of
abstraction, as is shown in Figure 1. For example, in
the particular case of the traceability between HA
requirements and the DSL, the Link element is
defined as:
� A ModelElement (source) which references an

element of the HA requirements meta-model.
� A ModelElement (target) which references an

element of the DSL.
Figure 3 shows all the possible combinations of

traceability links supported by the meta-model
between two consecutive levels of abstraction (for
instance, from requirements to design, from design
to elements of the programming language, etc.). As
can be observed, it is possible to integrate the one-
to-many relationships into one Link. At the same
time, a target can be the destination of diverse traces
with different origins.

Figure 2: A meta-model for traceability.

traceable elements at
abstraction level N+1 (sources)

traceable elements at
abstraction level N (targets)

1-to-n
link

two links with
same target

composite link

source model element
without trace

target model element
without trace

Figure 3: Examples of traces that can be represented with
the proposed traceability meta-model.

2.2 Traces Generation

Trace links between source and target artefacts of a
transformation may be created in implicit or explicit
way. The first traceability model (between HA
requirements and the corresponding DSL model) is
created manually by the user. From the DSL until
the final generated code, all the traces are obtained
automatically as part of each of the model-to-model
transformations. Transformations are defined using a
graph grammar-based approach (Mens, 2006) (in
particular the EMT plug-in for the Eclipse
environment). The fact that models are usually
represented as graphs makes graph grammars more
suited than other approaches.

In order to populate the traceability model at the
same time the transformation is being executed, the
rules must be extended by generating a new
TraceLink element each time a rule is executed.
Each TraceLink collects the necessary information
(name, description) for the Link type instances of the
traceability meta-model as well as the matches
between source and target.

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

226

Figure 4: Traceability report created by TRT: from Home Automation requirements to DSL.

2.3 The Trace Report Tool (TRT)

Several authors give recommendations about the
issues that should be taken into account when
designing a tool for managing traceability (Melby,
2007), (Oldevik and Neple, 2006), such as (1) to be
able to manage models at different abstraction
levels, (2) to consider the same meta-model for all
the abstraction levels, (3) to store the traces in a
persistent medium, (4) to be able to identify when a
trace was created and the location of the referenced
element(s), (5) to be able to integrate the tool with
external applications, and (6) to be able to generate
the traces both manually and automatically. With
these issues in mind we have developed the Trace
Report Tool (TRT) which allows developers to
generate detailed reports from the trace models.
Trace inspection can be used to retrieve all
generated artefacts, the transformation responsible
for creating them, analyse how a requirement has
been taken into account in the process of automatic
code generation as well as including information on
the solution adopted. For each one of the traces,
details of name and description are given, as well as
information related to the source and the target of
the traced elements.

Figure 4 shows the traceability report
corresponding to the “Traceability Model #2” (see
Figure 1). It is generated automatically as part of the
transformation process from the DSL to the
component-based model.

The traceability report can help the analyst to
check which requirement each element is associated
to and to verify if the inclusion of new elements or

the alteration in their associations can affect the
correct implementation of other requirements. For
instance, if an external light detector for the
automatic power on of lights is added it will be
necessary to: add new elements that might already
be present in the system to satisfy other
requirements and to modify the associations of, for
example, PIR (presence detection). This PIR can be
associated to other DSL elements to implement other
requirements. Therefore, when modifying their
associations you may be altering the models
corresponding to other requirements.

3 RELATED WORK

The work presented here, as has been seen, support
the traceability of software artefacts linked to HA
requirements within a MDE framework. In this
section the related work is analysed. This deals
totally or partially with the three concepts that
concern this paper: MDE, HA systems and
traceability.

