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Abstract: Database technologies are evaluated in respect to their performance in model extension, data integration, 
data access, querying and distributed data management. The structure of the data sources is partially 
unknown. Additional value is gained combination of data sources. Data models for a relational, a document 
and a graph oriented database are compared showing strengths and weaknesses of each data model. 

1 INTRODUCTION 

Since relational database systems were introduced 
they have been successfully used for innumerable 
applications. So successfully in fact, that for a long 
time no other paradigms were seriously considered. 
In 2002 the CAP (Consistency, Availability, 
Partition tolerance) theorem that was first proposed 
by Eric Brewer in (Brewer, 2000) was proved (Seth 
and Nancy, 2002). The theorem states, that in 
distributed systems one can only guarantee two of 
the three properties consistency, availability and 
partition tolerance (Brewer, 2000). Consistency, 
which is one of the ACID (Atomicity, Consistency, 
Isolation, Durability) properties on which relational 
database are founded, may not be as important for 
some applications as the other two properties are. 
Due to these circumstances and other specialized 
applications, a demand for exploring alternative 
paradigms has risen. 

This has led to the development of several 
NoSQL databases (Levitt, 2010), (Stonebraker, 
2010) that have been introduced by open source 
initiatives or highly successful companies such as 
Google’s Bigtable (Fay et al., 2006) or Amazon’s 
SimpleDB (Amazon, n. d.). These were originally 
developed for use in their own applications, but they 
have been made publically available in the mean 
time. When starting a new project today, one can 
therefore not only choose from different vendors of 

relational databases, but can also decide to use a 
totally different database paradigm altogether, 
depending on the requirements of the project at 
hand. In this paper, three different paradigms are 
compared in respect to their performance in model 
extension, data integration, data access, querying 
and distributed data management. The results of the 
experiments and a technology comparison of the 
reference implementations are presented in this 
paper. 

The goal is to develop a generic common-use 
database application for a decision support system 
that allows the user to add data from arbitrary 
sources and integrate them into a common database. 
Additionally, the support of geospatial data types 
and queries was a requirement for this project. Five 
requirements, regarding the data model have to be 
taken into consideration: 

 Model extension: Adding completely new data 
with unknown structure. 

 Data integration: Integrating new data to an 
existing database by the user and combining 
data from various sources. 

 Data access: Possibility for automatically 
creating queries using parameters from a user. 

 Querying: Performing complex calculations in 
the database in a reasonable time. 

 Distributed databases: Querying a set of 
distributed databases to return combined 
results. 
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2 DATABASE DESCRIPTIONS 

For a decision support system, a database-solution 
with a dynamic data model is needed that allows 
integrating unknown data sources and dynamic, on-
the-fly query generation as well as data mapping for 
individual views on the data. For this purpose, three 
different database paradigms together with their 
respective implementations were explored: A 
relational database, a document oriented database 
and a graph oriented RDF database. As input data, 
tables with flat structures were used, i. e. a large flat 
file with several columns. 

2.1 Relational Database 

In the case of a relational database, the data model is 
defined before importing the data. Extension of 
tables may be possible after the database generation, 
but changing relations or keys in tables may make a 
rebuild necessary. In order to cover as many new 
data structures as possible, a generalized model has 
to be used. Further, input data has to be preprocessed 
and adapted with an ETL (Extraction, 
Transformation, and Loading) tool (SAS, (n. d.)), 
(Vassiliadis et al., 2002). 

A higher normal form has to be reached, in order 
to generalize the data model. Approximately 1/3 of 
the attributes from the flat input tables were 
normalized into 3NF and 2/3 into 1NF to provide a 
tradeoff between high generalization and query 
complexity. The original six independent data tables 
were finally modeled with 43 independent tables. 

An alternative generalized model, which could 
be created within the relational database, is based on 
the Universal Data Model pattern presented in (Hay, 
1995) and (Hay, 1997). By using six tables, it allows 
the creation of classes and instances within the 
relational data model. In Figure 1, the basic pattern 
is shown. 

