
MULTI-PLATFORM MODEL-DRIVEN SOFTWARE
DEVELOPMENT OF WEB APPLICATIONS

Ulrich Wolffgang
Department of Information Systems, University of Muenster, Leonardo-Campus 3, Muenster, Germany

Keywords: Model-driven web engineering, MDA, MDSD, CIM, PIM, PSM, WASL.

Abstract: We present the generator framework WASL, which supports model-driven development of web applications. It
enables the modeling of data, navigation, business logic, and presentation logic. WASL supports the MDA by
providing transformation definitions from a computation-independent model (CIM) to a platform-independent
model (PIM) and then to a platform-specific model (PSM). An important aspect of our approach is that we
provide a separate DSL for each target platform in order to separate concerns between PIM and PSM and to
be able to address platform-specific aspects. Currently, the frequently used platforms Java, PHP, and Python
are supported.

1 INTRODUCTION

With the rise of the World Wide Web (WWW) in the
past fifteen years the environment for software ap-
plications as well as for software development has
changed fundamentally. Along with the WWW, new
forms of feature-rich web applications have emerged
becoming a ubiquitous part of business and everyday
life. But the continuous usage of increasingly com-
plex and widespread web applications induces de-
mands for security, reliability and availability. Recent
analysis has shown that often those goals are unreal-
ized. In the last years a large portion of cybercrime at-
tacks on computer systems could be conducted even
by basic SQL injection attacks (Maple et al., 2010),
taking advantage of poor coding practice in applica-
tions and leading to substantial losses of sensitive data
(O’Dell, 2009).

As a result of the continuing software crisis in
the web context, the discipline of web engineering
has emerged from traditional software engineering.
Web engineering is intended to provide web develop-
ers with a sound methodology, a disciplined and re-
peatable process, better development tools, and a set
of good guidelines for developing web applications
(Ginige and Murugesan, 2001).

In the field of web engineering the model-driven
software development (MDSD) is gaining ground.
Roughly, the idea of MDSD is to develop software on
a raised level of abstraction by automatically trans-
forming models of software systems in one or more

steps to source code. Therefore technologies such
as domain-specific modeling languages (DSL), code
generators, and model-to-model transformation def-
initions are used (Stahl et al., 2006). The Ob-
ject Management Group (OMG) envisioned with the
model-driven architecture (MDA) a standardization
of MDSD in which models are distinguished to be
computation independent (CIM), platform indepen-
dent (PIM) or platform-specific (PSM) (Miller and
Mukerji, 2003). The Unified Modeling Language
(UML), the meta-object facility (MOF) and transfor-
mation languages such as QVT are centerpieces for
the MDA approach. As with MDSD source code is
mostly created automatically, the mentioned typical
security vulnerabilities can be avoided by using high
quality code generators.

This paper introduces an MDSD generator frame-
work that enables the automatic generation of typical
data-oriented web applications (Figure 1). The gen-
erator framework realizes the MDA vision by sup-
porting CIM, PIM and PSM modeling and by pro-
viding modeling languages and transformation defi-
nitions for the target web platforms Java EE, PHP,
and Python. Thereby it is shown that multiple web
platforms with heterogeneous characteristics can be
covered by one single MDSD generator framework.
Part of the framework is a family of domain-specific
modeling languages consisting of the five languages
WASL Data, WASL Abstract, WASL JavaEE, WASL
Php and WASL Python covering the different abstrac-
tion layers and target platforms.

162 Wolffgang U..
MULTI-PLATFORM MODEL-DRIVEN SOFTWARE DEVELOPMENT OF WEB APPLICATIONS.
DOI: 10.5220/0003500501620171
In Proceedings of the 6th International Conference on Software and Database Technologies (ICSOFT-2011), pages 162-171
ISBN: 978-989-8425-77-5
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



Figure 1: Representative GUI of a generated web application.

The rest of the paper is structured as follows. In
Section 2 related work in the field of model-driven
web engineering is discussed. Then in Section 3,
metamodels of the modeling languages WASL Data,
WASL Generic and partly WASL Php are introduced.
Section 4 describes an exemplary transformation def-
inition for model-to-model transformations. In Sec-
tion 5, we conclude and point out future work.

