
THE glideinWMS APPROACH TO THE OWNERSHIP OF SYSTEM
IMAGES IN THE CLOUD WORLD

Igor Sfiligoi1, Anthony Tiradani2, Burt Holzman2 and Daniel C. Bradley3
1University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, U.S.A.

2Fermi National Accelerator Laboratory, Wilson and Kirk Roads, Batavia, IL 60510, U.S.A.
3University of Wisconsin–Madison, 1210 W. Dayton St., Madison, WI 53706, U.S.A.

Keywords: Image Ownership, Cloud, glideinWMS.

Abstract: Scientific communities that are accustomed to use Grid resources are now considering the use of Cloud
resources. However, moving from the Grid to the Cloud brings along the need for the creation and maintenance
of the system image used to configure the provisioned resources, and this presents both opportunities and
problems for the users. The impact is especially interesting in the context of glideinWMS due to its layered
architecture. This paper describes the various options available to the glideinWMS project team, their
advantages and disadvantages, and explains why one of them is to be preferred.

1 INTRODUCTION

Scientific communities that are accustomed to use
Grid resources are now considering the use of Cloud
resources (Mell and Grance, 2011). In this context,
Cloud is equated with the Infrastructure as a Service
(IaaS) paradigm.

One major difference of the Cloud model com-
pared to the Grid model is the users’ ownership of
the Operating System (OS) and related libraries, both
regarding installation and configuration. This paper
analyses the impact of this new capability in the
context of the glideinWMS project (Sfiligoi et al.,
2009).

Section 2 provides a rationale of why users like
the Cloud model, section 3 provides a description
of the glideinWMS system, while section 4 provides
the analysis of the various options available to the
glideinWMS project. Finally, section 5 provides an
overview of the expected future work, followed by a
conclusions section.

2 WHY CLOUDS

There are several reasons why Clouds are being
considered by ouruser communities, known also
as Virtual Organizations (VOs). In this paper,
however, we limit ourselves only to one specific
aspect of the Cloud ecosystem; the ability, and

requirement, of instantiating a complete compute
environment.

In the Grid model, users are allowed to start a
process of their choosing, but the system services
and libraries are provided by the resource provider.
This implies that the user can only use the available
resources, if he can adapt his code to work in the
provided environment. The Cloud model instead
calls for the provisioning of typically virtualized low
level hardware. The user thus provides a whole
system imageto be started, including both the system
services and libraries, and his actual computational
code. The perceived benefits are two-fold; on one
side, the user can perform system level operations,
which were impossible in the Grid model, and on the
other he gets access to a more homogeneous set of
resources.

The homogeneity claim needs some clarification.
In theory, the variety of hardware being deployed is
one of the main reasons why users need an OS as
an abstraction; requiring the users to provide the OS
thus seems backwards. However, often times it is
easier for a user to properly configure an existing
operating system on arbitrary hardware than modify
his scientific code to work on a drastically different
OS. Moreover, thanks to the virtualization layer,
most Cloud providers do provide only a very limited
number of variations of virtualized hardware.

443Sfiligoi I., Tiradani A., Holzman B. and Bradley D..
THE glideinWMS APPROACH TO THE OWNERSHIP OF SYSTEM IMAGES IN THE CLOUD WORLD.
DOI: 10.5220/0003961904430447
In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (CLOSER-2012), pages 443-447
ISBN: 978-989-8565-05-1
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



3 CURRENT USES OF glideinWMS

The glideinWMS project is currently being used to
manage job scheduling on world-wide Grid resources
by O(10) scientific communities. Some of the authors
have also been intimately involved for several years
in the operations of a significant fraction of the
glideinWMS-related deployed infrastructure; we thus
have a significant insight into the desires and needs of
the user communities we serve.

In this section, we first provide a summary
description of glideinWMS and then analyse how our
user communities use it.

3.1 The glideinWMS Architecture

The glideinWMS is a pilot-based Workload Man-
agement System (WMS), creating an overlay batch
system on top of provisioned Grid resources. One
important aspect of glideinWMS architecture is the
existence of three clearly separated layers, as depicted
in Figure 1:

• a Grid interfacing layer, called theGlidein
Factory;

• a resource provisioning logic layer, called theVO
Frontend; and

• theproper, overlay WMS, which is seen by the
users.

