
A PLAN EXECUTION MODEL FOR MOBILE
PERSONAL ASSISTANTS

Incheol Kim and Huikyung Oh
Department of Computer Science, Kyonggi University, San 94-6, Yiui-Dong, Youngtong-Gu, Suwon, Korea

Keywords: Plan Execution Model, Smart Script System, Mobile Personal Assistant, Dynamic World, Events.

Abstract: This paper proposes a plan execution model suitable for dynamic mobile computing environments and
presents a smart script system developed based on the model. The smart script system includes a script
language which describes the task knowledge of mobile personal assistants and an execution engine which
is designed to execute scripts dynamically according to task goals and environmental changes. In addition,
this paper evaluates the usefulness and performance of the smart script system by implementing Smart
Reservation as an application.

1 INTRODUCTION

Recently, with the rapid spread of smart mobile
devices including smart phones and tablet PCs, there
are many studies being conducted on mobile
personal assistants that offer a wide range of
convenient services for users (Gruber, 2009, Morley
and Myers, 2004). Mobile personal assistants are
assumed to perform the given tasks autonomously or
semi-autonomously for their users, so they should be
able to execute their own task plans properly
responding to dynamics of the physical and
information environments where they are working.
To implement those intelligent mobile personal
assistants, a high-efficiency reactive plan execution
system should be developed (Ingrand and Py, 2009,
Gregory et al, 2001).

This paper proposes a plan execution model
suitable for dynamic mobile computing
environments and presents a smart script system
developed based on the model. The smart script
system includes a script language which describes
the task knowledge of mobile personal assistants and
an execution engine which is intended to execute
scripts dynamically according to task goals and
environmental changes. Lastly, the usefulness and
performance of the smart script system are evaluated
by implementing an application called Smart
Reservation.

2 PLAN EXECUTION MODEL

In this paper, the smart script system was developed
based on the following plan model and plan
execution model:

p = (ID, Name, Type, Body, Comment), where
ID = an identification number,
Name = a plan name,
Type = an event-driven plan, goal-driven plan,

or command-driven plan,
Body = a set of actions such as <a1, …, an>,
Comment = a description about the plan.

The plan model p can represent three different plan
types: Event-driven plans pe are automatically
executed when a particular event takes place; goal-
driven plans pg are intended to accomplish specific
goals and command-driven plans pc can be
selectively and immediately executed anytime as
needed.

The plan execution model (PEM) for the smart
script system is defined as follows:

PEM = (P, S, W, U, I, N, T), where
P: A set of plans, P = Pe ∪ Pg ∪ Pc,

Pe = event-driven plans,
Pg = goal-driven plans, and
Pc = command-driven plans.

S: A sensor designed to sense the events that
occur in an external environment,
S : E → 2F, where E = a set of events and

232
Kim I. and Oh H..
A PLAN EXECUTION MODEL FOR MOBILE PERSONAL ASSISTANTS .
DOI: 10.5220/0003620602320235
In Proceedings of 1st International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH-2011), pages
232-235
ISBN: 978-989-8425-78-2
Copyright c
 2011 SCITEPRESS (Science and Technology Publications, Lda.)

 F = a set of facts.
W: A set of facts representing the current status

of an environment (i.e., a world model),
F ⊆ W

U: Control commands associated with plan
execution,
u ∈ {execute_plan, stop_plan,
activate_plan, deactivate_plan, ...}

I: An interpreter designed to decide which plan
to execute,
I(W, u, P) = p, when the plan p∈P has its
preconditions satisfied with the current
world model "W PRECOND(p)" or is
associated with a user command "u∈U."

N: An intention structure designed to manage
the process in which a decided plan is
actually executed,
N(p)=SUCCESS(DO(a1))? N(p') : STOP(p),
when BODY_SEQ(p)=<a1, a2, ..., an>,
BODY_SEQ(p')=<a2, a3, ..., an>,
Action ak∈A

T: An effector designed to change an
environment by completing each of actions
which constitute a plan, T : A → E

PEM provides rich, expressive plan representations,
a wide range of useful plan execution semantics,
reactivity to environmental changes, support for user
interaction in runtime.

