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Abstract: Computational design is essential to the field of synthetic biology, particularly as its practitioners become 
more ambitious, and system designs become larger and more complex. However, computational models 
derived from abstract designs are unlikely to behave in the same way as organisms engineered from those 
same designs. We propose an automated, iterative strategy involving evolution both in silico and in vivo, 
with feedback between strands as necessary, combined with automated reasoning. This system can help 
bridge the gap between the behaviour of computational models and that of engineered organisms in as rapid 
and cost-effective a manner as possible. 

1 INTRODUCTION 

The nascent field of synthetic biology aims to 
produce engineered organisms with novel, desirable 
behaviour. To date, synthetic genetic circuits have 
primarily been designed manually, by a domain 
expert with an in-depth knowledge of the biological 
system of interest. This approach has been 
moderately successful; bacteria, and even plants, 
have been engineered to perform tasks as diverse as 
the detection of arsenic in well water, the 
identification of explosive residues in soil, and the 
performance of a range of computational tasks such 
as the operation of logic gates and mathematical 
functions (Khalil and Collins, 2010). 

However, the ultimate aim of synthetic biology is 
the large-scale engineering of entire genomes. 
Important strides in this direction have been made 
(Cello et al., 2002); (Smith et al. 2003); (Tumpy et 
al., 2005). In 2010 Gibson and colleagues 
announced the synthesis of a completely synthetic 
genome, and its insertion into a living bacterium 
which had previously been denuded of its genome 
(Gibson et al., 2010). However, all of the work done 
in this area to date has focussed upon the re-creation, 
with slight modifications, of existing genomes. To 
date the design of entire genomes with appreciable 
novel functionality has not been achieved. 

It is becoming increasingly apparent that the 
design of novel, genome-scale biological systems 

will require computer-aided design (CAD) and 
computational simulation prior to implementation 
(Cohen 2008). Several CAD systems (Chandran et 
al., 2009); (Czar et al., 2009); (Pedersen, 2009); 
(Beal et al., 2011), including a data and workflow 
management system (www.clothocad.org) have been 
designed specifically for synthetic biology. In 
addition, a synthetic biology-specific ontology, 
SBOL, (http://hdl.handle.net/1721.1/66172) is under 
active development. 

However, manually-oriented CAD systems will 
almost certainly not scale to the genome level. In 
order to design large-scale synthetic biological 
systems the complex process of genetic circuit 
design, implementation, evaluation, modification 
and iterative refinement will have to be automated as 
fully as possible. 

A design for a synthetic genetic circuit is usually 
initially in the form of a conceptual diagram, which 
can be converted into a simulateable model in a 
standard modelling language. However, converting 
such a model into a DNA sequence which can be 
inserted into a living organism is not so 
straightforward; there is a gap between design and 
successful implementation, which must be 
addressed. 

Natural systems have arisen via the process of 
evolution, and there has been considerable interest in 
the application of evolutionary approaches to the 
design of novel genetic circuits. In this paper we 
briefly review the application of both computational 
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and directed evolution to the design of biological 
systems, and present our vision of a dual 
evolutionary strategy to bridge the gap between in 
silico design and in vivo reality. 

2 BACKGROUND 

2.1 Evolutionary Computation for 
Genetic Circuit Design 

The manual design of circuits has the advantage of 
producing simple, well-understood circuit layouts. 
However, this approach relies heavily upon domain 
expertise; a biologist with extensive knowledge of 
the circuit to be engineered, and any extraneous 
components to be incorporated, is essential. An 
alternative approach is to incorporate techniques 
inspired by the only process yet known to have 
successfully produced life – evolution. 

Evolutionary computation (EC) has been around 
almost since computers became a consumer item 
(Box 1957). Based on biological evolution, EC 
attempts to use random changes in a problem 
solution, together with a fitness function and fitness-
proportional selection, to generate solutions to 
complex problems. EC is therefore ideally suited to 
problems in complex, poorly-understood domains, 
where a good, but not necessarily optimal, solution 
is essential, but the precise nature of the solution is 
not. There are many variants of EC (Hallinan and 
Wiles, 2002)but the basic principles are common to 
all. 

