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Abstract: The best way to obtain relevant information about the behaviour of animals is direct observation (of 

individuals). However, traditional close-up observations can interfere on the behaviour, and taking 

biometric measurements requires the capture of individuals, which also causes stress. This paper describes 

an automatic motoring system for birds breeding in nest boxes. The main goal is to significantly increase the 

amount and quality of data acquired on bird behaviour without stressing the individuals or interfering. This 

system is based in an interconnected embedded sensor network, which permits sharing this valuable 

information with researchers all over the world through the internet. Each device of the network is a smart 

nest-box that allows a cross-validation of sensor information and data quality. This system has been 

evaluated for the specific case of a lesser kestrel breeding colony in Southern Spain. The lesser kestrel is an 

insectivorous migratory falcon that readily accepts nest-boxes. The system has been named HORUS and the 

results obtained from a year experiment demonstrate the efficiency of this approach. 

1 INTRODUCTION 

For zoologists, one of the most important periods for 

a bird is the breeding period, being this period one of 

the most frequently studied. Mate acquisition, nest 

defence, mate feeding, incubation, and chick rearing 

(including provisioning flights) are studied in the 

surroundings of the nest. Many of these aspects help 

us understand key topics in ecology, such as what 

factors influencing lifetime reproductive success 

(LRS: Newton, 1992), the parent-offspring conflict 

(Trivers, 1974; Schlomer et al., 2010), or evolutive 

stable strategies (ESS: Maynard-Smith and Price, 

1973) regarding sex roles in reproduction (Kokko 

and Wong, 2007).  

Classic monitoring methods that require the 

capturing of individuals or close-up observations 

limit the amount and quality of data that can be 

obtained. Therefore, in this paper a remote 

monitoring system based on smart nest-boxes is 

proposed. These smart nest-boxes allow acquiring 

high amount of data without stressing the animals, 

gathering long-term and highly reliable information 

on the species.  

The   proposed   system,  called HORUS, permits 

gathering basic information on the identity of 

individuals, studying its behaviour and the temporal 

changes in individual body mass. All this 

information can be made accessible through the 

internet to scientist all over the world. 

Some of the information recorded by the system 

can be used to study, without interference, the 

behaviour of species during the breeding period. 

One of the most important biometric parameters in 

birds is body mass. It allows us to measure the 

impact of parental care on breeding individuals. 

Manually, it is impossible to develop a continuous 

monitoring of this parameter. Capturing causes too 

much stress on the individual in its most sensitive 

period. Another important parameter is the 

measurement of the amount of food brought to the 

nest by individuals to feed their offspring. 

The proposed system allows us to perform a 

continuous monitoring of the reproduction without 

stressing the individuals, e.g. obtaining reliable body 

mass measurements every time a bird enters or 

leaves the nest. The main problem obtaining the 

measurements is the movement of the animal, which 

produces unstable values. These values have been 

calibrated   using   a   neuronal  network  processing, 
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Figure 1: Picture automatically taken by the outside 

camera of the monitored colony with the HORUS external 

sensors. From top to down it shows a pigeon, a lesser 

kestrel male and a female. 

obtaining high accurate measurements. 

The rest of the paper is organized as follows: 

Section 2 focuses on the lesser kestrel behaviour 

study, especially comparing a traditional approach 

versus automated data reading. Section 3 briefly 

describes the HORUS system infrastructure. A 

detailed description of the information treatment 

developed in this project can be found in section 4. 

The results obtained with our system are shown in 

section 5. Finally, section 6 sum-up conclusions and 

provides remarks. 

2 LESSER KESTREL BREEDING 

BEHAVIOR STUDY 

The lesser kestrel (Falco naumanni, figure 1) is a 

small (body mass around 150 grams) migratory 

falcon inhabiting open landscapes (Cramp and 

Simmons, 1980). It is a colonial species that breeds 

in old buildings, such as churches or castles within 

urban areas in Western Europe. The species 

experienced a marked decline in its Western 

Palearctic breeding range in the middle of the 20th 

century (Cramp and Simmons, 1980; Biber, 1990). 

