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Abstract: The solution of the Integrated System Optimization and Parameter Estimation (ISOPE) problem necessitates 
the calculus of real process output derivatives with respect to the inputs. This information is needed in order 
to satisfy first and second order optimality conditions. Several methods exist and have been developed for 
calculating these derivatives. In this paper a review of most of the existing  methods is presented, in which 
the Finite Difference Approximation, Dual Control Optimization, Broydon’s method, Dynamic Model 
Identification, with both linear and nonlinear models, together with a neural networks scheme are presented 
and applied, under simulation, to a cascade Continuous Stirred Tank Reactor (CSTR) system. The results 
are then discussed and compared to identify the advantages and disadvantages of using each method. 

1 INTRODUCTION 

The requirement for processes to operate at their 
optimum operating condition is becoming 
increasingly prevalent. One model-based algorithm 
that has been developed and which can achieve 
optimum process operation in spite of model-reality 
mismatch is the Integrated System Optimization and 
Parameter Estimation (ISOPE) algorithm (Roberts, 
1979). One requirement of the ISOPE algorithm, in 
order to satisfy the necessary optimality conditions, 
is the need for estimates of real process derivatives. 
These derivatives are estimated on-line at each 
iteration of the algorithm.  The finite difference 
method originally used by Roberts (1979) to 
estimate these derivatives has proven not to be 
efficient in the case of large, slow and noisy 
processes (Mansour and Ellis, 2003). Alternative 
methods have therefore been developed. The 
dynamic model identification technique, which is 
based on the identification of a dynamic model, was 
incorporated within the ISOPE algorithm by Zhang 
and Roberts (1990). Although this technique proved 
to be fast enough as it performs the identification 
during transient, it encountered some difficulties 
such as: the huge amount of data needed and the 
poor, inaccurate, model it produces at the beginning 
of the identification. After that, an algorithm with 
dual control effect was proposed (Brdys and 
Tatjewski, 1992). In this algorithm the current 

control signal is generated to satisfy the main control 
goal and at the same time provide sufficient 
information for future identification action. The 
main advantage of this algorithm is that it does not 
need excessive set-point changes to estimate the 
process derivatives. However, this method 
encountered the same type of problems as the 
previous ones. Broydon's approximation method 
based on the well-known Broydon’s family of 
formulas which are mainly oriented to the 
approximation of derivatives was also implemented 
(Fletcher, 1980). Lately, a nonlinear version of the 
dynamic model identification was applied and 
implemented (Mansour and Ellis, 2003). In this 
paper, a review of all these techniques together with 
a method based on artificial neural networks is 
presented. In addition, a comparison is made using 
simulations carried out on a cascade CSTR system 
to show the advantages and disadvantages of each 
method. 

2 THE OPTIMIZATION 
PROBLEM AND THE ISOPE 
ALGORITHM 

We The ISOPE algorithm (or modified two steps) 
was proposed by Roberts (Roberts, 1979) to solve 
the general optimization problem of finding the 
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optimum operating point of a system while it is 
moving from one operating point to another. It uses 
an adaptive steady-state model of the process, in 
which the parameters are updated periodically by 
comparing model outputs with those of the real 
process.  
 
The general form of the algorithm is given as 
follows (Mansour and Ellis, 2008): 
 

Apply the current input kv% to the real process and 
wait for the system to settle down to obtain steady-
state measurement *

ky% . Then use the existing 
mathematical model to determine the model 
parameters kα%  to minimize the comparison index 
given by: 
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and w%  is a weighting vector. 
Solve the modified model-based optimization 

problem given by: 
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In order to obtain the new candidate 1ku +% .  
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λ is called a modifier and is obtained following 
consideration that the necessary optimality 
conditions, of the system optimization problem, 
have to be satisfied (Roberts, 1979; Ellis et al., 1988; 
Roberts and Williams, 1981). 