EC has been applied to metabolic engineering, 
for tasks such as identifying the appropriate genes to 
knock out in order to maximize the production of 
biochemicals (Patil et al., 2005) and to optimize 
parameters for allosteric regulation of enzymes 
(Gilman and Ross, 1995). Some of the results have 
been interestingly counter-intuitive (Patil et al., 
2005).  

The applicability of EC to the design of genetic 
circuits is clear. Multiple runs of an algorithm will 
produce different, equally fit, solutions which can be 
compared for efficiency, cost and practicality of 
implementation, among other factors. Since the 
detailed workings of many genetic circuits are 
poorly-understood, EC is a promising approach to 
the generation of new circuit designs.  

2.2 Directed Evolution in vivo 

The relationship between a DNA sequence and the 
structure and function of the protein it encodes is 

indirect. Many factors affect the relationship, 
including post-transcriptional and –translational 
modifications to DNA, RNA and proteins; the 
presence or absence of protein chaperones; protein 
folding; and the cellular context. It is therefore non-
trivial to design a protein with a required 
functionality, such as a transcription factor with a 
given binding strength. An extremely successful way 
to overcome this problem is to extend, or completely 
replace, the rational design approach with directed 
evolution (Romero and Arnold, 2008). 

Directed evolution involves the application, to a 
population of cells, of iterative rounds of mutation 
and artificial selection. With each round of selection 
the desired behaviour is more closely approximated, 
and the process can be ended when the protein 
function is deemed to be close enough to the target 
behaviour. Directed evolution has been shown 
repeatedly to be both powerful and flexible in its 
outcomes (Aharoni et al., 2005). 

There are two ways in which directed evolution 
is generally used. In the biotechnology industry the 
output of a particular biological pathway is often of 
primary interest; companies need to optimise the 
production of a specific compound (Lee et al., 
2008). In this case directed evolution has the effect 
of optimising entire pathways. Alternatively, the 
evolutionary process can be aimed at manipulating 
individual proteins, developing, for example, 
specific enzymes (Brustad and Arnold, 2011). 

Originally, much of the work in this area was 
performed in large-scale chemostats. The use of 
smaller volumes then made it possible to automate 
much of the directed evolution process using liquid-
handling robots (Felton, 2003). Such robots, 
however, still work with relatively large numbers of 
cells at a time. At this scale the stochasticity inherent 
in biological systems is averaged out when 
measurements are made over whole populations of 
cells, prohibiting analysis of the behaviour of single 
cells. 

Recently, however, there has been considerable 
interest in the use of microfluidic technologies in 
synthetic biology (Gulati et al., 2009); (Szita et al., 
2010); (Ferry et al., 2011); (Vinuselvi et al., 2011). 
Operating at micrometre scales, microfluidic devices 
allow the manipulation and observation of single 
cells or small groups of cells. Biological 
stochasticity can thus be explored in detail. 
Importantly, microfluidics devices can be fully 
automated, with tasks such as the input of fresh 
media, removal of waste, selection of individual 
cells and control of cellular environment completely 
controlled by an attached computer. Microfluidics 
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provides an ideal environment for the directed 
evolution of cells for synthetic biology. 

3 A DUAL EVOLUTIONARY 
STRATEGY FOR SYNTHETIC 
BIOLOGY 

3.1 Design in Synthetic Biology 

Synthetic genetic circuits tend to be designed in 
isolation, and often incorporate a number of 
simplifying assumptions. However, a designed 
circuit in vivo is operating in a complex genetic and 
environmental context, and an engineered microbe 
may not behave in the same way as the in silico 
model upon which it is based. 

The creations of synthetic biologists must 
operate predictably in a complex, noisy environment 
in which they are subject to global selection 
pressures as yet poorly understood. However, a 
number of important issues have been identified. 
Sprinzak and Elowitz (Sprinzak and Elowitz, 2005) 
nominate “parameter sensitivity, the lack of effective 
rules to simplify complex circuits, and the difficulty 
of incorporating extrinsic noise". To this list we add: 
nonlinearity; crosstalk; scalability; evolvability; and 
genetic context. 

