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Abstract: Two-level supersaturated designs are very useful in the screening experiments and the common goal is to
identify sparse but dominant active factors with low cost. Recently, a new analysis procedure called the
Stepwise Response Refinement Screener (SRRS) method is proposed to screen important effects. This paper
extends this method to the two-level nonregular fractional factorial designs. The applications to several real-
life examples suggest that the SRRS method is able to retrieve similar results as the existing methods do.
Simulation studies show that compared to existing methods in the literature, the SRRS method performs well
in terms of the true model identification rate and the average model size.

1 INTRODUCTION

As science and technology have advanced to a higher
level nowadays, investigators are becoming more in-
terested in and capable of studying large-scale sys-
tems. To address these challenges of expensive ex-
perimental costs, research in experimental design has
lately focused on the class of supersaturated designs
(SSD) for their run-size economy and mathematically
novelty. Under the condition of factor sparsity (Box
and Meyer, 1986), these experiments aims at correctly
identifying the subset of those active factors that have
significant impact on the response, so that the whole
investigation can be economically proceed via dis-
carding inactive factors prior to the follow-up experi-
ments.

Traditionally, SSDs are employed only for screen-
ing main effects, and interactions are discarded due
to limited degree of freedom. More refined analy-
sis methods were recently developed and Phoa, Pan
and Xu (2009) provides a comprehensive list of re-
cent analysis methods found in the literature. Candes
and Tao (2007) proposed the Dantzig selector (DS)
and showed that it has some remarkable properties
under some conditions. Phoa, Pan and Xu (2009) im-
plemented the DS in practice, introducing a graphi-
cal procedure via a profile plot for analysis and an
automatic variable selection procedure via a modi-
fied Akaike information criterion (AIC). Tradition-

ally, AIC is used for model selection. For linear mod-
els, it is defined as

AIC = n log(RSS/n)+2p (1)

where RSS = ∑n
i=1(yi − ŷi)

2 is the residual sum of
squares andp is the number of parameters in the
model. It is known thatAIC tends to overfit the model
when the sample size is small. Phoa, Pan and Xu
(2009) imposed a heavy penalty on the model com-
plexity and proposed a new modifiedAIC for the DS
method, which is defined as

mAIC = n log(RSS/n)+2p2 (2)

The mAIC typically chooses a smaller model than
AIC.

Recently, Phoa (2011) introduce a new variable
selection approach via the Stepwise Response Refine-
ment Screener (SRRS). The SRRS chooses the best
subset of variables or active factors by two proce-
dures: Factor Screening and Model Searching. This
method has shown its superior model selection ability
via a comparison to five commonly used methods in
the literature, namely SSVS (Chipman et al., 1997),
SSVS/IBF (Beattie et al., 2002), SCAD (Li and Lin,
2003), PLSVS (Zhang et al., 2007) and the DS (Phoa
et al., 2009a) method. Readers who are interested
in the main idea of the SRRS method are referred
to Phoa (2011) . This paper aims at extending the
SRRS method to the variants of supersaturated exper-
iments. In section 2, we review the notation and the
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general procedure of SRRS introduced in Phoa (2011)
. Section 3 discusses the modifications of the algo-
rithms when the SRRS is used in these extensions. To
demonstrate the value of the SRRS method, a simula-
tion study is performed in section 4. The result shows
that the SRRS method is powerful for analyzing not
only SSDs but also its variant designs. The last sec-
tion gives some concluding remarks.

2 ANALYSIS OF FRACTIONAL
FACTORIAL DESIGNS VIA THE
SRRS METHODS

Fractional factorial designs (FFDs) are classified into
two broad types: Regular FFDs and Nonregular
FFDs. Regular FFDs are constructed through defin-
ing relations among factors and are described in many
textbooks (Wu and Hamada, 2000). These designs
have been widely used in scientific researches and
industrial processes because they are simple to con-
struct and to analyze. On the other hands, nonreg-
ular FFDs such as Plackett and Burman (1946) de-
signs, Quaternary-code designs (Phoa and Xu 2009 ,
Zhang et. al. 2011 ) and other orthogonal arrays are
often used in various screening experiments for their
run size economy and flexibility (Wu and Hamada,
2000). Phoa, Xu and Wong (2009) demonstrated the
advantages of using nonregular FFDs using two real-
life toxicological experiments. Phoa, Wong and Xu
(2009) used three real-life chemometrics examples to
show the analysis pitfalls when the interactions are
assumed to be insignificant without verifications.