2 RELATED WORK

There exist several methods and languages for web
engineering, which differ w.r.t. the level of abstrac-
tion and notation. These approaches have in com-
mon, that they capture the hypertextual character of
web applications. According to the separation of con-
cerns, web applications are commonly represented
and structured by data, navigation, and presentation
models (Schwinger and Koch, 2006). Some of the
approaches offer a modeling language, others a lan-
guage based metamodel plus a process model forming
a complete method. Most of them provide a code gen-
erator for generating source code from models, thus
implementing the idea of model-driven web engineer-
ing.

The Object Oriented Web Solutions (OOWS)
method is a modification of theOO-method (Pastor
et al., 2001) and provides language elements for mod-
eling data, navigation and presentation aspects of web
applications (Fons et al., 2003). It follows the MDSD
approach by generating source code from conceptual
models through intermediate models and transforma-
tion definitions.

UML-based Web Engineering (UWE) is a method
for the development of web applications that covers a
process model and a modeling language in the form
of UML profiles. UWE supports data, navigation and
presentation models of web applications as well as

models describing user interaction (Koch, 2001; Koch
et al., 2008). Further development of the method cov-
ers modeling rich internet applications (RIA) (Koch
et al., 2009) and the application of UWE for MDSD
(Kraus et al., 2007; Kroiss and Koch, 2009).

The Web Modeling Language (WebML) is a
domain-specific modeling language suited for data-
oriented web applications that provides language el-
ements for data, navigation, presentation and user
modeling (Ceri et al., 2002). In WebML data-oriented
functionality is represented on a high level of ab-
straction by so-called units. In addition to a CASE
tool for creating WebML models further efforts have
been made for supporting MDSD with the specifi-
cation of an UML-based metamodel (Moreno et al.,
2007; Moreno et al., 2006) as well as by a domain-
specific MOF-compatible metamodel (Schauerhuber
et al., 2007).

The Web Application Extension (WAE) is a
platform-near modeling language based on UML,
whose metamodel is specified as an UML profile
(Conallen, 2002; Conallen, 1999). WAE provides lan-
guage elements for modeling content and presentation
models in which navigation structures are specified
implicitly in the form of pages and links in the pre-
sentation model.

3 WASL LANGUAGE FAMILY

Despite conjoint commitment (Vallecillo et al., 2007),
MDSD and generally web engineering is not estab-
lished in the different web development communities
widely, yet. From the authors’ experience this is due
to following factors.

Recent approaches for modeling web applications
are typically using the profile mechanism of UML or
a single DSL. However in contrast to classical soft-
ware engineering, using UML for web engineering

MULTI-PLATFORM MODEL-DRIVEN SOFTWARE DEVELOPMENT OF WEB APPLICATIONS

163



leads to mapping defects. UML is not suited well
for representing concepts such as configuration files,
relational schemata, web service definitions, GUI en-
gine templates, and notation format such as YAML
(Ben-Kik et al., 2009). Programming languages and
frameworks provided for web development are so di-
verse that one single modeling language just can-
not cover all of them. Object-oriented programming
(OOP) languages (e.g. Java) differ fundamentally
from script languages such as PHP that are widely
used in web development, allowing procedural pro-
gramming without object-orientation at all. In con-
trast others are utilizing high-level frameworks (e.g.
Ruby on Rails) that use configuration files exten-
sively. This leads to modeling defects when pursu-
ing the goal of PSMs that are intended to represent
the implementation as close as possible. The ab-
straction from target platform concepts leads to a flat
learning curve for new users of those generators as
they have to understand which source code fragments
are generated from which model elements. Further-
more the missing concepts hardly can be added to
UML through the lightweight extension mechanism
of UML by profiles, stereotypes and tagged values be-
cause UML does not offer elements whose semantic
is generic enough to justify a specialization. Heavy-
weight UML extensions are not considered to be ap-
plicable because of missing tool support.

Besides appropriate modeling languages another
requirement for an establishment of model-driven
web engineering is that implementations of MDSD
generators can be downloaded on the internet and in-
tegrated into current web development frameworks.
However until now this is not the case with the de-
scribed prominent web engineering tools and genera-
tors.

The MDSD generator presented in this paper con-
tributes to the field of model-driven web engineer-
ing as it (1) targets multiple relevant and widely used
web platforms by one generator framework, (2) pro-
vides a close representation of those platforms by
multiple platform-specific DSLs, (3) supports CIM,
PIM, and PSM modeling, and (4) uses standardized
meta metamodels, transformation languages and code
generator frameworks. Additionally (5) all platform-
specific modeling languages are derived from their
corresponding target platforms and are themselves
used as the source for deriving higher-level platform-
independent modeling languages. This guarantees
that CIM and PIM models always can be transformed
to source code through underlying PSM models.