Rather than attempting to eliminate this noise 
and complexity, we believe that it should be possible 
to harness the incredibly powerful forces that have 
shaped life on this planet for the past 3.8 billion 
years for the controlled design of organisms with 
novel, valuable behaviours. 

3.2 A Dual Evolutionary Strategy 

Our proposed dual evolutionary strategy involves in 
silico and in vivo experimentation and evolution 
carried out in serial, with results from each strand 
feeding back to the other strand as required.  

The process starts, as does all formal engineering 
design, with requirements gathering, leading to a 
formal functional specification of the desired 
system. Data from a variety of sources are then 
integrated to inform automated reasoning, leading to 
an initial design for the system.  

The field of data integration is increasingly being 
recognised as important to bioinformatics, whose 
practitioners routinely deal with the large datasets 
produced by high-throughput technologies such as 
microarrays and proteomics. Although much of this 
data is freely available in the over 1300 online 

databases currently available (Galperin and 
Cochrane, 2011), the sheer scale of data generation 
means that much of this data does not make it into 
the literature. It is not feasible to manually trawl 
databases for more than a small number of genes. 
Data, and thus information, can effectively be lost to 
the research community. 

Tools such as the Ondex data integration 
platform (Kohler et al., 2006) rescue this data by 
bringing it together in a common format and 
integrating diverse datasets into a single resource, 
which can be viewed as a network, or accessed and 
manipulated computationally. Ondex incorporates an 
underlying ontology, so individual concepts, which 
can be of any type (gene, protein, publication, 
protein family, etc.) and their interactions are 
annotated in a structured manner. Ondex graphs are 
therefore well suited to the application of automated 
reasoning algorithms, which have already been 
applied to good effect in bioinformatics (King et al., 
2004). An Ondex knowledgebase has recently been 
produced for the model Gram positive bacterium 
Bacillus subtilis (Misirli et al., 2011). 

The initial reasoning / design process is iterative, 
as individual designs are scrutinised for genetic 
components and their desired interactions, which are 
then reasoned over to predict the systems behaviour 
and to suggest modifications to the design. Once the 
initial design is determined it is translated into a 
computational model in a standard modelling 
language such as SBML (Hucka et al., 2003) or 
CellML (Cooling et al.m 2008). 

Simulation of the model and experiments on the 
engineered microbe are conducted in serial. Intially, 
the model is run, to determine whether it behaves as 
predicted. Simulation modelling can also establish 
factors such as sensitivity to variations in parameter 
values, and to determine which model elements are 
most important to the generation of the desired 
behaviour, observations which can be used to guide 
measurements made on the in vivo system. Models 
may be run multiple times using stochastic 
algorithms to investigate the range of behaviours 
possible from a single design (Hallinan et al., 2010). 

If the behaviour generated by the model is not 
sufficiently close to the target, an evolutionary 
algorithm is used to modify the circuit until is 
behaves as desired. The modified model is analyzed 
in the same way as the original model. 

Once the modelling results are satisfactory the 
design is converted into a synthesizable DNA 
sequence using a tool such as MoSeC (Misirli et al., 
2011), an approach which preserves the automated 
nature of the process. Alternatively, if standard 
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cloning approaches are too be used, the design may 
be manually translated into a set of DNA 
components and the strategy with which to 
manipulate them. 

The in vivo evolutionary cycle is then executed, 
with laboratory experimentation replacing model 
simulation, measurements made as indicated by the 
results of the modelling, and directed evolution 
replacing EC. 

The end result of the in silico and in vivo 
experimentation is the amassing of large amounts of 
new data about the construct and its behaviour. This 
data is added to that in the original integrated dataset 
to form the basis for further computational 
reasoning. 

