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Abstract: The paper compares different heuristics that are used by greedy algorithms for constructing of decision trees.
Exact learning problem with all discrete attributes is considered that assumes absence of contradictions in the
decision table. Reference decision tables are based on 24 data sets from UCI Machine Learning Repository
(Frank and Asuncion, 2010). Complexity of decision trees is estimated relative to several cost functions:
depth, average depth, and number of nodes. Costs of trees built by greedy algorithms are compared with exact
minimums calculated by an algorithm based on dynamic programming. The results associate to each cost
function a set of potentially good heuristics that minimize it.

1 INTRODUCTION

Decision trees are widely used for representing of
knowledge, for prediction and as algorithms in search
theory (Ahlswede and Wegener, 1979), machine
learning (Breiman et al., 1984; Quinlan, 1993), fault
diagnosis (Pattipati and Dontamsetty, 1992), etc.
Many problems of constructing optimal decision trees
are NP-hard (Hyafil and Rivest, 1976). Moreover,
for several problem statements an approximation pre-
serving reduction is done that guarantees absence
of polynomial complexity algorithms under reason-
able assumptions about complexity classesP andNP
(Alekhnovich et al., 2004; Heeringa and Adler, 2005).

The majority of approximate algorithms for de-
cision tree construction are based on greedy ap-
proach. Such algorithms build tree in a top-down
fashion, minimizing some impurity criteria at each
step. There are several impurity criteria designed us-
ing theoretical-information (Quinlan, 1986), statisti-
cal (Breiman et al., 1984) and combinatorial (Moret
et al., 1980) reasoning. For some criteria, bounds on
approximation ratio is obtained that limit deviation
of tree characteristics from the minimum (Chakar-
avarthy et al., 2007; Heeringa and Adler, 2005;
Moshkov, 2010).

The aim of our work is comparative analysis
of several greedy algorithms in application to exact
learning problems. We assume that the decision tables
contain only categorical attributes and free of incon-

sistency. Several cost functions are considered that
characterize space and time complexity of decision
trees: depth, average depth, and number of nodes.
Since algorithm behavior depends heavily on the in-
put data, we choose reference decision tables close to
real-life problems, taking data sets mainly from UCI
Machine Learning Repository (Frank and Asuncion,
2010) as a base.

Costs of trees constructed by greedy algorithms
are compared with exact minimum, calculated by
an algorithm based on dynamic programming. The
idea is close to algorithms described in (Garey, 1972;
Martelli and Montanari, 1978), but authors devised it
independently and made several improvements. For
example, the algorithm is capable of founding a set of
optimal trees and perform sequential optimization by
different criteria (Moshkov and Chikalov, 2003) (we
do not consider these extensions in the paper). An ef-
fective implementation allows for applying the algo-
rithm to decision tables containing dozens of columns
(attributes) and hundreds to thousands rows (objects).

The paper is organized as follows. Section 2 in-
troduces basic notions. Section 3 contains general
schema of greedy algorithm. Section 4 describes
an exact algorithm based on dynamic programming.
Section 5 presents experimental setup and results of
experiments. Section 6 contains conclusions.
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2 BASIC NOTIONS

In this paper, we consider only decision tables with
categorical attributes. These tables do not contain
missing values and equal rows. Adecision tableis
a rectangular tableT with m columns andN rows.
Columns ofT are labeled withattributes f1, . . . , fm.
Rows ofT are filled by nonnegative integers which
are interpreted as values of these attributes. Rows are
pairwise different, and each row is labeled with a non-
negative integer which is interpreted as thedecision.
We denote byE(T) the set of attributes (columns of
the tableT), each of which contains different values.
For fi ∈ E(T), let E(T, fi) be the set of values from
the column fi . We denote byN(T) the number of
rows in the tableT.