However, the new control 1ku +%  is not directly 
applied to the system for stability reasons. Instead, 
the following relaxation scheme is used: 
 

1 1= + ( )k k k kv v K u v+ + −% % % %  (5) 
where K is a relaxation gain matrix and is a tuning 
parameter. 

These steps are repeated until convergence is 
reached. Convergence occurs when no further 
improvement is observed. In other words, when the 
new control is no longer a better candidate than the 
previous one and the objective function has reached 
its minimum within the possible bounds determined 
by the equality and inequality constraints 
However, and from  the  previous  cited  relations, it  
can  be  seen  that the requirement of the ISOPE 
algorithm to measure  real process  output 
derivatives with respect to the set-points *y v⎡ ⎤∂ ∂⎣ ⎦% %  to 

compute the modifier λ imposes a practical 
limitation to the  technique. These process 
derivatives are calculated online, usually by 
applying small perturbations on the set-points and 
measure the resulting changes on the outputs. This 
process is repeated at each iteration of the algorithm. 
Various techniques exist and have been developed 
and applied for the purpose of estimating these 
derivatives. The Finite differences technique was 
originally suggested with the modified two step 
method (Roberts, 1979). Dynamic Model 
Identification (DMI) using a linear model was then 
applied by Zhang and Roberts (1990). An algorithm 
for dual control effect was also suggested and 
implemented (Brdys and Tatjewski, 1992). Also, a 
method based on the well known Broydon Formula 
was proposed and tested (Fletcher, 1980). Lately, 
DMI with a nonlinear model was proposed and 
implemented on a two CSTR system (Mansour and 
Ellis, 2003). In this work, a method based on 
Artificial Neural Networks (ANN) to estimate the 
real process derivatives and predict future control 
actions is presented. In this method, a static neural 
network model of the real system is created, trained 
and adapted to the behavior of the system. This 
model, imitates the behavior of the real system 
within its limits. The aim is to use this steady-state 
model to estimate the real system output derivatives 
with respect to the set-points in order to compute the 
parameter λ. All the above techniques are 
implemented and tested under simulation on a two 
CSTR system. 

3 SIMULATIONS AND RESULTS 

In order to assess and compare the performances of 
the techniques mentioned above, a set of simulations 
were carried out on a two Continuous Stirred Tank 
Reactors (CSTR) connected in cascade (Garcia and 
Morari, 1981). An exothermic autocatalytic reaction 
takes place in the reactors with interaction taking 
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place in both directions due to a recycle of 50% of 
the product stream into the first reactor.  
The reaction is: 

2
k

k
A B B

+

−

+ ⇔  (6) 

The manipulated variables which are the set-points 
of the temperature controllers in both reactors are: 

21( , )Tv T T= . The product concentrations associated 
with the second tank are outputs: 2 2( , )Ty Ca Cb= . 
The objective function for all the simulations using 
this system was chosen to be linear of the measured 
variable   and reflects the desire of maximizing the 
amount of component B in tank 2. Thus the form of 
the objective function is as follow:  
  

2( , ) bH y v C= −  (7) 
 

The simulations were carried out using a 
MATLAB®/ Simulink platform. The starting point 
which is the initial steady-state condition  was  
chosen  to be: T1(0)=307 K and T2(0)=302 K  which  
yields  the  following   steady -state outputs: 
Ca2=0.0141[kmol/m3] and Cb2=0.0586[kmol/m3].  

In the simulations, the identification of the 
dynamic model within the DMI method (with linear 
or non-linear model) was carried out during 
transient, once found the updated model was used in 
the model-based optimization routine to produce the 
new process set-points. The identifier parameters 
were chosen as given in Table 1. 

Table 1: Tuning the identifier parameters. 

 Linear Model Non-linear 
Model 

Length of data 
window Nd = 120 Nd = 60 

Model  
orders 

na = 2, nb = 5, 
nc =1, d = 1 d = 1 

Identifier 
sampling time Ts = 60s Ts = 60s 

Relaxation gain K = 0.03I K = 0.1I 
 
For the neural network scheme, a feedforward back-
propagation neural network composed of eight input 
neurons, five hidden layers and two output neurons 
was used in the simulation. In a feedforward 
network, the first layer has weights coming from the 
input.  Each subsequent layer has a weight coming 
from the previous layer. The last layer is the network 
output. 