This clear separation allows for factoring out
of the operations to separate administrative groups,
allowing for both increased operational efficiency due
to specialization, and lower operational overhead at
large scale due to minimized interactions between
the various smaller groups. Moreover, a nice side
benefit of this architecture is that the Glidein Factory
is completely generic, and can serve multiple VO
Frontends, further reducing the operational costs
(Sfiligoi et al., 2011b). In a similar manner, a VO

Figure 1: The glideinWMS architecture.

Frontend can be served by multiple Glidein Factories,
thus eliminating the factory component as a single
point of failure. Similarly, a WMS can be provisioned
by multiple VO Frontends. See Figure 2 for an
overview.

Since the system is N-to-M in nature, it is
important thateach logical element has a very well
defined role in the provisioning process; this way,
instances can be added or replaced without significant
changes observed by the users of the WMS. In
glideinWMS:

• the WMS is responsible for maintaining the
proper security infrastructure for its central
service and its users, as well as handling the
prioritization policies;

• the VO Frontend is responsible for managing
the credentials used to provision the resources,
providing or validating the availability of tools
and libraries used by the served user community,
and defining the matchmaking policies; and

• the Glidein Factory is responsible for interfacing
with the resource providers, doing the system-
level validation of the provisioned resource,
providing binaries needed by the pilot, and
properly configuring them based on the type of
resource acquired.

3.2 glideinWMS in Practice

Currently, the user communities are split in two
distinct categories; those who decided to operate all
the pieces of the glideinWMS system themselves,
and those who decided to offload the operations of
Glidein Factories to external groups. To the first
approximation, nobody split the operations of a WMS
from the operations of a VO Frontend, although we
are aware of a user community where there is only
partial overlap between the two groups.

The communities operating the full set of services
tend to be experienced Grid users, who started

Figure 2: The N-to-M cardinality of the glideinWMS
components.

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

444



with direct Grid submission and are unwilling to
completely break the ties. While important players,
they are a shrinking minority, so they will not be
further considered in this paper.

The remaining communities are served by only
a couple Glidein Factories, each of which covers
most of the available worldwide Grid resources used
by these communities. The funds for operations of
these Grid Factories is provided by large-scale Grid
infrastructures, the most prominent being the Open
Science Grid (OSG) (Sfiligoi et al., 2011a). Please
notice that several of the authors are involved with
operations of either a VO Frontend+WMS instance or
a Glidein Factory instance.

In our experience, theoperational tasks of
the Glidein Factory and the VO Frontend+WMS
operators are clearly distinct:

• the Glidein Factory operators are responsible
for monitoring and reacting to the changes in
the Grid resource configurations, discovering and
troubleshooting misbehaving resources, and for
keeping up to date with updates in the pilot
software; while

• the VO Frontend+WMS operators are responsible
for keeping up to date with the needs of the users,
thus modifying accordingly both the validation
scripts and the matchmaking expressions, and for
keeping up to date with the updates in the central
services software.

The VO Frontend+WMS instances are extremely
varied, and include small departmental groups,
campus-wide deployments of mostly independent sci-
entists, and portal-based, well-organized international
scientific collaborations. Their configurations and
operational procedures are understandably just as
varied, so they will not be described in this paper.
Nevertheless, they all report very low operational
costs, with the vast majority of effort being spent on
helping users with misbehaving jobs. Please note that
this does not include any system level maintenance,
since that is typically handled by an independent IT
team in a uniform way across the local infrastructure.

Since there are only a few Glidein Factory
instances, there is instead very little variation between
them. For consistency, we will skip configuration and
operational procedures for these as well. Here the
operational cost tend to be higher, with the bulk of
the effort going into adapting to the ever-changing
environment of the Grid, and tends to scale linearly
with the number of independent Grid sites used
for resource provisioning. Again, system level
maintenance is not factored in.

4 MOVING TO THE CLOUD

As described in the previous section, the glideinWMS
architecture calls for a clear separation of duties
between the Glidein Factory and the VO Frontend.
When we decided to add support for Cloud resource
providers, we were thus required to decide which one
would own the system image.

