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Abstract: In this paper we extend two modules of the multi-agent system FIDES (Fraud Interactive Detection Expert 
System) previously introduced in Buoni et al. (2011), and involving the attack tree representation of 
fraudulent attacks. First, assuming that the opinions of experts involved in the design of the attack tree are 
represented by fuzzy preference relations, we introduce a dynamical consensus model aiming at finding a 
shared representation of the attack tree. Second, assuming that the leaf nodes of the attack tree are attribute 
fuzzy numbers valued and that the attributes are interdependent, we show how to propagate the values up 
the tree through an aggregation process based on Choquet integral.   

1 INTRODUCTION 

KPMG Fraud survey (KPMG 2009), conducted on 
executives of U.S. companies, shows that the most 
important sources to detect fraud are internal audit 
(47%) and employee whistle blowers (20%).  
An audit team (experts) have to deal with both 
numerical data and unusual behaviours, create 
different scenario, develop risk indicators to detect 
and prevent fraud. 

In order to achieve this goal, experts analyse 
information about the past fraud cases, as collected 
by inspectors along the processes. Reuse this 
information and deal with this huge amount of data 
is a typical knowledge management problem.  

A system to support the work of experts has to 
take into considerations the complexity of managing 
this kind of information, affected by imprecision, 
uncertainty, behavioural aspects, and false alarms. 

Moreover, one critical issue to address is to 
aggregate the judgments of the single experts in 
order to extract useful knowledge in a structured 
way, develop countermeasures to detect frauds in 
real time, activate effective strategies to prevent and 
adapt them when new unusual schemes happen.  

Several authors have demonstrated that a multi-
agent approach is particularly suitable to address 
fraud detection when behavioural aspects play a key 
role, see for instance Chou et al. (2007), Wang et al. 
(2009), and Zhang et al. (2008). 

Accordingly, in Buoni et al. (2011) we 
introduced FIDES (Fraud Interactive Detection 
Expert System), a multi-agent system combining 
think-maps, attack trees, and fuzzy numbers under a 
Delphi-based team work support framework, to offer 
to the experts an innovative and suitable way to 
better understand and manage fraud schemes.  

The system has been developed in cooperation 
with a group of analysts coming from the risk 
management department of a leading European 
bank.  

The most critical issue to address in FIDES is to 
perform the Delphi process aiming to select the 
nodes and connect them in order to design the attack 
tree that is used to systematically categorize the 
different ways in which a system can be attacked. 

In this paper, at first we extend the Delphi 
module of FIDES introducing a dynamical 
consensus model based on individual fuzzy 
preferences representing the opinions of experts.   

Secondly, assuming that to the leaves of the 
attack tree fuzzy attribute values are associated, we 
propose an innovative approach for aggregating 
these values based on Choquet integral. 

The paper is organized as follows. The second 
section is devoted to a short description of FIDES. 
In the third section we introduce the consensus 
mechanism based on a dynamical model updating 
the fuzzy preference of the experts. Section four 
addresses the aggregation of attribute values using 
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the Choquet integral. The last section is devoted to 
conclusions and perspectives on future work. 

2 CONSENSUSUAL MODELING 
OF THE ATTACK TREE 

The Fraud Interactive Detection Expert System 
(FIDES) has been introduced at first in Buoni et al. 
(2010) and then extended in Buoni et al. (2011).   

  
Figure 1: The architecture of FIDES. 

As shown in Fig.1, FIDES has four modules. In 
the Information Filtering Module, alarms, suspicious 
behaviours and information gathered by inspectors 
during their inspections or through whistle blowers, 
are evaluated.  

All this information is then processed in the 
Attack Components Detection Module. Inspectors 
using Web-Pad (Oxman 2004) can organize all this 
information in a think-map, i.e. a representation of a 
possible attack where three main elements are 
visible and connected: the action perpetrated the 
suspected person and suspicious behaviours, which 
might be connected with the other two elements. 