Considered previously one of the most abundant 

raptors in Europe (Bijleveld, 1974) the lesser kestrel 

became extinct in several countries (e.g. Austria, 

Hungary, Poland) and practically disappeared in 

others (e.g. France, Portugal, Bulgaria). 

Mediterranean Spain constitutes its stronghold in 

the Western Palearctic (Biber, 1990). However, the 

Spanish population also suffered a precipitous 

decline, as it dropped from an estimated 20,000–

50,000 pairs in the 1970s (Garzón, 1977) to 4,000–

5,000 breeding pairs in 1988 (González and Merino, 

1990). This decline has been attributed to the 

reduction in both the extent and quality of foraging 

habitats (Peet and Gallo-Orsi, 2000). The species is 

also sensitive to climate warming (Rodriguez and 

Bustamante, 2003). So it makes for a good model 

species to study the impact of global change on an 

endangered species. 

2.1 Traditional Monitoring 

The “Estación Biológica de Doñana” (EDB-CSIC) 

has been monitoring lesser kestrel colonies since 

1988. It has been recording colony occupancy and 

breeding success in terms of number of fledglings 

and proportion of successful nests. Regarding 

individual monitoring, birds have been marked with 

metal and PVC rings with a unique alphanumeric 

code that allows identifying individuals by using 

telescopes. Biometric measures were taken 

sporadically for all marked individuals when 

captured. Due to ethical reasons, however, the 

number of captures in the nest is limited (the capture 

alters breeding behaviour and may jeopardize the 

survival of the offspring) and the majority of 

resightings were made with telescopes. This causes 

high differences in the frequency of recaptures 

among individuals mainly due to differences in 

detectability. In a classic data base monitoring, 

2,135 birds figured as recaptured (including 

resightings with telescope). On average they were 

captured 3 times on the same breeding season 

(range: 1-70). In approximately 45% of cases, body 

mass was measured and maximum number of 

measurements per bird and year was 4.  

Because of that, the pattern of body mass 

variation of breeding adults from arrival to the 

colony in mid-February to the end of the nestling 

period in mid-July is not well known. Accordingly, 

we have no information on the pattern of intraday 

variation in body mass. 

The proposed remote monitoring system aims to 

bridge the above detailed logistic and ethic gaps, 

thus allowing us to get enough information to 

document both patterns. 

2.2 Automated Data Reading 

Habitat monitoring has evolved greatly evolution 

due to the boom of sensor networks technology. 

Several consequences have been caused due to 

the increase of sensors: Firstly the quality of 

information grows in time and on the spatial 

domain; secondly the possibility of transmitting the 

measured data through the network increases the 

need of having high bandwidth communications; 

and thirdly, it to the reduction of the cost of the data  

DCNET 2012 - International Conference on Data Communication Networking

24



 

Figure 2: HORUS Network scheme. 

storage makes possible to save huge amounts of 

data. 

All these consequences imply some negative 

effects: an increase of data traffic and increase of 

power consumption. 

Some authors have taken these effects into 

account (Cook, 2007; Sridhar, 2007) and have 

expressed the need to employ processing techniques 

in order to reduce these handicaps. 

There are different approaches to habitat 

monitoring. Some of them use wireless sensor 

network technology in order to acquire and process 

the physical information (García-Sánchez et al, 

2010; Handcock et al, 2010; Valente et al, 2011; 

Carullo et al, 2009). Others focus on the needed 

middleware that allows access to the physical 

information (Hwang et al., 2010; Farshchi et al., 

2007). 

In our approach, both aspects are considered. 

3 HORUS INFRAESTRUCTURE 

The proposed infrastructure is a distributed system 

as figure 2 depicts. This figure shows the most 

important devices of the proposed architecture.  

These devices will now bebriefly described. 

3.1 Network Infrastructure 

The HORUS infrastructure is made up of different 

subsystems interconnected through a low data rate 

communication network. 

This network has been designed considering the 

following restrictions: 

 The devices that provided information to the 

network are deployed in a spread way without 

any previous planning. 