The Universal Data Model pattern could be 
applied in the following way: In the table Class, 
class types are defined. Each class type has the some 
attributes, which are listed in the table Attributes and 
they are connected through the junction table 
Attribute Assignment. In the table Instance, the 
instance of the class types are saved. The actual 
corresponding attribute values of that instance are 
stored in the table Values. In the table Relations, it is 
possible to set a relation between subject and object 
instances with predicates like “superClassOf”. Those 
predicates are defined in the table Relation Types. 
The classes within the Universal Data Model can be 
expanded with any type of attribute. New classes can 

be added. In this case, each domain (e. g. company 
data) could be modeled within one complete 
Universal Data Model pattern. 

 
 

Figure 1: A data model based on the Universal Data 
Model pattern by D. C. Hay (Hay, 1995) modeled in UML 
notation. 

Since geospatial data is a requirement in our 
project, Postgre (PostgreSQL, n. d.) with the add-on 
PostGIS (PostGIS, n. d.) was used for the relational 
database model. PostGIS contains additional 
functions for processing geographic data e. g. 
intersection. 

Since no out of the box features for distributed 
databases are available for most relational databases 
and it would have to be done manually, database 
distribution was not implemented for PostGIS. 

2.2 Document Oriented Database 

A document oriented database was investigated for 
its ability to store and process hierarchical data 
elements in a single collection, while allowing 
individual database entries to have arbitrary 
structures. It would make adding new or appending 
information to selected existing entries trivial. 

MongoDB (MongoDB, (n. d.)) was chosen, 
because of its wide implementation base, extensive 
documentation, native support for server-side 
JavaScript processing for map-reduce patterns, and 
for its scalability and resilience features. 

Since MongoDB natively supports JSON 
(JavaScript Object Notation) and BSON (Binary 
JSON) data structures, importing new data is trivial. 
Existing tools were used to convert geospatial data 
such as Shape-files. They could then be imported as 
JSON files, representing each geospatial feature as a 
separate entity. Data can be imported as a separate 
collection, or added to existing collections. As the 
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imported data can be arbitrarily structured and the 
end user is typically only interested in a subset of the 
attribute hierarchy, a separate metadata collection 
was used to track the desired attributes. This proved 
useful in reducing network bandwidth, and 
considerably simplified client-side processing and 
display. 

Access to the data is provided through an 
interactive web page that allows the user to 
formulate geospatial queries towards a selected 
database collection. Metadata information is used to 
provide the user with automatically generated, 
meaningful filter criteria (sliders for numeric values, 
check boxes for enumerations and string searches for 
arbitrary text) and to specify the format of the result 
set. To minimize network latency and round-trip 
delays, only geospatial queries are processed within 
the database itself. The result set is then processed 
by JavaScript code within the web page, allowing 
near-instant refinement and updates as the user 
explores varying filter criteria. Unfortunately, 
support for geospatial queries was very limited at the 
time of this implementation, only allowing us to 
filter for a coarse bounding box (min/max tests for 
latitude and longitude) within the database query 
itself. Therefore the required precise distance-from-
polygon metric is calculated in a separate pass 
through the result set before returning it to the client. 
The query language for MongoDB allows queries of 
moderate complexity but can be enhanced by java 
script code which is slow but may be executed in 
parallel following the map-reduce pattern.  

Multiple instances can be combined to form 
database clusters for resilience against server or 
connection failure. Databases can also be split 
(sharded), using an arbitrary attribute as a key for 
distribution over several instances (shards). Each 
shard then only carries a fragment of the full 
database and the system automatically attempts to 
equalize the workload carried by all participating 
shards. Clustering and sharding are entirely 
transparent to the client, allowing the database 
backend to be rearranged and extended as required. 
MongoDB allows the distribution of large databases 
over multiple networked instances and queries are 
processed in parallel. This is desirable for compute 
intensive queries and aggregations (which can be 
formulated as Map-Reduce patterns). 