Using the think map as a model, inspectors 
create nodes, which are elementary attacks, to be 
sent to the audit team experts. 

The third module is founded on the Delphi 
method (Gordon 1994), it is an interactive and 
iterative method, typically based on questionnaires, 
where experts, supported by a moderator, try to 
refine their opinions after each round, in order to 
structure a description of the components of the 
fraud attack, based on an attack tree (Schneier, 
1999). 

 
Figure 2: An example of attack tree (Schneier 1999). 

The design of the attack tree starts from the set of 
possible nodes previously determined by the 
inspectors with the help of the think-maps. 
Accordingly, the moderator can choose which nodes 
are parents (V) (with descendant) and which ones 
are leaves (L) (without descendants, i.e. basic attack 
components) obtaining two sets { }sllL ,...,1= and 

{ }tvvV ,...,1= . 
Then, each expert is asked to elicit his/her own 

preference with respect to the strength of 
connections between the elements of L and V. The 
individual preferences are represented as fuzzy 
preference relations defined on the set ܲ = ܮ × ܸ. 
The first goal to achieve is to find a consensual 
preference setting activating a Delphi session. To 
this aim, we introduce a dynamical consensus model 
based on the updating of the individual fuzzy 
preferences expressed by the group of experts on the 
set of pairs (l୧	, v୨). The modelling framework here 
used is that one described for first in Kacprzyk and 
Fedrizzi (1986) and then extended by Fedrizzi et al 
(1999) through the introduction of a consensual 
network   dynamics   that   can   be   regarded  as  an 
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unsupervised learning algorithm. 
The point of departure is a set of individual fuzzy 

preference relations defined on P = {pଵ,… , p୑} for 
each expert in the set { }NeeE ,...,1= . The fuzzy 
preference relation of expert e୧, R୧ , is given by its 
membership function μ୧: P × P → [0,1] such that  

μ୧(p୩, p୪) = 1, if p୩ is definitely preferred over p୪, ∈ (0.5, 1), if p୩ is preferred over p୪,  
= 0.5, if there is indifference between p୩and p୪ ∈ (0, 0.5), if p୪ is preferred over p୩, 
= 0, if p୪is definitely preferred over p୩. 
where i = 1,…N and k, l = 1…M. 
Each individual fuzzy preference relation R୧ can 

be represented by a matrix ൣr୩୪୧ ൧, r୩୪	୧ = μ୧(a୩, a୪), 
which is commonly assumed to be reciprocal, that is r୩୪୧ + r୪୩୧ = 1. Clearly, this implies r୩୩୧ = 0.5 for all i = 1,… , N and i = 1,… ,M. 

In the soft consensus model each expert is 
represented by a pair of connected nodes, a primary 
node and a secondary node. The N primary nodes 
form a fully connected sub network and each of 
them encodes the preference of a single expert. The 	N secondary nodes, on the other hand, encode the 
individual preferences originally declared by the 
experts and each of them is connected only with the 
associated primary node. 

Moreover, for the sake of simplicity, let us 
assume that the alternatives available are only two, 
that is M=2, which means that each (reciprocal) 
individual fuzzy preference relation R୧, has only one 
degree of freedom, denoted by x୧ = rଵଶ୧ . 
Accordingly, the preference originally declared by 
expert e୧ will be denoted s୧. 

The iterative process of preference 
transformation corresponds to the gradient dynamics 
of a cost function W, depending on both the present 
and the original network configurations. The value 
of W combines a measure V of the overall 
disagreement in the present network configuration 
and a measure 	U of the overall change from the 
original network configuration. 

The diffusive interaction between primary nodes ݅ and ݆ is mediated by the interaction coefficient ݒ௜௝ ∈ (0,1), whereas the inertial interaction between 
primary node ݅ and the associated secondary node is 
mediated by the interaction coefficient ݑ௜ ∈ ௜௝ݒ ,(0,1) = ݂ᇱ((ݔ௜ − ௜ݑ and	௝)ଶݔ	 = ݂ᇱ((ݔ௜ −  ௝)ଶ (1)ݏ

The values of the interaction coefficients are 
given by the derivative of a scaling function	f (see 
Figure 3). 