 The data rate associated with the data sources is 

low (< 250 kbps) 

 The system could be easily scalable. 

The network used in HORUS can be accessible 

through different physical media (wireless or wired 

based).  
Robustness of the network is very important, for 

the proposed application: during the breeding period, 
it is not possible to realize maintenance tasks, 
because it can disturb and stress the colony. All 
detected failures would be repaired in winter, after 
the birds have left the colony. 

3.2 Base Station 

The process server is a system that offers the 

following services: 

 Database server. 

 Monitoring and control system. 

 Remote control access. 

The database stores all the historic sensors 

information gathered from the system. 

The monitoring control system is a program 

responsible for adding additional valuable 

information to the sensor measurements, such as 

information about the nest sender, a time stamp 

register    or    a    control    sequence,    that  permits 
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Figure 3: Nest cabinet. 

determining the number of loss packets. This system 

stores the information in the database. 

Remote access control offers the cloud services 

for remote users, such as biologists. These services 

permit remote access to the sensors database. 

3.3 Smart Nest-Boxes 

The smart nest-boxes are the main components of 

the monitoring systems. It consists of the next two 

blocks: 

 The nest cabinet. 

 The electronic system 

The nest cabinet (Figure 3) is divided into two 

parts: a corridor and the incubation chamber. This 

nest cabinet has a smart design to ensure that the 

birds pass the corridor each time they enter or leave 

the nest. The advantage of this is to allow the 

distribution the sensors in a small area (the corridor) 

where the animal is forced to pass and, therefore, it 

ensures obtaining the sensor information. 

The electronic system (Figure 4) of each smart 

nest-box is accomplished with the next subsystems: 

3.3.1 Microcontroller Board 

This board is based on the ATmega2560, an 

economic, low power and robust microcontroller. It 

controls and processes the nest’s sensor information. 

This board communicates with sensors and other 

components, and processes the collected information 

that is sent to the process server over the 

communication interface. 

The program implemented in the microcontroller 

performs the following tasks: 

 Communicates with the process server over a 

communication interface, and synchronize 

clock time with this.   

 

Figure 4: Architecture of the electronic system. 

 Checks infra-red barriers. Each nest-box has 

two infra-red barriers at both extremes of the 

corridor. The sequence in which they are 

activated indicates whether birds enter or 

leave the nest-box. 

 Checks if the RFID reader has read a code from 

ringed kestrels. 

 Obtains the body mass measurement from a 

digital balance. 

 Reads the temperature and humidity of the nest. 

 Controls the RFID reader to identify 

individuals. 

3.3.2 Sensors Board 

A sensor board adapts the logic levels from the nest 

sensors to the microcontroller board’s requirements. 

All the nest’s sensors are spread onto the 

corridor of the nest. Positions of sensors are 

designed to ensure that every time the birds pass the 

corridor the system registers at least one record per 

sensor. 

The deployed sensors are: 

 A digital balance. It allows a maximum weight 

of 600 gr. and an accuracy of 0.01 gr, offering 

16 measures per second. It permits getting an 

estimate of the body mass of the individuals in 

movement. Although the pan is round, it has 

been modified to be rectangular in order to fit 

the shape of the corridor. 
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Figure 5: Different weight pattern Y-axis, weight in grams. X-axis, samples. 

 An integrated temperature sensor located in the 

window. It is calibrated to operate in 

environmental temperature range. It is used to 

measure the nest temperature. 

 An integrated humidity sensor. It is used to 

measure the nest humidity. 

 Two infra-red barriers, used to trace the 

direction of birds’ movements. 

 A RFID reader. It communicates via RS-232C 

and offers a reading on the unique ID of a 

tagged bird, when it is passing through the nest 

entrance. This system has mechanisms to avoid 

collisions, permitting operation even when 

there are several birds around the entrance. 

 A Servomechanism. It is used to remotely 

capture birds when they enter in the nest-box. 