3 SMART SCRIPT LANGUAGE

A smart script language was designed based on the
plan and execution models mentioned above. The
smart script language allows users to use a wide
range of built-in variables and other user-defined
variables. In this language, the status of an
environment is expressed as a set of facts.

Fact ::=” (“ Variable Value “)”

In other words, a single fact is expressed as a
variable and its current value, like (%SMSRA "02-
123-3456"). The set of actions available in the
scripting language consists of control actions and
effective actions. The control actions which
determine the order of execution include goal
actions, script actions, IF actions, ENDIF actions,
WHILE actions, ENDWHILE actions,
WAITUNTIL actions, WAIT actions, SUCCESS
actions, FAIL actions and SET actions. The goal
action is to add a new subgoal; the script action is to
request the execution of a new script; and the SET
action is to assign a value to a user-defined variable.

The smart script language provides a variety of
effective actions including speaking (SPEAK),
making a phone call (CALL), sending a text
message (SENDSMS), and playing a music file
(PLAYMUSIC).

Three different types of script (command-driven,
event-driven and goal-driven) can be defined in the
smart script language. The command-driven scripts
mean those scripts that users are able to execute
themselves.

Command-driven Script
 ::= "(" "script" Script-Name
 [":context" Condition-List]
 ":body" Action-List
 [":comment" Description] ")"

The event-driven scripts are automatically
executed in response to a specific event taking place
in an external environment.

Event-driven Script
 ::= "(" "script" Script-Name
 ":precondition" Condition-List
 [":context" Condition-List]
 ":body" Action-List
 [":comment" Description] ")"

The goal-driven scripts are defined as those
scripts that can be automatically selected and
executed to accomplish a goal, once the goal is set
out by a user or a higher-level script.

Goal-driven Script
 ::= "(" "script" Script-Name
 ":goal Goal
 [":precondition" Condition-List]
 [":context" Condition-List]
 ":body" Action-List
 [":comment" Description] ")"

The smart script program is composed of three
different components: goal declaration, fact
declaration, and script declaration.

Script Program ::=
 [Goal-Declaration]
 [Fact-Declaration]
 Script-Definition

Goal-Declaration ::=
 "(" "goals" Goal-Action-List ")"
Fact-Declaration ::=
 "(" "facts" Fact-List ")"
Script-Definition ::=
 "(" "scripts" Script-List ")"

A PLAN EXECUTION MODEL FOR MOBILE PERSONAL ASSISTANTS

233

Figure 1: Architecture of the smart script system.

4 SMART SCRIPT SYSTEM

As shown in Figure 1, the smart script system
consists of the Execution Engine which controls the
automatic execution of scripts, the Sensor which
receives diverse event and status information from
environments, the Effector which is responsible for
the execution of individual basic tasks or actions, the
Script Editor which allows users to edit or modify
scripts, and the Script Manager which allows users
to monitor and control the execution of scripts in
real time. The Sensor detects a variety of events that
may occur in smartphone environments, including
text-message arrival, phone ringing, WiFi detection
and schedule notification, and works to update an
internal World Model of the Execution Engine based
on new facts associated with those events.

The Execution Engine responsible for the
execution of scripts has internal components with
different roles, such as World Model, Plan Library,
Interpreter, and Intention Structure. The World
Model manifests the current status of the system in
which scripts are being executed, by saving and
updating the environmental status or user-entered
data detected by the sensor or data on the results of
each basic task/action executed. In the Plan Library,
user-defined scripts are stored in an execution
waiting status, and whenever necessary, it stores
scripts in a database or brings up the stored scripts
from the database. The Interpreter, based on the
facts of the World Model, checks whether the
preconditions of individual event-driven scripts in
the Plan Library are satisfied or whether each goal-
driven script is matched with a user-supplied task

goal and plays the role of choosing a script to be
executed next. The Intention Structure, with the
script chosen by the Interpreter, performs script-
intended tasks by executing in sequence the basic
tasks/actions described in the body of the script. The
Execution Engine has been designed as an Android
service so that it can start the quick execution of
scripts whenever the script-associated events occur.
While the Execution Engine executes the logical
decision-making process of the smart script system,
the Effector executes each of basic tasks/actions
actually as requested by the Execution Engine with
existing s/w tools such as web browsers, calendars
and email programs or its own programs
implemented with Android API