Moreover, one has to decide if the pilot processes
will run as a superuser, e.g. UNIX root, or as a
non-privileged user. On the Grid, we manage to run
securely even without superuser privileges, but we do
sacrifice some flexibility in the process.

In this section we provide the three options that
we consider feasible, together with advantages and
disadvantages of each option.

4.1 Image Owned by the Glidein
Factory and Pilot Running as a
Non-privileged User

One option is to give full control over the system
image to the Glidein Factory, and to drop privileges
early in the process, thus running the pilot as a
non-privileged user. In this scenario, we basically
mimic the Grid operational mode.

This choice would provide several advantages:
• The maintenance and security patching of the

system image is maintained by the Glidein
Factory operators, likely leading to a much better
security posture and lower total operational costs
compared to the other alternatives.

• The absence of non-system services running with
superuser privileges further minimizes security
risks.

• The absence of runtime changes to the system
level settings allows for certification of the system
images.

• The VO Frontend administrators are completely
unaware of the difference between the Grid and
the Cloud resources, making life much easier for
them.
The disadvantages of this choice are instead:

• Reduced flexibility for the Glidein Factory op-
erators, since any change to the system level
requires a new image. This would likely require a
separate image for each resource type, increasing
the operational costs.

• The inability for the VO Frontend administrators
to influence the operating system in any way.

• Inability of the pilot to use all the OS features for
user job control and monitoring.

THE�glideinWMS�APPROACH�TO�THE�OWNERSHIP�OF�SYSTEM�IMAGES�IN�THE�CLOUD�WORLD

445



4.2 Image Owned by the Glidein
Factory and Pilot Running as
Privileged User

Another option is to keep the pilot running as a
privileged user, while still leaving the full control over
the system image in the Glidein Factory. Please notice
that this implies that the VO Frontend can provide
configuration scripts that would run as the superuser;
this is acceptable, since the resource was provisioned
using credentials provided by the VO Frontend.

This choice would provide several advantages:

• Similar to the previous option, the maintenance
and security patching of the base system image is
maintained by the Glidein Factory operators, with
all the same advantages.

• The VO Frontend administrators can change
system level settings to suit their needs.

• The Glidein Factory operators retain the ability of
changing system level settings at run time.

• The pilot has access to all the OS features,
allowing it to behave as a full featured batch
system daemon.

The disadvantages of this choice are instead:

• Lowered security posture due to runtime changes
to the system level settings.

• The VO Frontend administrators are responsible
for the maintenance and security patching of any
system level service they add, likely resulting in
higher total operational costs.

• The VO Frontend still cannot provide the OS of
his choice.

• Possibly increased network related operational
costs due to runtime loading of configurations.

4.3 Image Owned by the VO Frontend

The third option is to give full control over the system
image to the VO Frontend. However, since the VO
Frontend should not be aware of the low level details
of the provisioned resource, the Glidein Factory will
have to contextualize at run time the system image,
which is equivalent to running the pilot as a superuser
at least a fraction of the time. We thus assume the
pilot will indeed be running as a superuser all the
time; dropping privileges at the last minute is of
course possible, but does not significantly change the
outcome.

This choice would provide several advantages:

• The VO Frontend administrators are now able to
provide the OS of their choice.

• The Glidein Factory operators retain the ability of
changing system level settings at run time.

• The pilot has access to all the OS features,
allowing it to behave as a full featured batch
system daemon.

The disadvantages of this choice are instead:

• The maintenance and security patching of the
system image is maintained by the VO Frontend
operators, requiring a higher level of expertise
there, and likely leading to a higher total
operational cost.

• Lowered security posture due to runtime changes
to the system level settings.

• Possibly increased network related operational
costs due to runtime loading of configurations.

4.4 Selecting an Option

As can be seen, no option is a clear winner; there are
advantages and disadvantages to every approach. The
glideinWMS project is thus considering supporting
all of them. However, for our initial release we
decided to pick one option over the others and support
that option only; later releases will likely support the
other as well.