Computational evolution of the model will 
produce multiple, variant designs for genetic circuits 
with the same functionality, many of which will 
never have existed in nature. Similarly, directed 
evolution of the engineered microbes will almost 
certainly produce a number of organisms which have 
behaviour closer to that desired. Sequencing of their 
genomes post-evolution will permit comparison with 
the original sequence, and thus facilitate the 
generation of testable hypotheses about the 
significance of any mutations observed. 

All of the data generated by experiments on both 
the original design and the evolved variants then 
feed back into the reasoning / design loop, and the 
process can continue iteratively until an organism is 
achieved with behaviour close enough to the target. 
 

 

Figure 1: A dual evolutionary strategy for synthetic 
biology. 

4 DISCUSSION 

Currently most design in synthetic biology is done 
on a small scale, in close consultation with a domain 
expert. Although it may never be possible to move 

completely away from specialised expertise, the 
design of large scale genetic systems will clearly 
require a high level of automation, including 
automated reasoning over large amounts of data. 
Synthetic biology builds upon molecular and 
systems biology (Church 2005), but has a different 
aim from either of those disciplines: to engineer 
entirely novel biological systems, performing tasks 
which are not within the scope of existing 
organisms. In order to achieve these aims we 
contend that large scale systems must be engineered; 
such systems will be of of a size and complexity of 
which the human brain cannot maintain a complete 
overview. 

Large scale synthetic biology therefore requires 
sophisticated computation and extensive automation. 
The algorithms and hardware required to achieve 
this task are rapidly becoming available. New 
technologies promise to extend the capabilities of 
laboratories in many different directions. DNA 
synthesis technology is increasing in speed, while 
decreasing in cost (details). Cloud and Grid 
computing make available enormous amounts of 
CPU time cheaply (Craddock et al., 2008), and, 
because these technologies are highly parallel, 
quickly. Microfluidics provides an exciting, albeit 
challenging, approach to the manipulation and 
measurement of cells, either wild type or engineered, 
in very small numbers. 

The development of these technologies permits 
approaches such as directed evolution at the single-
cell level in time scales which are not very different 
from those required to run multiple computational 
simulations. Computational and in vivo experiments 
provide different, but overlapping, windows onto the 
biology of synthetic genetic systems. We therefore 
propose a bipartite strategy for engineering synthetic 
genetic circuits, involving both in silico and in vivo 
experiments. 

One important component of our approach is 
computational reasoning. The amount of data which 
can be collected from a single experiment is vast. At 
present, it is usually the task of the human 
experimenter to decide which parameters should be 
measured, and how those measurements should be 
used in the development of new experiments. 
Automated computational reasoning has been 
applied with success to the generation of new 
testable hypotheses, and appropriate experimental 
protocols, as in the case of the Robot Scientist (King 
et al., 2009). There is clearly considerable scope for 
the application of this approach to automated 
decisions about which aspects of an experiment to 
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measure, and which experiments to conduct, in the 
field of synthetic biology. 

The other fundamental aspect of our approach is 
the use of evolution to refine the designs arrived at 
by humans or machines. The uncertainty inherent in 
biological systems—whether arising from inherent 
stochasticity or our lack of knowledge about the 
structure and function of many biomolecules—
means that a completely rational design strategy in 
synthetic biology, as espoused by hard-core 
engineers, is simply not practical at this point in 
time. By harnessing evolution to refine our design, 
and then comparing the products of evolution with 
our original designs, we have the potential to learn 
not only how to better engineer the organisms in 
which we are interested, but also how these 
organisms work in the absence of engineering. 
Molecular and systems biology form the basis for 
synthetic biology; but synthetic biology also 
promises to provide unique insights into the 
fundamental workings of the cell. 

A highly automated approach, incorporating 
computational intelligence wherever possible, and 
operating at the level of one or a few cells, appears 
to us to offer the best prospects for designing, 
implementing and testing large-scale novel genetic 
systems, thus bridging the  gap between design and 
reality in synthetic biology. Although there are still 
many technical hurdles to be overcome in the 
construction of such a system, all of the individual 
technologies are currently in place, and the 
construction of such a synthetic biology factory is a 
realistic goal in the near future.  
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