In this section, we extend the use of the SRRS
method to the analysis of fractional factorial designs
(FFDs), including two-level nonregular FFDs and
multi-level FFDs.

2.1 Modification of the SRRS Method
Accompanied for the Analysis of
Nonregular Designs

Consider a nonregular FFDs withk1 main effects and
n runs, wheren < m. There arek2 = k1(k1+1)/2 in-
teractions between two different main effects. If all
two-factor interactions are considered together with
all main effects, it is possible thatk2 > m, then the
design matrix is supersaturated. We express the re-
lationship via a linear regression modely = Xβ+ ε
wherey is an n× 1 vector of observations,X is an
n× k model matrix fork = k1+ k2, β is ak×1 vector
of unknown parameters, andε is ann× 1 vector of
random errors. Assume thatε∼ N(0,σ2In) is a vector

of independent normal random variables. In addition,
X is assumed to be supersaturated, i.e.n < k. We
denotem to be the number of potentially important
effects (PIEs) andSin f to be the influential set of PIEs
found in the process.

Traditionally, the analysis of nonregular FFDs is
based on two assumptions: the factor sparsity princi-
ple and the effect heredity prinicple. The first assump-
tion has been embedded in the SRRS method, but the
second assumption does not. In order to implement
the heredity principle into the SRRS method, the two
procedures of the SRRS method are slightly modified
and presented in the following steps:

I. SRRS (Heredity Prinicple embedded)–Factor
Screening:

Step 1. Standardize data so thaty0 has mean 0 and
columns ofX have equal lengths.

Step 2. Compute the marginal correlationsρ(Xi,y0)
for all main effectsXi, i = 1, . . . ,k. (∗)

Step 3. Choose E0 such that |ρ(E0,y0)| =
maxXi |ρ(Xi,y0)|. Identify E0 as the
first PIE and includeE0 in SIn f .

Step 4. Obtain the estimateβE0 by regressingy0 on
E0.

Step 5. For the nextm PIEsE j where j = 1, . . . ,m,
m < n−2,

(a) Compute the refined responsey j =
y j−1−E j−1βE j−1.

(b) Compute the marginal correlations
ρ({Xi,Xi j},y j) for all main effectsXi,
i= 1, . . . ,k and all two-factor interactions
Xi j, X j ∈ SIn f . (∗)

(c) Choose E j such that |ρ(E j,y j)| =
max{Xi,Xi j} |ρ({Xi,Xi j},y j)|. (∗)

(d) Obtain the estimateβE j by regressingy j
on E j.

(e) Identify E j as a PIE and includeE j in
SIn f if |βE j | ≥ γ, whereγ is the threshold
of noise level.

(f) Repeat (a) to (e) untilEm is not included
in SIn f .

II. SRRS–Model Searching:

Step 6. Perform all-subset search, with the consid-
eration of the heredity principle, for allE j,
from models with one factor to models with
m factors, wherem is minimum between the
ceiling ofn/3 or the number ofE j in Sin f . (∗)
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Step 7. ComputemAIC for each model and choose
the final model with the smallestmAIC
among all models, and allE j included in the
final model are considered to be significant
to the responsey0.

The first modification is in Step 2. Due to the
heredity principle, two-factor interactions are never
be selected as the first PIE, so only the marginal corre-
lations of all main effects are compared for selecting
the first PIE. The second and third modifications are
in Step 5. During the search of thejth PIE, not all
two-factor interactions are considered in the compari-
son of marginal correlation. According to the heredity
principle, a two-factor interactionXi j is considered in
Step 5(b) if and only if eitherXi or X j or both parents
main effects have been included inSIn f in the pre-
vious searches. Therefore, the modifications in Step
5 take away a subset of two-factor interactions that
none of their corresponding parent main effects have
been PIEs. The last modification is in Step 6. The re-
duced models built in this step must follow the hered-
ity principle in order to avoid the situation that some
significant two-factor interactions are included in the
reduced model but none of their parent main effects
have been included.