Let fi1, . . . , fir ∈ { f1, . . . , fm} and b1, . . . ,br
be nonnegative integers. We denote by
T( fi1,b1) . . . ( fir ,br) the subtable of the tableT,
which consists of such and only such rows ofT
that at the intersection with columnsfi1, . . . , fir have
numbers b1, . . . ,br respectively. Such nonempty
tables (including the tableT) will be calledseparable
subtablesof the tableT.

Let rows ofT be labeled withk different decisions
d1, . . . ,dk. For i = 1, . . . ,k, let Ni be the number of
rows inT labeled with the decisiondi, andpi =Ni/N.

We consider four uncertainty measures for deci-
sion tables: entropyent(T) = −∑k

i=1 pi log2 pi (we
assume 0log20 = 0), Gini index gini(T) = 1 −

∑k
i=1 p2

i , minimum misclassification errorme(T) =
N−max1≤ j≤k Nj , and the numberrt (T) of unordered
pairs of rows inT with different decisions (note that
rt (T) = N2gini(T)/2).

Let fi ∈ E(T) and E(T, fi) = {a1, . . . ,at}. The
attribute fi divides the tableT into subtablesT1 =
T( fi ,a1), . . . ,Tt = T( fi ,at). We now define an
impurity function I which gives us theimpurity
I(T, fi) of this partition. Let us fix an uncer-
tainty measureU from the set{ent,gini,me, rt} and
type of impurity function: sum, max, weighted-
sum, or weighted-max. Then for the typesum,
I(T, fi) = ∑t

j=1U(Tj), for the typemax, I(T, fi) =
max1≤ j≤t U(Tj), for the typeweighted-sum, I(T, fi)=
∑t

j=1U(Tj)N(Tj)/N(T), and for the typeweighted-
max, I(T, fi) = max1≤ j≤t U(Tj)N(Tj)/N(T). As a re-
sult, we have 16 different impurity functions.

A decision treeΓ over the tableT is a finite di-
rected tree with the root in which each terminal node
is labeled with a decision. Each nonterminal node
is labeled with an attribute from the set{ f1, . . . , fm},
and for each nonterminal node the outgoing edges
are labeled with pairwise different nonnegative inte-
gers. Letv be an arbitrary node ofΓ. We now de-

fine a subtableT(v) of the tableT. If v is the root
then T(v) = T. Let v be a node ofΓ that is not
the root, nodes in the path from the root tov be la-
beled with attributesfi1, . . . , fit , and edges in this path
be labeled with valuesa1, . . . ,at respectively. Then
T(v) = T( fi1,a1), . . . ,( fit ,at).

Let Γ be a decision tree overT. We will say that
Γ is adecision tree for Tif any nodev of Γ satisfies
the following conditions:

• If rt (T(v)) = 0 thenv is a terminal node labeled
with the common decision forT(v).

• Otherwise, v is labeled with an attributefi ∈
E(T(v)) and, if E(T(v), fi) = {a1, . . . ,at}, thent
edges leave nodev, and these edges are labeled
with a1, . . . ,at respectively.

We will consider cost functions which are given in
the following way: values of the considered cost func-
tion ψ, which are nonnegative numbers, are defined
by induction on pairs(T,Γ), whereT is a decision ta-
ble andΓ is a decision tree forT. Let Γ be a decision
tree that contains only one node labeled with a deci-
sion. Thenψ(T,Γ) = ψ0 whereψ0 is a nonnegative
number. LetΓ be a decision tree in which the root
is labeled with an attributefi , andt edges start in the
root. These edges are labeled with numbersa1, . . . ,at
and enter roots of decision treesΓ1, . . . ,Γt . Then

ψ(T,Γ) = F(N(T),ψ(T( fi ,a1),Γ1), . . . ,
ψ(T( fi ,at),Γt )). HereF(n,ψ1,ψ2, . . .) is an operator
which transforms the considered tuple of nonnegative
numbers into a nonnegative number. Note that the
number of variablesψ1,ψ2, . . . is not bounded from
above.