The literature offers few examples of work
which tries to reach in an integrated way the
development of HA systems using an MDE
approach. Among these, it is important to highlight
the works of (Muñoz and Pelechano, 2006) and
(Voelter, 2007) that outline the necessity of using a
MDE approach in HA systems. The aim is to
increase the level of abstraction, the productivity and
the quality of the software, besides maintaining the
independence of the implementation platform. These
proposals represent a good example of the

Traceability Support for MDE Development of Home Automation Systems

227

advantages that the use of MDE offers in the
development of HA systems, but they also present
some drawbacks. In the first place, J. Muñoz uses
the UML notation for requirement capturing, which
is not very intuitive for experts in the field of HA. In
the work of M. Voelter it is necessary to build a new
meta-model for each application using the Tree
Editor tool provided by EMF the plug-in for Eclipse.
Secondly, in both proposals the code generation is
oriented to obtain OSGi (Open Service Gateway
Initiative) components for a server or middleware
platform (normally implemented in Java), and not to
the programming of the HA devices. Therefore, it
will always be necessary for an expert of the specific
platform to program these devices. Contrary to the
previous examples, in our environment the level of
abstraction and usability of the requirement
modelling rises with the use of a graphic DSL that
uses specific concepts of the HA domain. In
addition, our work guides the code generation to the
automatic programming of the devices of the HA
technology. In this way the need for specific
knowledge of each platform is avoided, as well as
the intervention of an expert in the technology.

On the other hand, there are various papers that
successfully approach traceability within the MDE
framework (Winkler and von Pilgrim, 2010).
(Melby, 2007) presents a traceability tool that is
capable of defining and handling semantically rich
traceability information in MDE, allowing
traceability classification schemes to be generically
defined, and which can be used to populate trace
repositories with traceability information. Similar
approaches are suggested in (Ramesh and Jarke,
2001), where a general purpose meta-model for
requirements traceability that covers the most basic
aspects of traceability is presented. These
contributions coincide with the proposal presented in
this paper, in which traceability models are obtained
from the transformations integrated in an MDE
environment. They also use a traceability tool that
generates reports that allows the exploration of the
elements of origin and destination of all the
transformations carried out.

Contributions that deal with traceability of
software devices for HA requirements within a MDE
framework in an integrated way are hard to find.
Markus Voelter (Voelter, 2007) proposes a generic
Aspect-Oriented and Model-Driven Software
Development (MDSD-AOSD) approach for product
line implementation. This approach supports
variability implementation, management and
traceability throughout the development lifecycle.
The paper presents a case study of the HA domain

which demonstrates the viability of the
methodology. In addition, techniques to incorporate
the traceability and the prospective benefits of their
application are presented. However, in terms of a
generic approach, these ideas are not totally
adaptable to all the requirements of HA applications.
They also fail to explicitly validate traceability in
concrete scenarios.

Our work differs from all the previous work in
the following ways: (1) we provide a requirement
meta-model that properly considers the HA
requirements in the development of these
applications; (2) we provide a model oriented
framework to (semi) automatically derive
implementations from HA requirements using a
DSL; and (3) we provide a tool (TRT) that generates
a traceability report from model transformations.
With these results, the developer is offered an
integrated environment which encourages the re-use
of the software devices generated in the construction
process of HA systems. In addition, by offering an
environment for traceability, the quality of the built
systems is increased, since it facilitates both
modification as well as the impact analysis of the
changes in the requirements.

4 CONCLUSIONS

The approach described in this paper focuses on
tracing HA requirements to design, and design to
implementation through different model
transformations. We have shown the usefulness and
value of combining a MDE approach with
traceability capabilities when designing HA systems.
This work represents a contribution that integrates in
one solution the use of MDE and traceability in the
development of HA systems.

The defined transformations represent the main
artefacts on which the traceability relationships have
been defined. By proceeding in this manner, the
incorporation of traceability elements has been
simplified notably between the source and target
models, allowing the representation of this
information in different traceability models that are
generated throughout the whole process. In addition,
a traceability report generated with the tool TRT is
automatically obtained. This tool provides an
interesting and flexible mechanism of inspection for
the automation of traceability in MDE allowing (1)
bringing together the whole information in a report,
(2) supporting decision making throughout the
whole process, and (3) checking the relationship
among the software devices involved. With this

ICSOFT 2012 - 7th International Conference on Software Paradigm Trends

228

approach, it has been relatively simple to incorporate
traceability throughout the whole development
process since the meta-model used has dealt
orthogonally and externally with the rest of the
resources used.