2.2 Two Illustrating Examples

We illustrate the analysis of nonregular FFDs via the
SRRS method step by step using the following two
examples. The Factor Screening procedures is termi-
nated via the noise threshold in the first example and
via the maximum number of PIEs in the second ex-
ample.

Example 1. Consider the cast fatigue experiment
(Wu and Hamada 2000 , section 7.1), a real data set
consisting of seven two-level factors. The design ma-
trix and the response are found in Wu and Hamada
(2000) . When all two-factor interactions are consid-
ered to be as important as the main effects, the design
matrix consists of 21 additional interactions and is su-
persaturated.

In the Factor Screening procedure, the first PIE
being identified isF and its absolute marginal cor-
relation toy0 is the highest among all main effects
(0.6672). A regression model betweeny0 and F is
built and the magnitude of the slope estimate|βF | =
0.4576. Then we set the thresholdγ = 0.04, about
10% ofβF .

To search for the second PIE, the new responsey1
is refined by subtractingFβF from y0. Then among
all main effects and all the two-factor interactions that
consist ofF, FG (the interaction between main ef-
fectsF andG) has the highest absolute marginal cor-

Table 1: Factor Screening of Cast Fatigue Experiment Data.

Marginal Continue
m PIE Correlation |β| or Stop
0 F 0.6672 0.4576 Continue
1 FG −0.8980 0.4588 Continue
2 D −0.4677 0.1183 Continue
3 EF −0.6336 0.1442 Continue
4 C 0.5032 0.0758 Continue
5 E −0.5817 0.0785 Continue
6 AE −0.7667 0.1482 Continue

AE −0.6835 0 Stop
PIEs inSIn f after Factor Screening:
C, D, E, F, AE, EF , FG

relation (0.8980) toy1 and so it is identified as the
second PIE. A regression model betweeny1 andFG,
F is built and the magnitude of the slope estimate
|βFG| = 0.4588> γ. This meansFG is important
enough to be included in the influential setSIn f to-
gether withF.

The procedure continues to search for the next five
PIEs. Table 1 shows every step of the process of Fac-
tor Screening. Note that in the last step, the absolute
magnitude of the slope estimate ofAE is close to 0,
so the search stops and seven PIEs are identified in the
Factor Screening procedure.

Since there are 12 observations in the data, the
maximum number of active factors is suggested to be
4. There are totally 98 reduced models up to four-
factors models that are constructed from seven PIEs,
but only 49 of them fulfill the heredity principle. A
comparison of themAICs of these 49 reduced models
shows that the two-effects model withF andFG has
the lowestmAIC = −27.82. Thus the SRRS method
suggests thatF andFG have significant impacts to
the responsey0. This result is also recommended by
Wu and Hamada (2000, Section 8.4) and the Dantzig
selector (DS) method in Phoa, Pan and Xu (2009) .

Example 2. Consider the high-performance liq-
uid chromatography (HPLC) experiment (Vander-
Heyden et al., 1999), a real data set consisting of eight
two-level factors. The design matrix and the response
are found in Phoa, Wong and Xu (2009) . When all
two-factor interactions are considered to be as impor-
tant as the main effects, the design matrix consists of
28 additional interactions and is supersaturated.

In the Factor Screening procedure, the first PIE
being identified isE and its absolute marginal cor-
relation toy0 is the highest among all main effects
(0.5019). A regression model betweeny0 and E is
built and the magnitude of the slope estimate|βF | =
0.5583. Then we set the thresholdγ = 0.05, about
10% ofβE .

To search for the second PIE, the new responsey1
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Table 2: Factor Screening of HPLC Experiment Data.

Marginal Continue
m PIE Correlation |β| or Stop
0 E −0.5019 0.5583 Continue
1 EF 0.8055 0.7750 Continue
2 F 0.7747 0.4417 Continue
3 H −0.7396 0.3000 Continue
4 FH 0.5897 0.1625 Continue
5 A 0.6922 0.1389 Continue
6 FI −0.5295 0.0893 Continue
7 EI 0.5713 0.0836 Continue
8 AF −0.6587 0.0792 Continue

EF 0.6951 0.0667 Continue
PIEs inSIn f after Factor Screening:
A, E, F , H, AF , EF , EI, FH, FI

is refined by subtractingEβE from y0. Then among
all main effects and all the two-factor interactions that
consist ofE, EF (the interaction between main effects
E andF) has the highest absolute marginal correlation
(0.8055) toy1 and so it is identified as the second PIE.
A regression model betweeny1 andEF , E is built and
the magnitude of the slope estimate|βEF |= 0.7750>
γ. This meansEF is important enough to be included
in the influential setSIn f together withE.