The considered cost function will be called
monotoneif for any natural t, from inequalities
c1 ≤ d1, . . . ,ct ≤ dt the inequalityF(a,c1, . . . ,ct) ≤
F(a,d1, . . . ,dt) follows. Now we take a closer view
of some monotone cost functions.

Number of nodes:ψ(T,Γ) is the number of nodes
in decision treeΓ. For this cost function,ψ0 = 1 and
F(n,ψ1,ψ2, . . . ,ψt) = 1+∑t

i=1 ψi .
Depth: ψ(T,Γ) is the maximum length of a path

from the root to a terminal node ofΓ. For this
cost function,ψ0 = 0 andF(n,ψ1,ψ2, . . . ,ψt) = 1+
max{ψ1, . . . ,ψt}.

Total path length:for an arbitrary row̄δ of the ta-
ble T, we denote byl(δ̄) the length of the path from
the root to a terminal nodev of Γ such that̄δ belongs
to T(v). Thenψ(T,Γ) = ∑δ̄ l(δ̄), where we take the
sum on all rows̄δ of the tableT. For this cost func-
tion, ψ0 = 0 andF(n,ψ1,ψ2, . . . ,ψt) = n+∑t

i=1 ψi .
Note that theaverage depthof Γ is equal to the

total path length divided byN(T).
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3 GREEDY APPROACH

Let I be an impurity function. We now describe a
greedy algorithmVI which for a given decision table
T constructs a decision treeVI (T) for the tableT.

Step1. Construct a tree consisting of a single node
labeled with the tableT and proceed to the second
step.

Supposet ≥ 1 steps have been made already. The
tree obtained at the stept will be denoted byG.

Step(t + 1). If no node of the treeG is labeled
with a table then we denote byVI (T) the treeG. The
work of the algorithmVI is completed.

Otherwise, we choose a nodev in the treeG
which is labeled with a subtableΘ of the tableT. If
rt (Θ) = 0 then instead ofΘ we mark the nodev by
the common decision forΘ and proceed to the step
(t +2). Let rt (Θ) > 0. Then for eachfi ∈ E(Θ) we
compute the valueI(T, fi). We mark the nodev by the
attribute fi0 wherei0 is the minimumi ∈ {1, . . . ,m}
for which I(T, fi) has the minimum value. For each
δ ∈ E(Θ, fi0), we add to the treeG the nodev(δ),
mark this node by the subtableΘ( fi0,δ), draw the
edge fromv to v(δ), and mark this edge byδ. Pro-
ceed to the step(t +2).

4 DYNAMIC PROGRAMMING
APPROACH

In this section, we describe a dynamic programming
algorithm which for a monotone cost functionψ and
decision tableT finds the minimum cost (relative to
the cost functionψ) of decision tree forT.

Consider an algorithm for construction of a graph
∆(T). Nodes of∆(T) are some separable subtables
of the tableT. During each step we process one node
and mark it with symbol *. We start with the graph
that consists of one nodeT and finish when all nodes
of the graph are processed.

Let the algorithm have already performedp steps.
We now describe the step number(p+ 1). If all
nodes are processed then the work of the algorithm
is finished, and the resulted graph is∆(T). Other-
wise, choose a node (table)Θ that has not been pro-
cessed yet. Ifrt (Θ) = 0, label the considered node
with the common decision forΘ, mark it with sym-
bol * and proceed to the step number(p+ 2). Let
rt (Θ) > 0. For eachfi ∈ E(Θ), draw a bundle of
edges from the nodeΘ (this bundle of edges will be
called fi-bundle). Let E(Θ, fi) = {a1, . . . ,at}. Then
drawt edges fromΘ and label these edges with pairs
( fi ,a1), . . . ,( fi ,at) respectively. These edges enter
into nodesΘ( fi ,a1), . . . ,Θ( fi ,at). If some of nodes

Θ( fi ,a1), . . . ,Θ( fi ,at) do not present in the graph
then add these nodes to the graph. Mark the nodeΘ
with symbol * and proceed to the step number(p+2).