2.3 Graph Oriented Database 

Graph oriented databases were considered, because 
of the required functionality to add new information 
and links between existing data. 

Of the several possible database systems 
available, the RDF (Resource Description 
Framework) database Allegrograph (Allegro, (n. d.)) 
was chosen, because it supports several 
programming interfaces, e.g. Java Jena, Java 
Sesame, Python, Lisp and others. Also geospatial 
types and distributed queries are supported. The 
reference implementation uses the Java Jena 
interface for importing data and the Java Sesame 
interface and SPARQL to query the database. 
Source files contain flat tables of data. The import 
supports three different operations. The most basic 
operation is an import of new entities, where each 
imported row is treated as a new instance of a 
definable type, the column header is the predicate 
and the actual value is the object of the triple. The 
second possibility is to append attributes to an 
existing entity by letting the user define which 
columns in the source file must match which 
columns in the existing database. The third mode is 
to add links between existing data. The user defines 
which columns in the source table must match which 
properties of the subject instance and the object 
instance. In all three modes the user can define a 
data type for each column. If possible, the value in 
the table is then automatically converted to this type 
and can hence be queried appropriately. If a 
conversion is not possible, e.g. the source field 
contains values like “15 million” instead of 
“15,000,000”, the value is still imported but without 
a type. These values can then be displayed in tables 
like all others but are not available for queries. 

The user can access the data using an 
automatically generated query interface and two 
automatically generated report formats. SPARQL is 
used as a query language and is generated by setting 
filters However, in the implementation of 
Allegrograph, the extensions for geospatial queries 
are not yet available for SPARQL. Other functions 
have to be combined to filter the original query 
result. Two different implementations of user 
interfaces were implemented. In the first method, the 
query interface is comprised of a filter table that 
displays input fields for all predicates. The controls 
for entering the filter depend on the data type 
defined during the import, e.g. a textbox for texts or 
a checkbox for boolean values. The result of the 
preliminary search is a table containing all entities 
that match the search criteria. Values in the table 
that have additional triples associated to it with 
further information can be clicked on to show a 
more detailed report. This second report format 
shows all triples associated with the selected entity, 
both those where the entity is the subject as well as 
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those where the entity is the object. Here, again, 
instances with additional information are shown as 
hyperlinks which link to a detailed report on that 
entity.  

As a second query method, another solution was 
implemented, where the actual structure of the data 
is mapped against a manually created ontology. Both 
the ontology and the mapping can be modified at 
any time. Queries for this manual ontology are then 
transformed to fit the actual data structure. In this 
way, a custom view on the data can be defined and 
queried independently from the actual data. The 
model is reusable and by changing the mapping, the 
same query can be used for several sources, e.g. 
changed to a new source after importing it to the 
database. 

Allegrograph’s query engine allows federating 
multiple repositories into one virtual repository. This 
virtual repository can then be used to run queries 
using the data from all repositories. Compared with 
the document oriented approach, the federation of 
the databases is not done transparently but can be 
controlled by the developer. This allows including or 
excluding databases at query time depending on the 
user’s privileges, available servers or user selection. 
In the test-setup, three repositories were hosted on 
the same server. A sample query returning approx. 
2000 Triples from a database containing about 6 
million triples took 6.9 seconds when only a single 
repository was included. The same query with data 
split into two repositories took 8.9 seconds. When 
split into three repositories it took 11.7 seconds to 
execute. The execution time in this setup therefore 
rises 30% for each additional database. Virtual 
repositories do not allow write operations for the 
obvious reason that it would not be clear to which 
physical repository the data should be written to. So, 
in our solution the user can decide where new data 
should be stored when importing a new file. 

3 TECHNOLOGY COMPARSION 

The described databases are compared regarding 
their possibilities for model creation and data 
import, data access and querying and the possibility 
of using multiple databases. 