4 TREATMENT OF THE 

INFORMATION 

As described before, every nest-box provides the 

following information: 

 Measurements of body mass: The digital 

balance used offers 16 measurements per 

seconds without calibration and classifies 

measurements as stable or unstable. 

 IR information: These sensors permit 

determining if the birds go into or go out of the 

nest. 

 RFID information: It permits attributing the 

information of other sensors to an individual 

bird. 

All this information is obtained from the sensors 

deployed in every nest-box. The sensors offer 

relevant information on the individual breeding at 

the colony to the biologists that study them. This 

information, except the body mass, cannot be added, 

as they inform about discrete events.  Therefore, this 

information is sent directly to the database without 

any local processing or treatment. 

On the other hand, the digital balance offers a 

high amount of information. Its frequency of 

measurement is much higher than the body mass 

evolution of the animal. i.e., the animal body mass 

evolution has more inertia than the weight provided 

by the balance. Due to this, it is possible to perform 

a data pre-processing about weight information, 

reducing with that the amount of information send to 

the central processing. 

4.1 Weight Pre-processing  

The algorithm described in this paper, is focused on 

locally pre-processing the weight information, to 

reduce the amount of unnecessary information and 

increase its accuracy. It is designed to be executed in 

each nest-box, in the microcontroller board. It has 

been designed to fulfil the next goals: 

 To reduce the amount of useless information in 

the database using local pre-processing. 

 To increase the accuracy of the measurements, 

calibrating the results obtained. 

 To increase accuracy of the communication 

network, reducing the amount of packet loss, 

the delays and the collisions. 

 To increase the amount of useful information in 

the database, estimating a body mass from 

each pattern with non-stable measurements. 

 To permit its execution on devices with low 

resources. 

To increase the accuracy a tare calibration is 

necessary. The balance used offers measurements 

without a tare calibration. This calibration would be 

obtained consulting the body mass measured by the 

balance, when there is no animal on the pan i.e., 

when the measured weight is below a certain 
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threshold. This threshold can be obtained as a 

function of the body mass of the animals to monitor. 

In our deployment for the Lesser Kestrel (with a 

body mass range of 100-190 g) a threshold of 100 

grams of has been used. 

In the real deployment we have proven that the 

tare does not change significantly during a year. 

Therefore, measuring the tare only once per day 

offers enough accuracy for the proposed system. 

On the other hand, as described before, the 

balance offers 16 weight measurements tagging 

them every second by itself as stable (i.e., 

measurements that remain a same value during a 

long period of time) or unstable. But birds usually 

do not pass over the balance slow enough to obtain 

stable measurements. This causes the database to 

have a high amount of the information as unstable 

measures. In the real prototype only about 15.25% 

of the measured patterns had a stable measurement, 

considering a pattern as the collection of 

measurements obtained from the time the bird gets 

on the balance (i.e., when the balance acquires a 

weight over the threshold) until the animal gets out 

of balance (i.e., when the balance acquires during 5 

seconds weights below the threshold). Fig. 5 shows 

different examples of weight patterns obtained in the 

real deployment with these conditions. 

This figure shows different real weight patterns 

obtained from the same animal in different days. 

Only pattern (a) has some stable measurement. 

These stable measurements have been compared 

with measurements of the animal done manually 

capturing the bird. The stable tare measurements are 

correct, but not frequent enough to obtain a long 

term sequence of body mass temporal change of the 

birds at the colony. 

To solve this, a computational intelligence 

algorithm to estimate the body mass of animals from 

the patterns with non-stable weights has been 

developed, increasing the amount of useful 

information. This neuronal network algorithm is 

described below. 

Initially, the system has been designed to store, 

in the central server, all weight measurements of the 

pattern acquired by the balance, stable or unstable, 

but it causes high bandwidth consumption in the 

communications interface. 

To reduce the amount of useless information, the 

proposed algorithm only sends one estimated weight 

to the database for each measured patterns. If the 

pattern has some stable measurements, the estimated 

weight sent to the central server will be the average 

of the obtained stable measurements. If no 

measurements of the pattern are stable, the weight is 

estimated through a computational intelligence 

algorithm. In both cases, only one selected weight 

per pattern is sent to the database. These selected 

weights are calibrated with the tare, before sending 

them. 