3.1 WASL Framework

The Web Application Specification Language
(WASL) family is a set of semi formal modeling
languages for the model-driven development of
data-oriented web applications. All languages are
interconnected by transformation definitions, which
support the transformation of platform-independent
WASL models to platform-specific WASL models
and from platform-specific WASL models to source
code (Figure 2).

The WASL language family is an implementation
of the MDA envisioned by the OMG, which classi-
fies models as CIM, PIM and PSM (Miller and Muk-
erji, 2003). As a common metamodeling language
the OMG proposes the meta-object facility (MOF),
for which an implementation exists with the Eclipse
Modeling Framework (EMF) and its meta metamodel
Ecore that slightly differs from MOF in some de-
tails (Gerber and Raymond, 2003). All WASL lan-
guages are based on the Ecore meta metamodel
because it provides large tool support through the
Eclipse Modeling Framework (EMF), several model-
to-model transformation languages, code generators
and standardized file formats such as XMI. In the fol-
lowing we assume some familiarity with those promi-
nent MDSD technologies, particularly with Ecore.

In WASL, the web application development pro-
cess starts by creating a conceptual data model, which
represents the structure of the domain as a CIM. For
this step the modeling languages ERM, UML, or
WASL Data can be used. As WASL Data (Sec. 3.2) is
the source language for further transformations, mod-
els written in ERM or UML have to be transformed
to WASL Data models first. This is achieved with a
transformation definition written in the standardized
transformation language QVT Operational (QVTO).
A redundant implementation based on QVT Rela-
tional (QVTR) has not proved to be applicable be-
cause of performance problems.

PIM layer models are specified with the semi for-
mal modeling language WASL Generic (Sec. 3.3),
which offers language elements for modeling the data
structure, navigation structure, business logic, and
presentation structure of a web application. WASL
Generic models can be generated from WASL Data
models based on a QVTO transformation definition.
In the transformation step, the data model is copied
from the WASL Data model to the WASL Generic
model as both languages represent data models in the
same way. Additionally the contents of the naviga-
tion, business logic, and presentation models are gen-
erated from the contents of the WASL Data model au-
tomatically. The generated business logic and presen-

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

164



Figure 2: WASL MDSD framework.

tation aspects represent the functionality of the
web application for create, read, update and delete
(CRUD) operations on the entities described in the
data model. The generated WASL Generic model
serves as an initial point for modifications on the gen-
erated model elements and for enrichments by adding
new model elements for additional functionality.

In contrast to the PIM language WASL Generic,
platform-specific implementation details are mod-
eled with the three semi-formal modeling languages
WASL Php (Sec. 3.4), WASL Python and WASL
JavaEE, covering the three widely established target
platforms PHP, Python and Java EE. WASL Generic
models can be transformed to models written in these
three languages by three QVTO transformation defi-
nitions, which map the WASL Generic PIM concepts
to detailed technical PSM realizations. Finally the
transformation from the PSM level to the source code
level is implemented with three individual code gen-
erators based on the openArchitectureWare (oAW)
code generator framework and its transformation lan-
guages Xpand and Xtend.

As mentioned, because there is only a small over-
lap between domain concepts covered by UML and
those within the target web platforms, custom DSLs
are favored instead of cutting UML down into needed
parts. However a transformation definition exists be-
tween UML and WASL Data providing a bridge be-
tween both worlds. The use of intermediate WASL
languages for modeling platform-specific details of-
fers multiple advantages:

1. The complexity of bridging the gap between the
PIM and the final source code is shifted from the
source code generator to the model transforma-
tion engine. The advantage is that QVTO offers
type safety on the source model as well as target
model in contrast to code generator frameworks
such as openArchitectureWare, which only ensure
type safety on the source model. Also precon-

ditions can be checked as part of the model-to-
model transformation such that the code generator
can focus on creating source code exclusively.

2. Due to the extraction of condition checks, the
code generator engine needs only a minimal fea-
ture set. This allows the generator engine to be
exchanged against most other Ecore-based code
generator frameworks.

3. It is considered reasonable to represent the imple-
mentation directly as a model on the lowest level
of the MDSD stack. By using intermediate WASL
languages these PSM aspects do not pollute the
more abstract language WASL Generic, which is
intended to conceal those platform-specific de-
tails.