The diffusive component of the network 
dynamics results from the consensual interaction 
between each node ݔ௜  and the remaining N − 1 
nodes ݔ௝ஷ௜ in the network. The aggregated effect of 
these N − 1 interactions can be represented as a 
single consensual interaction between node ݔ௜ and a 
virtual node ݔపഥ  containing a particular weighted 
average of the remaining preference values. 

The interaction coefficient ݒ௜ ∈ (0,1) of this 
aggregated consensual interaction controls the extent 
to which expert e୧ is influenced by the remaining 
experts in the group. 

 
Figure 3: Scaling function	f and sigmoid function f ′.  
In our soft consensus model the value ݒ௜, as well 

as the weighting coefficients ݒ௜ ∈ (0,1) in the 
definition of ݔపഥ  as given below, depend non-linearly 
on the standard Euclidean distance between the 
opinions ݔ௜ and x୨, 
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The individual disagreement cost ܸ(݅) is given 

by ܸ(݅) = ∑ ܸ(݅, ݆)௝ஷ௜ (݊ − 1)⁄  where ܸ(݅, ݆) ௜ݔ))݂=  ௝)ଶ) and the individual opinion changingݔ	−
cost is ܷ(݅) = ௜ݔ))݂  ௝)ଶ) (2)ݏ	−

Summing over the various experts we obtain the 
collective disagreement cost ܸ and inertial cost ܷ, ܸ = ଵସ∑ ܸ(݅)௜  and ܷ = ଵଶ∑ ܷ(݅)௜ , where 1/4 and !/2 
are conventional multiplicative factors. 

The full cost function ܹ is then  ܹ = (1 − ܸ(ߣ + with 0 ܷߣ ≤ ߣ ≤ 1. (3) 

The consensual network dynamics, which can be 
regarded as an unsupervised learning algorithm, acts 
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on the individual preference ݔ௜ through the iterative 
process ݔ௜ → ௜ᇱݔ = ௜ݔ − ߝ డௐడ௫೔ . (4) 

We can analyse the effect of the two dynamical 
components 	ܸ and 	ܷ separately. The dissensus cost  ܸ induces a non-linear process of diffusion based on 
the gradient term ߲ܸ߲ݔ௜ = ௜ݔ)௜ݒ −  ௜) (5)ݔ̅

As a result, the iterative step of the non-linear 
diffusion mechanism corresponds to a convex 
combination (with sufficiently small ) between the 
opinion value ݔ௜ and the weighted average ̅ݔ௜ of the 
remaining preference values ݔ௝, ݔ௜ᇱ = (1 − ௜ݔ(௜ݒߝ +  ௜ (6)ݔ௜̅ݒߝ

The inertial cost, on the other hand, leads to a 
non-linear mechanism which opposes changes from 
the original opinions ݔ௜, by means of the gradient 
term ߲ܷ߲ݔ௜ = ௜ݔ)௜ݑ −  ௜) (7)ݏ

The full dynamics associated with the cost 
function ܹ = (ܸ + ܷ) 2⁄  acts iteratively on each 
decision maker ݅ through convex combinations of 
the opinion value ݔ௜, the average opinion value ̅ݔ௜, 
and the original opinion value ݏ௜. ݔ௜ᇱ = ൫1 − ℰ(ݒ௜ + ௜ݔ௜)൯ݑ + 	ℇݒ௜̅ݔ௜ + 	ℇݑ௜ݏ௜. 