The proposed algorithm is summed-up in the 

next pseudo-code: 

while 1: 

wait new(meas_weight); 

if meas_weight>=threshold 

weight[i]:=meas_weight–tare; 

increase I; 

if stable(meas_weight)==1 

stable :=1; 

end if 

else 

if i!=0 

if stable==1    

est_weight:=average( 

stable_weight); 

stable:=0; 

else 

est_weight:=model(weigth); 

end if 

send_server(est_weight); 

i:=0; 

else 

new_tare:=meas_weight; 

tare:=Iter_RMS(prev_tares,  

new_tare); 

end if 

end if 

end while 

4.1.1 Applying Machine Learning for 
Weight Recognition 

For this application, an algorithm has been 

evaluated. Initially, an algorithm without machine 

learning based on the differences between 

consecutives measurements has been considered. 

This algorithm considers a weight stable if there are 

more than a certain number of measurements of the 

same weight. This is similar to the internal algorithm 

of the balance for tagging measurements as stable or 

unstable, but it is less restrictive: the balance 

requires a high number of measurements with the 

same value to consider a measurement stable. It 

permits the retrieval of some weights from the 

unstable patterns, but it fails with complex patterns. 

Our proposal of using computational intelligence 

(machine learning) increases the percentage of 

success. 

Machine learning is widely used in pattern 

recognition, but its use in animal monitoring is less 

widespread. Other supervised learning techniques 

apart of the neuronal network have been considered. 
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Non supervised techniques, such as Self-Organized 

maps (SOM, Kohonen, 1990) or Support Vector 

Machine (SVM, Cortes 1995) were discarded, 

because we have some stable measurements that 

permit performing training. 

One example of the considered supervised 

machine learning techniques is the use of Artificial 

Neuro-Fuzzy Inference Systems (ANFIS; Jang, 

1993). ANFIS has many applications in the 

evaluation of complex systems, but it requires a 

previous knowledge of the system to design the rules 

and the initial system. This system was discarded; 

due to the complex forms of the patterns that do not 

easily permit acquire this initial system. 

Expert systems or case based experts system 

were not considered, due to the amount of previous 

information gathered from the smart nest-box was 

not sufficient for these kinds of systems. 

For these reasons, a neuronal network model was 

finally chosen. The variables used as inputs of the 

model are as follows: 

 Max_1: The most repeated weight in a pattern 

(the largest if multiple). 

 N_1: Number of repetitions of the previous 

variable in a pattern. 

 Max_2: The second most repeated weight in a 

pattern (the largest if multiple). 

 N_2: Number of repetitions, in a pattern, of the 

previous variable. 

 Max_C1: The most consecutively repeated 

weight in a pattern. 

 NC_1: Number of repetitions of the previous 

variable in a pattern, 

 Max_C2: The second most repeated weight, 

consecutively, in a pattern. 

 NC_2: Number of repetitions, in a pattern, of 

the previous variable. 

 N_EL: Total number of weight measures in a 

pattern. 

In order to obtain these parameters, a pattern 

with  at  least  5  weight measurements is needed. As 

Table 1: Analysis of the database. 

Caption Value 

Measurement weight 2583565 

Number of pattern 51517 

Patterns with stable weights 7856 

Average pattern time 23,18 seconds 

Days of test 399 days 

an value output, the neuronal network model offers a 

value, called “Output weight”. This output reflects 

the estimated weight of the neuron model and it is 

the   information   sent   through   the  network to the 

server database. 

The steps execution of this neuronal network 

model is summed-up in the next pseudo-code, where 

the neuronal network is the execution of a three 

layer network. 

Neuronal network needs a set of parameters for 

its training. These sets have been obtained for each 

pattern with stable measures, by executing the 

following steps: 

Step 1: A variable name “Target weight” was 

defined for every pattern. This variable stores the 

average value of all stable weights. This is the target 

result of the training of the neuronal network. 