4. PSM languages have proven to be a good foun-
dation for developing the PIM language WASL
Generic as they offer a structured reference the
PIM can be built against. This allows a bottom-
up research process developing WASL Generic as
an abstraction from the platform-specific WASL
languages which by that are a co-product on the
search for an optimal PIM language for web ap-
plications.

5. The consistency of a PSM can be checked more
easily than the consistency of generated source
code with standard check frameworks such as
OCL or oAW Check. This is due to the fact, that a
consistency check on the source code level intro-
duces the need for a adaptable parser which is not
available for every target programming language.

In the following, the metamodels of WASL Data
and WASL Generic are detailed. Subsequently a rep-
resentative subset of the metamodel of WASL Php is
described for illustrating the platform-specific char-
acter of the PSM modeling languages WASL JavaEE,
WASL Php and WASL Python. As the metamodels
of WASL PSM languages are substantially larger and

MULTI-PLATFORM MODEL-DRIVEN SOFTWARE DEVELOPMENT OF WEB APPLICATIONS

165



more complex than WASL Data and WASL Generic
only a subset is covered in this paper.

3.2 WASL Data

WASL Data is a semiformal modeling language for
CIM modeling in the WASL generator framework and
offers language elements for representing the struc-
tural domain aspects of a web application in the form
of a data model.

The metamodel of WASL Data (Figure 3) resem-
bles the UML metamodel for class diagrams and gen-
erally offers language elements for specifying pack-
aged entity types, typed properties and associations
between these properties. The central language ele-
mentEntity represents an entity type of the concep-
tual domain. A type hierarchy can be built with the
EReferencegeneralization for defining the super type
of an entity and with the EReferencespecializations
for multiple opposite subtypes. An entity can possess
properties, which are subdivided intoValueProperties
andReferenceProperties. The super typeProperty al-
lows merging collections of bothProperty types into a
single collection. This is important for specifying an
ordered set of properties mixed ofReferenceProper-
ties andValueProperties, which for instance is repre-
sented in the resulting web application as an ordered
list of input fields and selection boxes contained in a
HTML form.

Each ValueProperty is typed with a value
from the EEnumPrimitiveDataTypes, which is a
list of all provided platform-independent primi-
tive data types. For example the typePrimitive-
DataType::UnsignedInteger can be assigned to aVal-
ueProperty instance namedage for modeling the age
of a person. Using an enumeration of fixed primi-
tive types offers the advantage of type-specific and
type-safe mappings in subsequent model-to-model-
transformations. E. g. it can be specified that both
the primitive PIM typesInteger andUnsignedInteger
should be transformed to the PSM primitive SQL type
BIGINT.

In WASL Data in contrast to ERM entities can be
packaged and properties are typed with a preset prim-
itive type system. In contrast to the UML metamodel,
the WASL Data metamodel is reduced to a minimal
feature set and provides special EAttributes for some
metamodel elements such as theEntity’s nameProp-
erties. Additionally in UML the primitive types are
not preset by the metamodel but are specified on the
model layer with instances of the metamodel element
PrimitiveType (OMG, 2007). With this approach a
ValueProperty instance would be typed by assigning
one of thosePrimitiveType instances to theValue-

Property instance. The UML approach has the ad-
vantage of higher flexibility as the language can be
configured while modeling by modifying the primi-
tive type system. The downside of the approach is the
ambiguity of primitive types that leads to the prob-
lem that primitive types can only be identified through
textual comparison by their name. Thus they can-
not not be transformed type-safely in a type-to-type-
mapping. Because of this issue the approach of using
an enumeration of fixed primitive types is chosen for
WASL Data.

EachEntity is contained in aPackage which it-
self can be nested into a super package. This allows
structuringEntities in a hierarchy grouped by domain
concepts. Associations betweenReferenceProperties
are modeled by the metamodel elementAssociation,
which provides bidirectional navigable relationships
betweenProperties. An association can reference the
sameEntity or two differentEntities, such that the
question arises where to store the association instance
in the model. Similarly to UML anAssociation in-
stance can be contained in anyPackage instance with-
out any restriction regarding the packages, which are
containing theEntity instances referenced by theAs-
sociation.