Accordingly, the expert ݁௜ is in dynamical 
equilibrium, in the sense that ݔᇱ =  ௜, if theݔ
following stability equation holds, ݔ௜ = ௜ݔ௜̅ݒ) + ௜ݒ)/(௜ݏ௜ݑ +  ௜) (8)ݑ

that is, if the present preference value ݔ௜ 
coincides with an appropriate weighted average of 
the original preference ݏ௜ and the average preference 
value ̅ݔ௜. 
3 CHOQUET-BASED 

VALUATION   

In many applications of attack trees, information 
about attributes is commonly associated to the leaves 
and one of the main problem to be solved becomes 
how to promulgate the information up the tree until 
it reaches the root node. Unfortunately, most of 

aggregation operators introduced in the literature, e. 
g. OWA operators (Yager 2008), don’t take care of 
the possible interactions between the nodes. One 
way to overcome this drawback is to introduce the 
Choquet integral (Choquet, 1953; Grabisch et alt., 
2010) whose distinguished feature is to be able to 
take into account the interaction between nodes, 
ranging from redundancy (negative interaction) to 
synergy (positive interaction).  

Moreover, the estimation of the attributes’ values 
is usually based on data type depending on 
subjective judgements, most commonly represented 
by natural language expressions. Following Zadeh 
(1978, 1979), here we assume to translate these 
expressions into the mathematical formalism of 
possibility measures and to represent the numeric 
imprecision of attributes’ values using unimodal LR 
fuzzy numbers, as fuzzy subsets of the set of real 
numbers (Dubois and Prade, 1987). 

Definition 1. An unimodal LR fuzzy number A is 
defined by 
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where a∈R is the peak of A, α>0 and β>0 are the 
left and the right spread, respectively, and 
L,R:[0,1]→[0,1] are two strictly decreasing 
continuous shape function such that L(0)=R(0)=1 
and L(1)=R(1)=0. 

Extending the Choquet integral to a fuzzy 
domain several forms of information can be handle 
at the same time, i.e. crisp data, interval values, 
fuzzy numbers and linguistic variables (Yang, 
2005). 

At first, the Choquet integral is defined for a 
measurable interval-valued function (Aumann, 
1965), and then it’s extended to fuzzy integrand 
using the alpha-cuts (Grabisch, 1995). 
From now on, we introduce the following notations: 

• I the set of interval numbers (rectangular fuzzy 
numbers) 

• N={1,2,…,n} a set of elements 
• →NF : I an interval-valued function 
 ோ(݅) respectively the left end pointܨ ௅(݅) andܨ •

and the right end point of the interval (ݔ)ܨ 
•  the set of all unimodal ܴܮ-type fuzzy 

numbers 
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• [ ఈ,௅ܣ ఈ],ோܣ  the alpha-cut of fuzzy number 	ܣ 
• →Φ N:  fuzzy-valued ܴܮ a unimodal ܨ	

function 
• -tree, an attack tree whose leaves’ values are 

unimodal 	ܴܮ fuzzy numbers 

The following definitions are due to Yang (2005): 
Definition 2. ܨ(݅) is measurable if both ܨ௅(݅) and ܨோ(݅) are measurable functions. 
Definition 3. The Choquet integral of ܨ(݅) with 
respect to a fuzzy measure ߤ is defined as  

∫ =μFd { ∫ ∈ )()(| iFiGGdμ  ,Ni ∈∀  and ܩ(݅) 
(measurable}. 
Definition 4. )(iΦ is measurable if its alpha-cuts 

)(iαΦ are measurable interval-valued functions for 
every ]1,0(∈α . 

Definition 5. Given a measurable fuzzy-valued 
function )(iΦ on N and a fuzzy measure ߤ on 2ே, the 
Choquet integral of )(iΦ with respect to ߤ is defined 
as 

μαμ
α

α dd U
10 ≤≤
∫∫ Φ=Φ  (10) 

Accordingly, the calculation of the Choquet 
integral with a fuzzy-valued function depends on the 
calculation of the Choquet integral with interval-
valued functions, and the following proposition can 
be proved (Grabisch, 1995). 
Proposition 1. Given the measurable interval-valued 
function αΦ and the fuzzy measure ߤ on 2ே, the 
Choquet integral of αΦ  with respect to	ߤ is  

∫ ∫ ∫ΦΦ=Φ ],[ μμμ ααα ddd RL  (11) 

Therefore (5.2) becomes 

∫Φ μd U
10 ≤≤α
α = ],[∫ ∫ΦΦ μμ αα dd RL  (12) 

Consider now an -tree whose leaves’ values are 
unimodal LR fuzzy numbers.  