Let ψ be a monotone cost function given by the
pair ψ0, F. We now describe a procedure, which at-
taches a number to each node of∆(T). We attach the
numberψ0 to each terminal node of∆(T).

Consider a nodeΘ, which is not terminal, and a
bundle of edges, which starts in this node. Let edges
be labeled with pairs( fi ,a1), . . . ,( fi ,at), and edges
enter to nodes
Θ( fi ,a1), . . . ,Θ( fi ,at), to which numbersψ1, . . . ,ψt
are attached already. Then we attach to the consid-
ered bundle the numberF(N(Θ),ψ1, . . . ,ψt). Among
numbers attached to bundles starting inΘ we choose
the minimum number and attach it to the nodeΘ.

We stop when a number will be attached to the
nodeT in the graph∆(T). One can show that this
number is the minimum cost (relative to the cost func-
tion ψ) of decision tree forT.

5 EXPERIMENTAL RESULTS

Different impurity functions give us different greedy
algorithms. The following experiments compare av-
erage depth, number of nodes and depth of decision
trees built by these algorithms with the minimum av-
erage depth, minimum number of nodes and mini-
mum depth calculated by the dynamic programming
algorithm.

The data sets were taken from UCI Machine
Learning Repository (Frank and Asuncion, 2010).
Experiments using data sets which are not from UCI
Machine Learning Repository give us similar results.
Each data set is represented as a table containing
several input columns and an output (decision) col-
umn. Some data sets contain index columns that take
unique value for each row. Such columns were re-
moved. In some tables there were rows that contain
identical values in all columns, possibly, except the
decision column. In this case each group of identical
rows was replaced with a single row with common
values in all input columns and the most common
value in the decision column. In some tables there
were missed values. Each such value was replaced
with the most common value in the corresponding
column.

Tables 1–3 show results of experiments with 24
data sets and three cost functions: average depth,
number of nodes and depth respectively. Each row
contains data set name, minimum cost of decision
tree (mincost), calculated with the dynamic pro-
gramming algorithm (see column Opt), and infor-
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Table 1: Results of Experiments with Average Depth.

Name Opt sum weighted-sum
ent gini me rt ent gini me rt

adult-stretch 1.50 0.00 0.00 1.33 0.00 0.00 0.00 1.33 0.00
agaricus-lepiota 1.52 0.54 0.54 0.01 0.00 0.00 0.00 0.00 0.30
balance-scale 3.55 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00
breast-cancer 3.24 0.96 0.96 0.25 0.02 0.08 0.14 0.02 0.03
cars 2.95 0.04 0.04 0.26 0.28 0.00 0.00 0.36 0.49
flags 2.72 2.43 2.58 0.18 0.04 0.16 0.16 0.04 0.03
hayes-roth-data 2.62 0.01 0.01 0.01 0.00 0.01 0.01 0.00 0.00
house-votes-84 3.54 0.66 0.97 0.49 0.06 0.04 0.07 0.06 0.02
lenses 1.80 0.00 0.00 0.67 0.67 0.67 0.00 0.67 0.67
lymphography 2.67 1.66 1.66 0.26 0.06 0.17 0.17 0.05 0.04
monks-1-test 2.50 0.80 0.80 0.00 0.00 0.00 0.00 0.00 0.00
monks-1-train 2.53 0.71 0.71 0.00 0.09 0.26 0.27 0.00 0.00
monks-2-test 5.30 0.01 0.01 0.01 0.05 0.02 0.02 0.05 0.05
monks-2-train 4.11 0.14 0.14 0.10 0.02 0.06 0.06 0.04 0.04
monks-3-test 1.83 1.24 0.52 0.52 0.00 0.00 0.14 0.00 0.00
monks-3-train 2.51 0.50 0.21 0.08 0.01 0.01 0.01 0.01 0.01
nursery 3.45 0.17 0.22 0.09 0.09 0.01 0.00 0.12 0.21
poker-hand-training-true 4.09 0.60 0.60 0.14 0.01 0.01 0.01 0.01 0.01
shuttle-landing-control 2.33 0.69 0.69 0.26 0.00 0.03 0.03 0.00 0.00
soybean-small 1.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41
spect-test 2.95 1.01 0.88 0.67 0.18 0.03 0.13 0.17 0.16
teeth 2.78 0.58 0.62 0.00 0.02 0.02 0.00 0.02 0.02
tic-tac-toe 4.35 0.12 0.07 0.11 0.13 0.06 0.05 0.16 0.17
zoo-data 2.29 0.69 0.69 0.07 0.04 0.04 0.04 0.04 0.05
Average 0.565 0.539 0.230 0.073 0.069 0.055 0.131 0.113

