
MEPP - 3D MESH PROCESSING PLATFORM

Guillaume Lavoué 1, Martial Tola2 and Florent Dupont2
1Université de Lyon, CNRS, INSA-Lyon, LIRIS, UMR5205, F-69621, Villeurbanne, France

2Université de Lyon, CNRS, Université Lyon 1, LIRIS, UMR5205, F-69622, Villeurbanne, France

Keywords: Mesh Processing, Open Source, Platform.

Abstract: This paper presents MEPP, an open source platform for 3D mesh processing. This platform already contains a
large set of processing tools from classical ones (simplification, subdivision, segmentation) to more technical
algorithms (compression, watermarking, Boolean operation, perceptual metrics, etc.). Its main objective is to
allow a quick start for both users and developers by providing highly detailed tutorials and simple integration
mechanisms, through a modular architecture where components are implemented as dynamic plugins.

1 INTRODUCTION

Technological advances in the fields of telecommuni-
cation, computer graphics, and hardware design dur-
ing the last decade have contributed to the emergence
of three-dimensional (3D) data, often represented by
polygonal meshes, in numerous industrial domains
like mechanical engineering, scientific visualization,
digital entertainment or cultural heritage. This emerg-
ing type of data is more complex to handle than other
media such as audio signals, images or videos, and
thus has brought new challenges to the scientific com-
munity, and has open new research domains like ge-
ometry processing.

To ease the development of new algorithms for
3D mesh processing, it is crucial to have some open
source tools and libraries available for the scientific
community. The library CGAL (The CGAL Project,
2011) (Computational Geometry Algorithms Library)
introduced for several years, offers powerful geome-
try processing algorithms and data structures like the
Polyhedron type for manipulating manifold polygonal
meshes, however it is based on template programming
and thus is not so easy to use for a beginner. Some
open source softwares have also been introduced like
MeshLab (Cignoni et al., 2008), Graphite (Graphite,
2003) or OpenFlipper (Möbius and Kobbelt, 2010),
based on their own data structure for 3D mesh ma-
nipulation; they offer interesting geometry processing
for user and also allow developers to add plugins with
their own code, more or less easily.

We introduce the open source platform MEPP (3D
MEsh Processing Platform) which can be seen as co-

mplementary to these existing works. It is available
online1 and its strong points regarding existing works
are as follows:

� it focuses on making the use and installation very
easy, whichever the operating system, by provid-
ing highly detailed user and developer tutorials;
the objective is to allow a quick start for new de-
velopers,

� it simplifies the use of CGAL data structures by
hiding the template programming,

� it provides not only standard modeling tools
(simplification, subdivision, segmentation) but
also highly technical components like progres-
sive compression, watermarking, Boolean opera-
tion and perceptual metrics,

� it allows the visualization and processing of color
meshes and dynamic mesh-sequences.

Next sections present respectively the main architec-
ture of the platform, its manipulation and visualiza-
tion functionalities and a rapid description of cur-
rently available components.

2 ARCHITECTURE

This section describes successively the goals of our
platform, its kernel and related features and then the
principles of component / plugin development.

1http://liris.cnrs.fr/mepp/

206 Lavoué G., Tola M. and Dupont F..
MEPP - 3D MESH PROCESSING PLATFORM.
DOI: 10.5220/0003928502060210
In Proceedings of the International Conference on Computer Graphics Theory and Applications (GRAPP-2012), pages 206-210
ISBN: 978-989-8565-02-0
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



2.1 Goals

MEPP provides a GUI and basic functionalities to al-
low development and fast integration and can also be
easily enriched with new features and new modules.
The platform provides a modular architecture through
the use of components available as dynamic plugins.
As it is important that all developments have a min-
imal impact compared to an operating system to
provide a great portability, we have directed our
choices to use robust, flexible and effective C++
cross-platform open source libraries.
In order that users and developers can easily use and
enhance the platform, a major effort has focused on
the fact that it can be deployed quickly and easily,
thanks in particular to a detailed installation docu-
mentation. The integration of new developments is
facilitated by a step by step documentation on the use
and enrichment of the platform.

2.2 Kernel and Related Features

Based on CGAL2, Qt3, libQGLViewer4, OpenGL5,
Boost6 and FFmpeg7, the MEPP platform, written
in C++ under the GNU GPL v3, runs on Windows,
Linux and Mac OS X. It provides a development
environment based primarily on the class Polyhe-
dron of CGAL, library based on the principles of
Object-Oriented Programming and especially para-
metric polymorphism, i.e. template.

Without any component, the MEPP kernel only al-
lows loading, viewing and saving mesh and mesh se-
quences. The loading of mesh can be done by using
the menu or by drag and drop from one application
window or from a file browser.