Figure 2: Screenshot of the script manager.

The Script Manager provides the main user interface
of the smart script system. Users can execute one of
the command-driven scripts through the script
manager, suspend running scripts, or
activate/inactivate event-driven scripts. In this way
they can control the scripts in real time. In addition,
with the help of the Script Editor, they can create
copy, modify or delete scripts. Taking into account
the limited size of smart phones' screen and
keyboard, the Script Editor has been programmed to
minimize users' keyboard entries by applying
graphic icons and menu selections to most editing
procedures. Figure 2 shows the screenshot of the
Script Manager.

5 APPLICATION

In order to examine the performance and usefulness
of the smart script system developed in this work,
Smart Reservation has been created based on this
system. Smart Reservation is an application which
finds a nearby restaurant and makes reservations for
smart phone users in semi-autonomous way. Smart
Reservation can get the user's location information
from GPS to search for nearby restaurants and have

SIMULTECH 2011 - 1st International Conference on Simulation and Modeling Methodologies, Technologies and
Applications

234

Figure 3: S/W organization of Smart Reservation.

the user's voice queries entered. This application
translates the user's voice query into a SPARQL
form of semantic query and then sends the query to a
remote restaurant information server via web service.
Based on the search results from the information
server, it marks restaurant locations on the map
using Google Maps mashups and even helps make
online reservations at the user's desired restaurant.

Smart Reservation, as illustrated in Figure 3, has
been developed based on the smart script system,
and accordingly the key task knowledge of Smart
Reservation is expressed as scripts which are
executed by the smart script execution engine. We
implemented unique some state variables and
actions for Smart Reservation using an open API
and web service calls. Additionally, we created a
new user interface which supports voice-based
interactions in view of user convenience. Figure 4
shows a screenshot of Smart Reservation. Even
though the implementation of Smart Reservation is
currently limited to the use of information on
restaurants in Insa-Dong, Seoul, it was enough to
ensure the usefulness and performance of the smart
script system as a framework which enables a
variety of mobile personal assistants to be very
effectively developed.

Figure 4: Screenshot of Smart Reservation.

6 CONCLUSIONS

This paper proposed the plan execution model and
presented the design and implementation of a smart
script system based on this model. Due to reactivity
and goal-orientation of the underlying model, the
smart script system can respond very quickly to
changes in mobile computing environments and
provides the robust framework for implementing
various mobile personal assistants.

ACKNOWLEDGEMENTS

This work was supported by the GRRC program of
Gyeonggi province.

REFERENCES

Gruber, T., 2009. Siri: A Virtual Personal Assistant,
Keynote Presentation at the Semantic Technology
Conference(SemTech-09).

Morley, D., Myers, K., 2004. The SPARK Agent
Framework, Proc. of the AAMAS-04, pp. 712-719.

Ingrand, F., Py, F., 2009. Proc. of the 4th Workshop on
Planning and Plan Execution for Real-World Systems,
ICAPS-09.

Gregory, N. M., et al, 2001. IDEA: Planning at the Core of
Autonomous Agents, Proc. of AAAI-01.

User Interface

Voice
Query

Google Map
Mashup

Task Executive
(Smart Script Execution Engine)

Functional S/W Components
(for calling Open APIs & Web Services)

Android-Enabled Mobile Platforms

Location
Finder

A PLAN EXECUTION MODEL FOR MOBILE PERSONAL ASSISTANTS

235