3.3 WASL Generic

WASL Generic is a platform-independent semi-
formal modeling language, which offers language
elements for modeling data structures, navigational
structures, presentation structures, and business logic
inducing a separation of concerns following the
Model-View-Controller (MVC) pattern (Reenskaug,
1979). The language elements for the data model
comply with WASL Data such that WASL Generic
can be interpreted as an extension of WASL Data.

The language elements for the navigational model
are contained in the EPackagenavigation (Figure 3)
and represent the web application’s navigation struc-
ture in the form of a directed graph. Web applications
consist of pages or respectively views between which
the user interactively can navigate with the browser
e.g. by clicking links and buttons. In WASL Generic,
the termNode is defined as a part of a web appli-
cation covering delimited specific functionality, ad-
dressed by a unique URL and navigable by the user
with the browser’s controls such as back and forth
buttons as well as bookmarks. Normally aNode cor-
responds to a single web page; however other imple-
mentations with multiple pages are possible as long as
only one URL is presented to the user for these pages.
Also platform-specific technologies such as AJAX al-
low the content of a web page to be replaced after

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

166



Figure 3: Metamodel of WASL Data and WASL Generic.

MULTI-PLATFORM MODEL-DRIVEN SOFTWARE DEVELOPMENT OF WEB APPLICATIONS

167



initially rendering it within the browser, leading to a
multi-page approach based on a single page and URL.

The navigation path between twoNodes is ex-
pressed by aLink, which corresponds to a directed
edge of the page graph and is implemented platform-
specifically e.g. by a hypertext anchor or a HTML
form’s action attribute. EachNode is contained in
a NodeGroup, which itself can be nested in a super
NodeGroup thus forming a hierarchy ofNodeGroups.
Usually the structure of the hierarchy is structured
along the functional areas of the modeled web appli-
cation.

The menu structure of the web application is mod-
eled without usingLinks with the purpose to reduce
the number of links in the navigation model and thus
to reduce the complexity. Modeling the menu struc-
ture in the navigation model by links with a number
of n nodes would lead to a number of n2 links as for
each node a link to all nodes would have to be added.
This does not comply with the requirement of clar-
ity a model should satisfy. Also typically the menu
of a web application is visualized and implemented
separately from the rest of the page contents (Figure
1), such that a separated representation in the model
simplifies the implementation of transformation defi-
nitions. Corresponding toNodeGroups, the menu can
be structured hierarchically byMenuFolders.

In WASL Generic, standard business logic pat-
terns are represented separately from theNode con-
cept as specializations of the metamodel elementLog-
icTuple. A LogicTuple is assigned to aNode and
aggregates the information, whichNode operates on
whichEntity and should be visualized by whichView.
The approach is flexible as additional business logic
types can be appended to the metamodel of WASL
Generic as additional specializations of the element
LogicTuple.

The business logic is represented to the user by
one or moreViews allowing to model simple CRUD
operations as well as for example more complex
multi-page wizards. In contrast toNodes, multiple
Views owned by oneLogicTuple must not be distin-
guishable for the user by individual URLs and as
described thus do not have to be navigable by the
browser’s back and forward buttons or bookmarks.
As navigation and presentation structure are sepa-
rated from each other and AJAX functionality is rep-
resented only in the views of the presentation model,
the page-driven paradigm typical for web applications
is ensured. AJAX introduces the problem that the
functionality of the browser’s page-driven URL ad-
dressing mechanism is broken due to the fact, that
with AJAX the page content is just replaced and no
transition between two web pages distinguishable by

two URLs is made (Zucker, 2007). The separation of
navigation and (AJAX-based) presentation in WASL
Generic assures that web applications derived from
WASL Generic do not suffer typical AJAX symptoms
such as a missing browser history, broken back and
forward buttons and indistinguishable URLs prohibit-
ing the bookmarking of specific parts of the web ap-
plication.

Current web engineering research addresses is-
sues of modeling process-oriented web applications
(Brambilla et al., 2006). An advantage of WASL
Generic in separatingNodes from LogicTuples orig-
inates from the fact, that complex process-oriented
logic can be modeled byLogicTuples separately from
the node-based navigation model. Thereby process-
oriented web applications can be modeled based on a
chain ofLogicTuples, which for example can rely on
web service calls and interacting with each other. The
user can interact with the process by respectiveLog-
icTuples, addressed byNodes and presented byViews.