MEPP allows the management of multiple objects
in one or more windows and offers two types of pro-
cessing and display for the meshes:

� the ”space” mode in which several objects are
treated in the same scene, allowing to compare
them, to observe them by coupling their rotation,
or to assess the results of treatments (Figure 1),

� the ”time” mode in which several objects are seen
as a sequence of meshes and visualized using a
3D+t configurable video recorder (step by step,
loop, reverse, speed, etc.).

2http://www.cgal.org/
3http://qt.nokia.com/
4http://www.libqglviewer.com/
5http://www.opengl.org/
6http://www.boost.org/
7http://ffmpeg.org/

At any time, users can easily switch from one mode
to another.

The platform offers an OpenGL accelerated dis-

Figure 1: The interface of MEPP, here in ”space” mode.

play with ”Display Lists” in order to allow the use
of all graphics cards. The rendering is possible
as cloud of points, wireframe and conventional 3D
with or without reinforcement of points and edges.
Three color modes are available: ”vertex color”, ”face
color” or ”material”.
Meshes related to OBJ (Wavefront), OFF (Object File
Format), PLY (Polygon File Format), SMF (3D World
Studio) and X3D (XML-based free format) can be
read. For now, only the formats OBJ (Wavefront) and
OFF (Object File Format) can be written. Image and
video capture (H.264/MPEG-4 AVC) are also avail-
able.

The management of the mesh is also done within
the MEPP kernel, ie its memory storage and ac-
cess but also basic functionalities associated (num-
ber of components and boundaries, normals, bound-
ing box, degree, valence, genus, tags, etc.). The ker-
nel also provides to all components a ”Viewer” object
that manages the display and behavior of the object
”Scene” according to the mode (”normal”, ”space” or
”time”), itself containing the object or objects Polyhe-
dron (Figure 2).

The structure of underlying data used in the plat-
form to represent a mesh is based on the concept of
semi-oriented edges, ie half-edges, with relations of
incidence and adjacency. It restricts the class of rep-
resentable mesh with those of type manifold, with or
without borders; we call it a polyhedron.

One of the big advantages of MEPP, however, is
the fact that the definition of this polyhedron only ap-
pears rarely to the developer eyes, in order to best ab-
stract the CGAL library.

MEPP - 3D MESH PROCESSING PLATFORM

207



2.3 Component/Plugin Development

Through the principle of inheritance, the polyhedron
and its geometric items (vertices, edges, facets) can be
enhanced, new classes are derived from these existing
classes, which gives the developer the opportunity to
add his own data and associated functions.
Given this behavior and for modularity, the solution
that we have chosen for MEPP is the multiple ”con-
ditional” inheritance, each component can thus enrich
the geometric items (vertices, half-edges, facets) and
the polyhedron itself.
The resulting enriched polyhedron and its geometri-
cal items, therefore inherit of all the enhancements
brought by the inheritance of each respective compo-
nents implemented as plugins (.dll / .so / .dylib) with
selection at compilation and detection and automatic
loading at runtime.
This principle of plugin also allows us to enhance the
MEPP GUI (menus and toolbars) and at the same time
to resolve the problem of heterogeneous licenses (free
component, private component with more restrictive
license, etc.). In order to manage interactions, events
related to the interface (pre-draw, post-draw, mouse
movements and clicks, key press, etc.) are transmitted
from the kernel to components through a signal mech-
anism specific to Qt (Figure 2). MEPP is entirely gen-

Figure 2: MEPP architecture.

erated by the cross-platform open-source build sys-
tem CMake8. On Linux and Mac OS X, a prerequi-
site of packages (specific to the distribution for Linux,
Homebrew9 or MacPorts10 for Mac OS X) is required.
On Windows, these packages are provided as ”binary
kits” precompiled for 32 and 64 bit architectures. A

8http://www.cmake.org/
9http://mxcl.github.com/homebrew/

10http://www.macports.org/

Linux virtual machine ”ready to start” is also avail-
able, offering to start even faster in developing.

3 COMPONENTS

This section provides an overview of currently avail-
able components of our platform.

3.1 Basic Processings

Some basic processing operations are provided:

� basic mesh manipulation (triangulation, noise ad-
dition, smoothing, scaling, rotation, translation),

� subdivision algorithms (Loop, Sqrt3, Doo-Sabin,
Catmull-Clark, Quad triangle),

� simplification algorithms (Lindstrom-Turk imple-
mentation from CGAL and a canonical vertex re-
moval algorithm).

Figure 3 illustrates a result of simplification.

Figure 3: Two objects in the same space: the original col-
ored mesh (1,2M vertices) and result after simplification.