3.1 Model Creation and Data Import 

The used relational database structure would 
probably be able to integrate most of the inputs in 
the domains. However, if something had to be 
changed in the schema, the whole database would 

have to be rebuilt. Errors in the schema due to 
insufficient information about the data sources 
demand a high effort to correct. All input data has to 
be adapted to the existing data model with an ETL 
tool or manually. Experience did show that the 
process of adapting the ETL tool for a complex data 
model on the first import is fault-prone and demands 
high effort, e. g. if data could not be completely 
imported as initially modeled, the model had to be 
revised. It is hard to exclude all errors and to 
consider unknown possibilities at the first import 
attempt. In order to create a stable model that allows 
integrating future unknown sources, several attempts 
are needed. However, it is impossible to exclude that 
new sources will again force a further database 
rebuild. 

The document oriented approach performs well 
when importing the data since it does not have to be 
converted in any way. Data is imported as available, 
but the effort of organizing the data is actually only 
relocated to the query phase.  

Allegrograph has tools to batch-import large files 
of triples, which can be used if data is already 
available in this format. When importing data from 
the original text files and splitting the tables into 
triples, the implementation of the functionality is not 
complicated, but it scales very badly. Importing a 
table with approx. 320k rows and 20 columns took 
22 hours to complete. This is a rate of about 80 
records (triples) per second, but since the number of 
records adds up to 6.4 million it takes a very long 
time to complete. 

3.2 Data Access and Querying 

In the relational database, with normalized tables, it 
was possible to create large complex queries. For 
instance, a query used 17 interconnected tables by 
including 16 sub-queries, taking in total 
approximately 2500 words (fields and operators) It 
took about 90s to execute it on around 60k records 
on a Intel® Core™ i5 CPU M560 2.67 GHz 
processor with 4 GB RAM. Materialized tables were 
used, in order to improve performance, which was 
executed in about 10s. As expected, in comparison 
to the other approaches, the relational database is 
superior in creating and executing complex queries 
on a large set of data. This is the main advantage of 
this type of system. 

The usage of the Universal Data Model in the 
relational database would have the advantage that it 
would be completely generalized and adaptable for 
new data sources. However, the price would be paid 
with long complex queries, because of the many 
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relations between instances. It would slow down the 
execution time. Further, no cardinalities can be set 
between the instances and its values would have to 
be a string for all values of the table Value (see 
Chapter 2.1). 

Allegrograph offers several interfaces for 
querying the data. Experience did show that queries 
scale very badly. The execution time is proportional 
to database size, the structure of the query and the 
limitation. In our case, all queries must be limited to 
a fixed number of results; otherwise the query may 
take very long to complete (more than 4 min). Up to 
a limitation of around 300 results, the query time of 
a certain query was approximately the same. Above 
that, the time rises in discrete steps. The row-limited 
version of the query is satisfactorily fast for large 
result sets, since the query terminates after the 
defined number of results is reached. In this case, a 
query was tested with different limitations on an 
Intel® Xeon® 3.0 GHz processor with 4 GB RAM. 
From the keywords used in the queries, ORDER BY 
affects the performance significant, while 
DISTINCT, UNION and LIMIT do not. A 
remarkable experience was that the order of the 
statements in SPARQL plays a decisive role in the 
execution time. If the statement order is constructed 
optimally, the query executes in about 2 s, else the 
query does not complete within an acceptable time 
limit. The following tendencies were observed: 
Equal subjects should be grouped together if 
different subjects are used, within a group of 
subjects, the “simpler” statements should be placed 
first, statements with UNION should be put at the 
end of a group of subjects and finally, rdf:label and 
rdf:type should be placed as the first element of a 
group of subjects. However, for complex querying 
like the complex query example in the relational 
database, this approach is not suitable. 

In MongoDB, the querying was similar to the 
Allegrograph. The idea of using metadata 
information to automatically generate filters worked 
well. The fact that joins are not available in 
MongoDB, poses limits on the complexity of the 
queries. To overcome this, java script code can be 
used in more complex situations. This method 
however slows down query performance in cases 
where parallel-execution is not possible. 