It has to be mentioned that the choice of the 
number of layers and their neurons depend totally on 
the experimenter. The main factor to be taken into 
account is the algorithm behaviour towards the 

different values tested.  In practice, the algorithm 
can be tested with different combinations of layers 
in simulations based on robust models of the system. 
The optimum (best) choice is then applied on the 
real system. 

The final converged results of the simulations for 
the various techniques are shown in Table 2 and 
figures 1 to 6.  

Table 2 gives the final objective function value 
and the number of set-point changes taken to 
converge to the optimum point, obtained using all 
the techniques presented in this paper. While the 
figures show the trajectories taken by the outputs 
and manipulated variables. 

We notice that all the methods converge to the 
correct process optimum point given by 1T =312 K  
and 2T =310.2K , with the optimum objective 
function value of -0.0725.  From Figures 1 to 6, it is 
seen how the changes in the set-points affect the 
measured outputs and how they derive their values 
from the initial steady-state  condition  given  by 
Ca2(0)=0.041361 [kmol/m3], Cb2(0)=0.058638 
[kmol/m3] to  the  final desired solution (Ca2=0.0275 
[kmol/m3], Cb2=0.0725 [kmol/m3]). 

Table 2: ISOPE algorithm with the different estimation 
techniques. 

 Objective 
function value 

Number of set-
point changes 

FDAM -0.0725 22 
Broydon’s 
method -0.0725 12 

Dual control 
method -0.0725 14 

DMI with linear 
model -0.0725 12 

DMI with non-
linear model -0.0725 10 

Neural network 
method -0.0725 7 

 
Figure 1: FDAM method. 
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Figure 2: Broydon’s method. 

 
Figure 3: Dual control method. 

Figure 4: DMI with a linear model. 

 
Figure 5: DMI with a nonlinear model. 

 
Figure 6: The Neural network method. 

4 DISCUSSION AND 
CONCLUSIONS 

Techniques for estimating real process derivatives to 
be used within the ISOPE algorithm have been 
reviewed, and applied on a cascade process 
consisting of two Continuous Stirred Tank Reactors.  
All methods, due to the satisfaction of optimality 
conditions, do achieve the real process optimum 
provided they can be implemented in a stable 
manner after a suitable choice of relaxation gains.  

In the case of high order, slow and noisy 
processes, the FDAM, is not, as is well documented, 
a good choice. Each time a process derivative is 
requested, a set-point perturbation needs to be 
applied and a measurement time needs to be given to 
allow the process to settle before the derivatives are 
measured. Additional difficulties are observed when 
noise is present on the output measurement. This set-
point perturbation, and the subsequent measurement 
time, is where the majority of time is spent in the 
algorithm so this is a major consideration in 
assessing the algorithm. As can be seen from the 
simulation results on the CSTR’s system (Table 2), 
the FDAM, approaches twice the number of set-
point changes of the various after methods and 
would seem not to be the perfect choice of 
algorithm. 

The dual control method takes 14 set-point 
changes (Table 2) to achieve the optimum in the 
CSTR’s simulation. This is still more than the after 
methods but the ability of the algorithm to estimate 
the derivatives without any excess in the set-point 
changes makes it a good choice. It has to be 
mentioned that the ISOPE using the dynamic model 
identification with a nonlinear model gives better 
results than that using a linear one. This is 
demonstrated by the number of set-point changes 
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taken to reach the optimum point which is fewer in 
the first method. In this paper and using the CSTR 
example, the most suitable method is the neural 
network scheme as only 07 set-point changes are 
needed in order to converge to the right optimum 
point. However, the huge amount of data needed for 
training the network is its major drawback.  
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