To prove that the root value is still an unimodal LR fuzzy number, we introduce the following 

Proposition 2. The Choquet integral of unimodal 	ܴܮ fuzzy numbers is still an unimodal ܴܮ fuzzy 
number. 
Proof. A generic unimodal ܴܮ fuzzy number A is 
characterized by an alpha-cut  [ ఈ,௅ܣ ఈ],ோܣ  where ܮఈ 
and ܴఈ are strictly monotonic continuous functions 
(with respect to α). 

Consider now a set of unimodal ܴܮ fuzzy 
numbers { }kAA ,,1 K . If we aggregate these fuzzy 
numbers through Choquet integral with respect to a 
fuzzy measure ߤ, we obtain a fuzzy number ܣ 
characterized by the alpha-cut [ ఈ,௅ܣ ఈ],ோܣ  where,   

],,...,[ 1
αα

μ
α

k
LLL AACA =  

],...,[ 1
R αα

μ
α

k
RR AACA =

.
 

In fact, from the strict monotonicity of the 
Choquet integral, and given that the lower bound of 
each alpha-cut is less than the relative upper bound, 
we have [ A஑୐ < 	 A஑]ୖ . 

Moreover, if we consider 0 ≤ αଵ ≤ αଶ ≤ 1 since 
21 αα

i
L

i
L AA <  and 

21 αα
i

R
i

R AA >  ki ,,1K=∀ , from the 
strict monotonicity of the Choquet integral we have  

21 αα AA LL <  21 αα AA RR > . 
Then L஑and R஑ are strictly monotonic functions 

(with respect to α). Moreover, since Choquet 
integral is a continuous aggregation function, all α

iL  
and α

iR  are continuous functions ki ,,1K=∀ , and 
the composition of continuous functions is 
continuous, then it follows that L஑ and R஑ are 
continuous functions (with respect to α). 

Then, as an immediate consequence of Prop. 2, 
starting from the leaves and carrying on a bottom up 
Choquet aggregation, the obtained tree root’s value 
is again an unimodal (continuous) ܴܮ fuzzy number. 

The algorithm proceeds as described below. First 
of all, the alpha-cuts of each unimodal ܴܮ fuzzy 
number in the leaves will be considered, using a 
suitable grid. The procedure receives the extremes of 
the alpha-cut, and computes the aggregated value for 
both the lower and the upper bounds. Increasing the 
values of alpha in between [0,1], the two computed 
values form and interval included in the previous 
ones (for lower value of alpha). Thus the obtained 
intervals form the alpha-cuts of the fuzzy root, i.e. 
the required solution. 

4 CONCLUSIONS 

In this paper, at first we developed a consensual 
network dynamics aiming at supporting the 
negotiation process of a group of experts involved in 
the description of a fraudulent attack through a tree 
structure. 

Secondly, assuming that the leaves of the attack 
tree are equipped with attribute values represented 
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by LR fuzzy numbers, we propose an algorithm for 
aggregating these values using the Choquet integral, 
whose distinguished feature is to be able to take into 
account the interaction between nodes.   

Future work will be devoted to the introduction 
of case-based reasoning techniques combined with 
multi criteria models to improve the joint evaluation 
of risk and uncertainty of the attacks useful for 
estimating the prevention costs.  

REFERENCES 

Aumann R. J. (1965). Integrals of set-valued functions, 
Journal of Mathematical Analysis with Applications, 
12, 1-12, 1965. 