The benefits of using the traces for concrete
situations will represent a decrease in time and effort
needed in the process. Although the case study this
paper deals with is a simplified system, the results
can be extrapolated to larger systems provided that
certain improvements are carried out in the TRT. In
this case, the main problem would be the necessity
of managing a larger quantity of data. The possible
inconveniences of this increase in data could be
solved by adding to the tool advanced filtering
features.

As further work, we plan to complete the model
transformations for several HA platforms and to
provide developers a user friendly framework which
integrates all the involved tools in a single
development system. In addition, work is currently
underway to improve the TRT: to facilitate advanced
filtering features, to extend the traceability
framework with statistical information of elements
generated in each level, to allow orphan analysis to
find elements that are not the target of any trace link
of a specific type (a typical use of this is to find
elements that are not required by the system, e.g. a
feature that was not described in the requirements)
and, lastly, to allow the integration of the tool in
environments other than Eclipse.

ACKNOWLEDGEMENTS

This work has been partially supported by the
Spanish CICYT Project EXPLORE (ref. TIN2009-
08572) and the Region of Murcia's Government
Project MISSION-SICUVA (ref. 15374/PI/10).

REFERENCES

Alonso, D.; Vicente-Chicote, C. & Barais, O. "V3Studio:
A Component-Based Architecture Modeling
Language" 15th Annual IEEE International
Conference and Workshop on Engineering of
Computer Based Systems, IEEE, 2008, pp. 346-355,
doi:10.1109/ECBS.2008.9

Behrens, T. 2007. Never Without a trace: Practical advice
on implementing traceability, Available at: http://
www.ibm.com/developerworks/rational/library/feb07/
behrens.

Eclipse Consortium, Java Emitter Templates (JET).
http://www.eclipse.org/modeling/m2g/?project=jet .

Iborra, A., Alonso, D., Ortiz, F.; Franco, J.; Sánchez, P. &
Álvarez, B. 2009. "Design of service robots" IEEE
Robotics & Automation Magazine, Special Issue on
Software Engineering for Robotics, , vol. 16, pp. 24-
33, doi:10.1109/MRA.2008.931635

Jimenez, M., Rosique, F., Sánchez, P., Álvarez, and B.,
Iborra, A. 2009. Habitation: A Domain-Specific
Language for Home Automation, IEEE Software, vol.
26(4), pp. 33-38.

Kolovos, D., Paige, R. And Polack, F.2006. On-demand
merging of traceability links with models, in:
Proceedings of the 2nd EC-MDA Workshop on
Traceability.

Lago, P., Muccini, H., van Vliet, H. 2009. A scoped
approach to traceability management. System and
Software. vol 82 (1), pp. 168-182.

Mellor, S., Scott, K., Uhl, A., Weise, D. 2004. MDA
Distilled. Object Technology. 1st ed., Addison-Wesley,
Boston.

Melby, S. 2007. Traceability in Model Driven
Engineering. Master Thesis. University Of Oslo,
Norway, Available at: http://urn.nb.no/URN:NBN:no-
18721.

Mens, T. and Van Gorp, P, 2006. A taxonomy of model
transformation, Electronic Notes in Theoretical
Computer Science. vol. 152 pp. 125–142.

Muñoz, J. and Pelechano, V. 2006. Implementing a
Pervasive Meetings Room: A Model Driven
Approach, in: Proceeding of the 3rd International
Workshop on Ubiquitous Computing, pp.13-20.

Oldevik, J. and Neple, T.2006. Traceability in Model to
Text Transformations, in: 2nd European Conference
on Model-Driven Architecture Foundations an
Applications (ECMDA’06).

Ramesh, B.and Jarke, M. 2001. Toward Reference Models
for Requirements Traceability. IEEE Transactions on
software engineering,vol. 27, nº 1, pp: 58 - 93.

Selic, B., 2003. The Pragmatics of Model-Driven
Development, IEEE Software, vol. 20, pp. 46–51.

Voelter, M. 2007. Product line implementation using
aspect-oriented and model-driven software
development, in: Proceedings of the 11th
International Software Product Line, pp.233-242.

Winkler, S and von Pilgrim, J. 2010. "A survey of
traceability in requirements engineering and model-
driven development," Software and Systems Modeling,
vol. 9, no. 4, pp. 529-569.

Traceability Support for MDE Development of Home Automation Systems

229