Table 2: Results of Experiments with Number of Nodes.

Name Opt
sum weighted-sum

ent gini me rt ent gini me rt
adult-stretch 5 0.00 0.00 3.60 0.00 0.00 0.00 3.60 0.00
agaricus-lepiota 21 0.57 0.57 0.62 0.38 0.38 0.38 0.38 3.00
balance-scale 501 0.00 0.00 0.07 0.00 0.00 0.00 0.07 0.00
breast-cancer 161 0.45 0.45 0.37 0.32 0.25 0.25 0.29 0.41
cars 396 0.10 0.10 0.38 0.21 0.03 0.03 0.70 1.35
flags 97 0.80 1.01 0.34 0.62 0.25 0.25 0.59 0.61
hayes-roth-data 52 0.06 0.06 0.06 0.02 0.06 0.06 0.02 0.02
house-votes-84 45 1.02 1.38 1.02 0.36 0.18 0.27 0.31 0.27
lenses 8 0.00 0.00 0.88 0.88 0.88 0.00 0.88 0.88
lymphography 53 0.89 0.89 0.53 0.66 0.43 0.43 0.55 0.77
monks-1-test 37 3.51 3.51 0.11 0.11 0.11 0.11 0.11 0.11
monks-1-train 36 1.86 1.86 0.11 0.67 1.28 1.39 0.11 0.11
monks-2-test 403 0.00 0.00 0.09 0.58 0.19 0.19 0.58 0.58
monks-2-train 129 0.16 0.16 0.43 0.35 0.23 0.23 0.34 0.44
monks-3-test 17 3.65 1.71 2.71 0.00 0.00 0.12 0.00 0.00
monks-3-train 38 0.82 0.37 0.18 0.18 0.11 0.11 0.18 0.18
nursery 1066 0.58 1.11 0.96 0.95 0.09 0.02 1.35 1.37
poker-hand-training-true 18832 0.36 0.36 0.23 0.19 0.18 0.17 0.18 0.20
shuttle-landing-control 15 0.13 0.13 0.00 0.00 0.00 0.00 0.00 0.00
soybean-small 6 0.17 0.17 0.17 0.17 0.17 0.17 0.17 2.83
spect-test 29 1.72 1.45 1.66 0.83 0.14 0.34 0.69 0.76
teeth 35 0.09 0.09 0.00 0.03 0.03 0.00 0.03 0.03
tic-tac-toe 244 0.68 0.41 0.48 1.00 0.41 0.32 1.05 1.09
zoo-data 17 0.59 0.59 0.35 0.35 0.35 0.35 0.35 0.47
Average 0.758 0.682 0.639 0.368 0.239 0.216 0.522 0.645
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Table 3: Results of Experiments with Depth.