Step 2: For every pattern, a new pattern has been 

created, eliminating all stable measurements. 

Step 3: The inputs have been obtained from this 

new pattern without stable values. 

Step 4: The input values for each pattern were 

stored, together with their respective Target weight 

into a table, named “Training information” 

With these tables two sets of information were 

obtained, one for training and the other for 

evaluating the accuracy of the system. In total, the 

training information table has 1163 sets of values. 

50% of these values (randomly selected) were used 

for training, and the other 50 % were used for 

validation.  

5 SIMULATION, TESTS AND 

RESULTS 

The results obtained with this system can be 

classified in two types: analysis of the network 

performance and weight estimation accuracy 

obtained with the real deployment.  

This section summarizes these two types of 

results. 

5.1 Network Performance 

During the first year of the deployment (2010), the 

prototype was sending information from all sensors, 

even the 16 records per second of the balance, to the 

database of the central server. The main 

characteristic of the gathered information in the 

database is summarized in table 1. 

After a year of deployment, the analysis of data 

allowed us to detect some network conflicts. For 

example, if different nest-boxes are acquiring 

weights from individuals at the same time, they are 

competing for control of the bus, causing data 

collisions and delays in transmitting information.  

Computational Intelligence Applied to Monitor Bird Behaviour

29



 

Table 2: Cost per message with CC2420 Radio 

transceiver. 

Caption Energy (J) 

Without data fusion 255.3 

With data fusion 0.608 

The proposed system allows avoiding these 

conflicts, using the proposed data fusion. 

In this section we are going to quantify the 

advantage of data fusion against the classical 

centralized systems. Due to that, in this kind of 

applications it is important to reduce the use of 

bandwidth as much as possible. 

The analysis of database information has been 

summed-up in the table 1. It shows that only a 

15.25% of the acquired patterns have any stable 

measurement. 

Knowing that the balance offers 16 Samples Per 

Second (SPS), the average payload of the 

application layer per pattern of the system without 

data fusion can be obtained with the equation 1. 

, 16 · · ·T raw SPS T Bytes msgN P N N  (1) 

Where ,T rawN  is the number of bytes to send 

per day at application layer; TP  is the length of the 

pattern in seconds; BytesN  is the number of bytes to 

send. 16 bytes in this case and msgN  is the number 

of messages per day.  

On the other hand, with the proposed algorithm, 

only one message per pattern is sent. In this case, the 

payload per pattern can be obtained according to 

equation 2. 

, ·T raw Bytes msgN N N  (2) 

This shows that the amount of information sent 

to the database varies in function of the number of 

patterns and the length (in time) of the pattern. 

Figure 6 depicts these results. 

Concluding, the local processing permits one to 

drastically reduce the used throughput of the 

network, especially in days with a high number of 

patterns.  

This data fusion and aggregation scheme is 

especially important for its use in low bandwidth 

systems, due to it permitting one to save energy. 

With the proposed system, only one message per 

pattern is sent, instead of 16 measurements per 

second during the capture of the pattern.  These 

results are summed-up in table 2. They consider the 

average pattern length of 23.18 seconds, i.e. the 

average time while the bird is on the balance. 

With these conditions and with the CC2420 

radio transceiver, widely used in wireless sensor 

network, permit saving 99.76 % of the energy used 

in data transmissions, considering a power 

consumption of 38mW in transmission mode 

(Polastre et al, 2005. 

Using all weight patterns obtained in the year 

2010, the proposed body mass estimation algorithm 

permits the retrieval of around 56.21% of the 

patterns without stable measurements. 

This is a good result that permits us to obtain an 

average of 4 body mass estimations per day and 

nest, which is 4 times higher than using only 

patterns with stable measurements. It permits to 

have a continuous tracing of body mass in 

individuals. 

As a conclusion, the local processing permits us 

to drastically reduce the used throughput of the 

network, especially in the days with a high number 

of patterns.   

5.2 Body Mass Estimation Accuracy 

Based on the training and verification set described 

in section 4.1.1, some analysis has been done to the 

proposed algorithm for body mass estimation. 