3.3 The Usage of Multiple Databases 

Since distributing data over several databases is not 
the focus of relational database systems and is also 
not supported natively by the used system (Postgre), 
this option was not explored. 

Allegrograph supports federated virtual 
repositories that can be set up dynamically at 
execution time. This feature can be used to define 
which databases should be used for a query 
depending on user’s privileges, availability of 
servers or user-selection. The implementation was 
straightforward and only geospatial queries had to be 
adapted to the new circumstances. The execution 
time of a query is extended by about 30% for each 
additional repository. 

In MongoDB, it was noticed that the apparent 
communication overhead involved in synchronizing 
clusters and shard management is substantial, and 
appeared to outweigh the benefits of parallelized 
execution for the relatively small database sets 
(~500.000 entries). Furthermore, recovery from 
failed or inaccessible cluster members proved to be 
nontrivial in some cases. Both facts may however be 
attributed to the use of pre-release development 
versions (which contained experimental 
functionality for geospatial queries). 

4 CONCLUSIONS 

Reference implementations were developed for three 
different database paradigms including their actual 
implementation in order to compare their 
performance in five different disciplines relevant to 
the project: Model extension, data integration, data 
access, querying and distributed databases. 

It was possible to at least partially fulfill the 
requirements with all three approaches. It was 
shown that the results and effort during the 
implementation vary greatly. 

Model extension: Relational databases are not as 
flexible as the database schema is predefined, which 
is different in the other two solutions. The amount of 
work needed for the implementation is also higher, 
but once the implementation is done it performs 
well. In the graph oriented approach, it is possible to 
extend the data model on the fly without affecting 
the actual data in the database. The same applies to 
document oriented databases. 

Data integration: In order to be able to query data 
in the relational database, input data has to be 
preprocessed by an ETL tool, which demands a high 
initial effort. In the graph and document oriented 
approach, the possibility of importing data without 
transformation is given, but it affects the 
performance if the data structure has to be processed 
within the query. Therefore, it is strongly 
recommended to have some sort of ETL process, 
which is used on the data before importing or 
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restructuring the data in the database. For importing 
data, the easiest approach however was the 
document oriented database because it does not need 
data transformation, performs well and is scalable to 
large data sources. 

Data access: In the relational database, all data 
was accessible through the use of predefined 
queries. For simple queries, it would be possible to 
use graphical query creators. At some level of query 
complexity, experience has shown that it is easier to 
write the queries directly in SQL. The graph oriented 
approach uses predefined queries, either 
automatically derived from the available predicates 
or manually created in the dynamic data model. The 
document oriented approach uses queries that are 
automatically constructed according to the manually 
defined metadata. 

Querying: The fast querying in the relational 
database on large amounts of data makes is well 
suited for the use in large databases, also for 
complex queries. The most flexible querying 
solution is the graph oriented approach. But this 
technology scales very badly and performance is the 
main issue in the graph-oriented approach. 
Therefore, only queries with low complexity are 
suited for use in large databases in this case. 
Performance is an issue in the document oriented 
approach, where the map-reduce patterns and 
sharding offer high performance for suitable queries, 
but not in the general case. The lack of JOINs 
reduces flexibility. 

Distributed systems: The relational database did 
not natively support distributed queries and was 
therefore not tested. The graph and the document-
oriented approaches both allow creating federated 
repositories, which can be queried in the same way 
as a single query. However, in the graph-oriented 
approach, a query takes about 30% longer to execute 
for each additional repository. 

Table 1: Evaluation of results. 

Requirement Rel. Doc. Graph 
Model Extension - ++ ++ 
Data integration + ++ + 
Data access ++ ++ ++ 
Querying ++ - + 
Distributed databases NA + ++ 

In Table 1, the fulfillment of the requirements by 
the different data models is summarized. In the 
table, the scale --, -, +, ++ and “NA” (here, not 
tested) is used. 
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