Name Opt
max weighted-max weighted-sum

rt ent gini me rt ent gini me rt
adult-stretch 2 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 0.00
agaricus-lepiota 3 0.00 0.00 0.00 0.00 0.33 0.33 0.33 0.33 0.33
balance-scale 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
breast-cancer 6 0.00 0.00 0.00 0.00 0.00 0.17 0.33 0.00 0.00
cars 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
flags 4 0.25 0.25 0.25 0.25 0.25 0.75 0.75 0.25 0.25
hayes-roth-data 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
house-votes-84 6 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
lenses 3 0.33 0.33 0.33 0.33 0.33 0.33 0.00 0.33 0.33
lymphography 4 0.25 0.25 0.25 0.25 0.25 0.50 0.50 0.25 0.25
monks-1-test 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
monks-1-train 3 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.00 0.00
monks-2-test 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
monks-2-train 5 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
monks-3-test 3 0.33 0.33 0.33 0.33 0.33 0.00 0.00 0.00 0.00
monks-3-train 4 0.00 0.00 0.00 0.00 0.00 0.25 0.25 0.00 0.00
nursery 8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
poker-hand-training-true 5 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00
shuttle-landing-control 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
soybean-small 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
spect-test 8 0.13 0.13 0.13 0.13 0.13 0.13 0.50 0.25 0.13
teeth 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tic-tac-toe 6 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
zoo-data 4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Average 0.125 0.125 0.125 0.125 0.139 0.173 0.190 0.130 0.083

mation about cost of decision trees built by each
of the considered greedy algorithms. Instead of the
cost of decision tree, constructed by greedy algo-
rithm (greedycost), we consider relative difference
of greedycost and mincost:

greedycost−min cost
min cost

.

The last line shows average relative difference of
greedycost and mincost. We will evaluate greedy
algorithms based on this parameter.

Let us remind that each impurity function is
defined by its type (sum, max, weighted-sumor
weighted-max) and uncertainty measure (ent, gini,
me, or rt ).

Considering average depth, we noticed that the
type sum dominatesmax, i.e. it has less value of
average relative difference between greedycost and
min cost for each uncertainty measure. Similarly, the
typeweighted-sumdominatesweighted-max. Table 1
presents results for two best types:sumandweighted-
sum. One can see that the two best impurity functions
are given by combinations ofweighted-sumwith Gini
index (the criterion used by CART (Breiman et al.,
1984)) and entropy (the criterion used by ID3 (Quin-
lan, 1986)).

Analysis of experiments for the number of nodes
lead us to the same results. The typesumdominates

maxandweighted-sumdominatesweighted-max. Ta-
ble 2 presents results for two best types:sum and
weighted-sum. One can see that along with the av-
erage depth, the two best impurity functions are given
by combinations ofweighted-sumwith Gini index and
entropy.

Experiments with depth lead to different ranking
of impurity functions. The typeweighted-sumdomi-
natessum, and theweighted-maxdominatesmaxby
each uncertainty measure with the exception ofrt .
Table 3 shows results for the best functions: combi-
nations ofweighted-maxandweighted-sumwith all
four uncertainty measures, and the combination of
maxandrt .

One can see that the best impurity function is
given by the combination ofweighted-sumwith rt .
The following combinations give us similar results:
sumandrt , weighted-maxandent, weighted-maxand
gini, weighted-maxand me, and max and rt . The
greedy algorithm based on the last combination is
known to be close (from the point of view of accu-
racy) to the best approximate polynomial algorithms
for minimization of decision tree depth under some
assumptions about the classNP (Moshkov, 2005).
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6 CONCLUSIONS

The paper is devoted to the study of 16 greedy al-
gorithms for decision tree construction. For 24 data
sets from UCI ML Repository (Frank and Asuncion,
2010) we compare average depth, number of nodes
and depth of decision trees, constructed by these al-
gorithms, with minimum average depth, minimum
number of nodes and minimum depth found by an
algorithm based on dynamic programming approach.
The obtained results show that for the average depth
and number of nodes the greedy algorithms used by
CART (Breiman et al., 1984) and by ID3 (Quinlan,
1986) are the best among the considered greedy algo-
rithms. However, for the minimization of depth, we
probably should use some other greedy algorithms.
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