With   the   evaluation  set, the  system  offers  an 

accuracy   of   98.7%, i.e.,  an  error in the order of 2 

  
(a) (b) 

Figure 6: Bytes per day send, at application layer, to the central server. (a) Without data fusion. B) With data fusion. 
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Figure 7: Neural network model: importance of the 

variables in the calculation of the estimated weights. 

 

Figure 8: Grain elevator used for the prototype 

installation. 

grams, which is quite small considering the typical 

body mass of these animals (150 grams).  

This accuracy permits analysis of a long series 

for the evaluation of temporal changes in body mass, 

and sometimes to determine the body mass of prey, 

when birds bring medium-sized animals to the nest 

to feed the nestlings. 

From the training procedure, an analysis of the 

importance of the input parameters in relationship 

with the target body mass can be obtained. Figure 7 

shows these results. This analysis concludes that the 

selected parameters are valid to effectively estimate 

the body mass of animals. 

5.3 Real Deployment 

A prototype, for a real validation of the proposed 

system, has been deployed in the grain elevator of 

“La Palma del Condado (Huelva Province, SW 

Spain” (figure 8). At this site, researchers of the 

Estación Biológica de Doñana have been studying 

the lesser kestrel colony since 1994. At this colony, 

kestrels nested on the windowsills of the grain 

elevator  that  are sheltered and sufficiently enclosed 

to make a suitable nesting site. 

For the prototype installation we select the 

windows on the 6th floor of the building where 

smart nest-boxes were installed, and readily 

accepted, by kestrels during preliminary checking (3 

and 4 nest-boxes during 2008 and 2009, 

respectively) and also when the definitive prototype 

installation was made in 2010. 

Nest-boxes are placed in all the windows along 

the sixth floor. They are named “6XY”, where X 

refers to the cardinal point and Y is an ordinal 

number. Each box has two separate entrances and 

two incubation chambers (I. left and D: right) in a 

symmetrical distribution. Entrances are placed at the 

extremes of the box to avoid potential aggressions 

between neighbours, thus maximizing the number of 

potential breeding pairs. Nonetheless, the right part 

has not been opened yet. 

The results provided by the system are still being 

analysed by biologists. However, in its current state, 

it is possible to obtain some conclusions: 

 18 of the 20 installed nests-boxes were used by 

breeding kestrels. This leads to the conclusion 

that the proposed system effectively allows one 

to gather a high amount of information about 

the behaviour of breeding individuals without 

stressing them. If the nest and its sensors were 

hostile, it would not have been chosen by lesser 

kestrels breeding pairs. 

 A preliminary result of the continuous 

weighting of individuals will allow the 

researchers to estimate the cost of breeding in 

terms of body mass. This cost is directly 

associated with the foraging trips to feed the 

nestlings. 

 The lesser kestrel mainly feeds on insects, but 

sometimes can catch slightly bigger prey, such 

as small rodents, birds or lizards (with around a 

dozen of grams).  The proposed system would 

permit an analysis of the frequency of big prey 

captures. 

6 CONCLUSIONS 

The main goal of the proposed system is to use 

current technological advances in a real-world 

application in the area of Biodiversity Conservation 

to study how global climate change could affect a 

colonial and endangered bird species. 

The  results  obtained conclude that the proposed 

system would   permit   its use in a system with low 

resources and with a low bandwidth usage. 
The  prototype  deployed  in Spain for evaluation 
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with the lesser Kestrel, has been demonstrated to be 
a good method for studying these animals. The 
proposed system permits us to do this evaluation 
without stressing the animals and without the need 
of a human observer. As a consequence, this 
monitoring does not change the animal behaviour, 
offering reliable information to researchers all over 
the world that can access the information in real time 
through the Internet. 

The authors are currently working on several 
improvements of the project: Increasing the number 
of sensors, such as adding optical barriers over the 
balance, with the goal of increasing robustness of the 
body mass measurements; Studying the way to 
increase the amount of pre-processing, using the rest 
of the sensors, and looking for a simplification in the 
use of the system information for the final user. 
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