3.2 Curvature and Segmentation

Our platform provides the curvature calculation im-
plementation of Cohen-Steiner and Morvan (Cohen-
Steiner and Morvan, 2003), with a geodesic neighbor-
hood integration. It computes both min-max curva-
ture values and directions. A segmentation algorithm
is also provided, implementing the Variational Shape
Approximation from Cohen-Steiner et al. (Cohen-
Steiner et al., 2004). Results from curvature calcu-
lation and segmentation are illustrated in figure 4.

GRAPP 2012 - International Conference on Computer Graphics Theory and Applications

208



Figure 4: Segmentation of the Blade model and curvature
values and directions of the RockerArm model.

3.3 Boolean Operation

A fast and exact Boolean operation algorithm be-
tween 3D meshes is implemented (Leconte et al.,
2010); this algorithm is able to compute the union,
intersection and difference between two 3D meshes.
One of the key feature is the speed, indeed for in-
stance this algorithm is able to compute the intersec-
tion, union or difference between two 80K vertices
meshes in about 2.5 seconds on a 2GHz processor.
Figure 5 illustrates some Boolean operations between
two 3D models.

Figure 5: Results after union, difference and intersection
between the LionVase and the Fandisk objects.

3.4 Perceptual Quality Metrics

Recent perceptual metrics are implemented in the
platform (Lavoué, 2011); given a distorted 3D shape
and a reference one, they compute a score that pre-
dicts the perceived distortion between them, as well
as a distortion map. These perceptual quality metrics

may be more relevant than classical root mean square
distance to evaluate or drive processing operations. To
our knowledge, no open platform currently proposes
such tools.

3.5 Compression and Watermarking

The MEPP platform proposes a recent progressive
compression algorithm applying for colored meshes
(Lee et al., 2011b), and a join watermarking scheme
(Lee et al., 2011a). The compression method provides
high compression ratio and allows a decompression
by Level-of-Details (LoD). When the watermarking
method is activated, a secret bit string is hidden in
each level-of-details, it allows the protection of the
decoded LoD.

3.6 Minkowski Sum

Finally, our platform provides an algorithm for
Minkowski sum of convex polyhedra (Barki et al.,
2009). The algorithm is exact and quite fast regarding
its state-of-the-art counterparts.

4 CONCLUSIONS

We have presented the Mesh Processing Platform
MEPP; its main objective is to ease the develop-
ment of new processing algorithms for 3D meshes.
This platform is mostly based on the Polyhedron type
from CGAL, however one of the main advantages of
MEPP, is the fact that the definition of this polyhe-
dron structure is hidden to the developer eyes; hence
this will allow us, in the next future, to integrate other
data structures, for instance supporting non-manifold
meshes; we also plan to integrate the management of
textured meshes.

REFERENCES

Barki, H., Denis, F., and Dupont, F. (2009). Contributing
vertices-based Minkowski sum computation of con-
vex polyhedra. Computer-Aided Design, 41(7):525–
538.

Cignoni, P., Callieri, M., and Corsini, M. (2008). Meshlab:
an open-source mesh processing tool. In Eurographics
Italian Chapter Conference.

Cohen-Steiner, D., Alliez, P., and Desbrun, M. (2004). Vari-
ational shape approximation. In ACM Siggraph, pages
905–914.

Cohen-Steiner, D. and Morvan, J. (2003). Restricted delau-
nay triangulations and normal cycle. In 19th Annu.
ACM Sympos. Comput. Geom.

MEPP - 3D MESH PROCESSING PLATFORM

209



Graphite (2003). http://www.loria.fr/ levy/Graphite/index.html.
Lavoué, G. (2011). A Multiscale Metric for 3D Mesh Vi-

sual Quality Assessment. Computer Graphics Forum,
30(5):1427–1437.

Leconte, C., Barki, H., and Dupont, F. (2010). Ex-
act and Efficient Booleans for Polyhedra.
http://liris.cnrs.fr/Documents/Liris-4883.pdf.

Lee, H., Dikici, C., Lavoué, G., and Dupont, F. (2011a).
Joint reversible watermarking and progressive com-
pression of 3D meshes. The Visual Computer, 27(6-
8):781–792.

Lee, H., Lavoué, G., and Dupont, F. (2011b). Rate-
distortion optimization for progressive compression of
3D mesh with color attributes. The Visual Computer.

Möbius, J. and Kobbelt, L. (2010). OpenFlipper: An Open
Source Geometry Processing and Rendering Frame-
work. In Curves and Surfaces.

The CGAL Project (2011). CGAL User and Refer-
ence Manual. CGAL Editorial Board, 3.9 edition.
http //www.cgal.org/.

GRAPP 2012 - International Conference on Computer Graphics Theory and Applications

210