The procedure continues to search for the next
eight PIEs. Table 2 shows every step of the process of
Factor Screening. Note that in the last step, although
the absolute magnitude of the slope estimate ofEF is
0.0667> γ, them < n−2 criterion stops the search
and nine PIEs are identified in the Factor Screening
procedure.

Since there are 12 observations in the data, the
maximum number of active factors is suggested to be
4. With nine PIEs found in the previous step, there are
totally 255 reduced models up to four-factors models,
but only 102 of them fulfill the heredity principle. A
comparison of themAICs of these 102 reduced mod-
els shows that the three-effects model withE, F and
EF has the lowestmAIC = −6.48. Thus the SRRS
method suggests thatE, F andEF have significant
impacts to the responsey0.

Phoa, Wong and Xu (2009) previously analyzed
the same data and concluded that an additional effect
H was also significant to the response. ThemAIC of
the model consisting ofE, F , H and EF is −3.95,
which is slightly higher than our suggested model.
The increase ofmAIC whenH is added comes from
the heavy penalty to the number of factors in the
model. If other penalty terms are used, results may
be different. For example, the originalAIC favors the
addition of H. Therefore,H may be barely signifi-
cant and some follow-up experiments are suggested
to investigate the significance ofH to the response.

Table 3: Summary of Simulation Results in Example 3.

Case I II III IV
Min TMIR 94% 47% 5% 0%

Size 1.00 1.85 2.05 1.06
1st Q. TMIR 97% 97% 44% 15%

Size 1.01 2.01 3.00 2.42
Median TMIR 98% 97% 96% 53%

Size 1.02 2.02 3.00 3.30
3rd Q. TMIR 99% 99% 99% 88%

Size 1.03 2.03 3.01 3.76
Max TMIR 100% 100% 100% 99%

Size 1.06 2.05 3.04 3.98

3 SIMULATION STUDIES

In order to judge the value of the SRRS method, we
randomly generate some models and evaluate the per-
formance of the SRRS method.

Example 3. In this example, we generate data from
the same linear model as in Example 1. Since there
are only 12 observations in the data, the maximum
possible number of active factors is 4. Therefore, we
consider four cases forbeta. There arei active fac-
tors for casei, 1≤ i ≤ 4. For each case, we generate
500 models where the selection of active factors is
random without replacement, the signs of the active
factors are randomly selected from either positive or
negative, and the magnitudes are randomly selected
from 2 to 10 with replacement. For each model, we
generate data 100 times and obtain the True Model
Identified Rate (TMIR) and the average model size. In
the simulations we fixγ = 1, which is approximately
equal to 10% of max|βi|. Table 3 gives the summary
statistics of these two quantities among 500 models.

The SRRS method is very effective in identifying
1, 2 and 3 active factors; the TMIR in these cases
are at least 96% in average true model identified rate
and only a few cases that have average model sizes
slightly higher than the true numbers of active factors.
The performance of the method decreases in identify-
ing 4 active factors. It is mainly because of the limit
posted on the allowed number of active factors, which
leads to a slightly underfitting situation.

4 CONCLUDING REMARKS

The Stepwise Response Refinement Screener (SRRS)
method has shown its satisfactory performance on
screening the supersaturated designs in Phoa (2011) .
In this paper, we modify the SRRS method in order to
adapt for analyzing the nonregular FFDs with the con-
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sideration of interactions. Under the validity of the
factor sparsity and effect heredity assumptions, the
calculations needed to carry out the analysis are sim-
ple and easily performed with little computation time.
Simulation suggests that the SRRS method performs
well in most of the cases, except when it is on the line
of maximum number of allowed active factors. In ad-
dition, we cannot ensure that thsi method works well
in every case as its fundamental theorems are still un-
der investigation. Sometimes it may still possible to
reach misleading conclusion, so it is highly recom-
mended that once the suggested set of significant fac-
tors is found, a follow-up experiment is needed for
validating the results.
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