We have chosen to support the second option,
i.e. the one with the image owned by the Glidein
Factory and pilot owned by a superuser. This option
provides still enough flexibility for the VO Frontend
administrators while keeping both the security risks
and the operational costs reasonably low.

The reasons for this choice are:

• The current VO Frontend administrators are
content with the current operational model, where
they do not have to worry about low-level details.
Delegating image maintenance to the current user
base may not be a good fit.

• As the user community has origins on the Grid,
the number of OS versions required by our user
community is limited, so maintaining a couple
system images at the Glidein Factory side can
be more efficient than having each VO Frontend
administrator maintaining its own.

• Some user communities have expressed the desire
of obtaining access to system level configurations,
in particular to enable customized remote file
system mounts. This would not be possible
with option one, i.e. with pilot dropping
privileges immediately after boot. Moreover,
merging all requests from all the VO Frontend
administrators on the Glidein Factory side into

CLOSER�2012�-�2nd�International�Conference�on�Cloud�Computing�and�Services�Science

446



a single system image does not seem neither
flexible nor particularly secure.

• The major drawback of option two over option
one is the potentially lower security posture,
due to the pilot’s ability to change system level
settings at runtime. We plan to mitigate this by
ensuring that the privileges are dropped for all
operations that do not explicitly request superuser
privileges.

5 FUTURE WORK

The glideinWMS project is in the process of releasing
the first Cloud-enabled version. While a lot of work
has gone into the hardening of the code to make it a
candidate for production use, we are fully aware that
it needs to be battle tested by real users in order to
show all the strengths and weaknesses of our choices.

We are thus eager to get the new release in the
hands of actual users, and collect their feedback. We
hope that the choices we made will prove to be the
right ones, but we are open to re-evaluating any choice
that is shown to be suboptimal if not outright wrong.

6 CONCLUSIONS

Moving from the Grid to the Cloud brings along
the problem of the creation and maintenance of
the system image used to configure the provisioned
resources.

Most Grid user communities do not want to
abandon the batch system paradigm of the Grid, so
a pilot WMS is often the best way forward, since it
preserves the batch system experience for the final
users by moving the system image handling into a
separate, dedicated service.

The glideinWMS system goes a step further, and
further abstracts the resource contextualization from
the resource provisioning logic. In the Cloud use
case, this allows for the offloading of the system
image maintenance to a service not maintained by
the VO, into the so called Glidein Factory, thus
drastically reducing the VO’s operational cost. The
major drawback of this approach is the inability of
the VO administrators to fully customize the system
image, but we believe that the limited customization
of the proposed solution still satisfies the needs of our
users.

ACKNOWLEDGEMENTS

This work is partially sponsored by the US National
Science Foundation under Grants No. OCI-0943725
(STCI), PHY-1104549 (AAA), and PHY-0612805
(CMS Maintenance & Operations), and the US De-
partment of Energy under Grants No. DE-SC0002298
(ANDSL) and DE-FC02-06ER41436 subcontract No.
647F290 (OSG).

REFERENCES

Mell, P. and Grance, T. (2011). The nist definition of cloud
computing. Technical Report Special Publication 800-
145, NIST.

Sfiligoi, I., Bradley, D., Holzman, B., Mhashilkar, P., Padhi,
S., and Wurthwein, F. (2009). The pilot way to grid
resources using glideinwms. InComputer Science and
Information Engineering, 2009 WRI World Congress
on, volume 2, pages 428 –432.

Sfiligoi, I., Würthwein, F., Andrews, W., Dost, J. M.,
MacNeill, I., McCrea, A., Sheripon, E., and Murphy,
C. W. (2011a). Operating a production pilot factory
serving several scientific domains.Journal of Physics:
Conference Series, 331(7):072031.

Sfiligoi, I., Würthwein, F., Dost, J. M., MacNeill, I.,
Holzman, B., and Mhashilkar, P. (2011b). Reducing
the human cost of grid computing with glideinwms.
In CLOUD COMPUTING 2011, The Second Interna-
tional Conference on Cloud Computing, GRIDs, and
Virtualization, pages 217 –221.

THE�glideinWMS�APPROACH�TO�THE�OWNERSHIP�OF�SYSTEM�IMAGES�IN�THE�CLOUD�WORLD

447