Buoni, A., Fedrizzi, M., Mezei, J. (2010). A Delphi-based 
approach to fraud detection using attack trees and 
fuzzy numbers. In Proceeding of the International 
Association for Scientific Knowledege. Oviedo, 
November 8-10.E-Alt & InterTic.  

Buoni, A., Fedrizzi, M., Mezei, J. (2011). Combining 
attack trees and fuzzy numbers in a multi-agent 
approach to fraud detection, International Journal of 
Electronic Business (forthcoming). 

Choquet G. (1953). Theory of capacities, Annales de 
l'Institut Fourier, 5, 131-295. 

Chou, C.L-Y, Du, T., Lai, S. V, (2007), Continuous 
auditing with a multi-agent system. Decision Support 
Systems, 42 (4) 2274-2292. 

Dubois, D. and Prade, H., (1987).Fuzzy numbers: An 
overview, Analysis of Fuzzy Information - Vol. I: 
Mathematics and Logic, J. Bezdek, ed., CRC Press, 
Boca Raton, 3-39. 

Kacprzyk, J. and Fedrizzi, M. (1988). A “soft” measure of 
consensus in the setting of partial (fuzzy) preferences. 
European Journal of Operational Research, 34, 316–
325. 

Fedrizzi, M., Fedrizzi, M., and Marques Pereira, R. A. 
(1999). Soft consensus and network dynamics in 
group decision making. International Journal of 
Intelligent Systems, 14, 63–77. 

Gordon, T. J. (1994). The Delphi method in futures 
research methodology. AC/UNU Millenium Project, 
Washington, AC/UNU. 

Grabisch M., Nguyen H. T., Walker E. A. (1995). 
Fundamentals of Uncertainty Calculi, with 
Applications to Fuzzy Inference. Kluwer, Boston, 
MA. 

Grabisch, M., Labreuche (2010). A decade of application 
of the Choquet and Sugeno integrals in multi-criteria 
decision aid, Annals of Operations Research, 175, 
247-286. 

Hand, D. J. (2007). Statistical techniques for fraud 
detection and evaluation. Available at: <http://lang 
tech.jrc.ec.europa.eu/mmdss2007/htdocs/Presentations
/Docs/MMDSS_Hand_PUBLIC.pdf.> 

KPMG Fraud survey (2009). Available at: <http://www. 
kpmginstitutes.com/aci/insights/2009/pdf/kpmg-fraud- 

survey-2009.pdf>. 
Oxman, R. (2004). Think-maps: teaching design thinking 

in design education. Design Studies. Vol. 25, Number 
1. 

Schneier, B. (1999). Attack trees. Available at: <http: 
//www.schneier.com/paper-attacktrees-ddjft.html>. 

Yager, R. R. (2006). OWA trees and their role in security 
modelling using attack trees. Information Sciences, 
176, 2933-2959. 

Yang R., Wang Z., Heng P. A., and Leung K. S. (2005). 
Fuzzy numbers and fuzzification of the Choquet 
integral, Fuzzy Sets and Systems, 153, 95-113. 

Wang, D. G., Li, T., Liu, S. J. L, Liang, G., Zhao, K. 
(2008). An immune multi-agent system for network 
intrusion. Proceedings of the third International 
Symposium on Intelligence Computation and 
Applications, (LNCS 5370, Springer-Verlag Berlin 
Heidelberg), 436-445. 

Zadeh, L. (1978). Fuzzy sets as a basis for a theory of 
possibility, Fuzzy Sets and Systems 1, 3-28. 

Zadeh, L. (1979). A theory of approximate reasoning. In 
Hayes, J., Michie, D., and Mikulich, L., editors, 
Machine Intelligence 9, Halsted Press, New York, 
149-194. 

Zhang, L. S., Zhou, N., Wu, J. X. (2008). The fuzzy 
integrated evaluation of embedded system security. 
International Conference on Embedded Software and 
Systems, 157-162. 

ICAART 2012 - International Conference on Agents and Artificial Intelligence

288