3.4 WASL Php

The metamodel of WASL Php for the scripting lan-
guage PHP is organized according to the specific lan-
guage features of PHP and provides language ele-
ments for modeling entity classes and data access ob-
jects (DAO) for a object-relational mapping (ORM)
framework such as Doctrine. For describing the
platform-specific character of WASL Php a subset of
the metamodel of WASL Php is detailed in this sec-
tion. The full metamodel as well as all other WASL
metamodels can be found in (Wolffgang, 2009).

The main container of a WASL Php model is the
EClassPhpModel that contains the class model, a
page model and a relational schema (Figure 4). With
the Doctrine ORM framework a relational schema is
represented by a set of PHP classes, which map the
schema metadata for the database tables managed by
Doctrine. These classes and database tables can be
generated by Doctrine automatically from an YAML
schema file. Metamodel elements for describing such
a schema are provided with the EPackagedoctrine
and its EClassSchema. An YAML Schema contains
Models that represent database tables andConnec-
tions that can be associated toModels to specify, how
Doctrine should access the database. With the option
detect relations Doctrine can be instructed to guess
relationships between Models based on Models’ col-
umn names.

As described aModel is implemented by a PHP
entity class as well as a database table and can con-
tain multiple Columns for representing value prop-
erties, multipleRelations for referencing otherMod-

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

168



Figure 4: Subset of the metamodel of WASL Php.

els, a databaseConnection and multipleOptions for
charset and collate settings. A value attribute is ex-
pressed as a singleColumn correspondingly to the
elementValueProperty of WASL Generic. In con-
trast, corresponding to aReferenceProperty an associ-
ation between a Model A and a Model B is expressed
through aColumn owned by A plus aRelation owned
by B referencing theColumn in A. EachColumn can
be marked as a primary key, whose value can be gen-
erated automatically when inserting a new row. The
column’s type has to be selected from the EEnum
PrimitiveTypes. Corresponding to the Doctrine docu-
mentation each relation references its local column as
well as a key column of the referenced model. With
the EAttributeforeigntype the cardinality of the rela-
tion is specified, allowing the combinationsOne:One,
Many:One, One:Many andMany:Many. In the case
of a relation with a cardinality ofMany:Many a cross
tableModel has to be added, which is referenced by
the two associated Models through the EReferencere-
fClass.

For eachModel the correspondingDoctrineClass
can be specified additionally. WASL Php offers an
explicit approach of modeling and generating both
the low-level database YAML schema file as well as
the high-level Doctrine model classes for reasons of
(1) complete explication, (2) integration into the build
process and (3) controlling how the generated source
code should look. Another approach not chosen in
WASL would be to model just the YAML schema file,
to generate it with the MDA generator workflow and
separately to generate the Doctrine PHP classes based
on the YAML file with the generator script provided

by Doctrine. Such an approach has the problem, that
(1) in the model other PHP classes cannot reference
methods of the model classes as they do not exist in
the model, (2) the build process is split into two gener-
ator steps and (3) the external generator process can-
not be customized.

4 TRANSFORMATION

As described the transformation definitions of the
WASL generator framework are implemented in
QVTO and Xpand (Figure 2). The following ex-
ample is intended to illustrate how the plattform-
independent language elementEntity from WASL
Generic can be transformed with QVTO to the low-
level WASL Php language elementModel represent-
ing a Doctrine ORM model element. The generated
elements conform to the typical doctrine YAML file
format and represent the low-level concepts of doc-
trine in the MDSD modeling environment.

mapping GENERIC::data::Entity::toModel
(in model : GENERIC::WaslGenericModel)
: PHP::doctrine::Model{

name := self.name.firstToUpper();
columns := self.getValueProperties()
->select(upper = 1).map toColumn()
->asSequence()
->union(self.getReferenceProperties()
->select(navigable)->select(upper = 1).map
toColumn())->asOrderedSet();

relations := self.getReferenceProperties()
->select(p | p.upper = 1).map
toRelation(model)->asOrderedSet();

MULTI-PLATFORM MODEL-DRIVEN SOFTWARE DEVELOPMENT OF WEB APPLICATIONS

169



options := object PHP::doctrine::Options{
charset := ’utf8’;
collate := ’utf8_general_ci’;

}
}

When running the generator, for each element
with the typeEntity in a WASL Generic source model
the mapping creates an element with the typeModel
in the WASL Php target model. Additionally the
attributesname, columns, relations and options are
filled with values. In the transformation theEntity’s
name is copied to theModel’s name with the first
character as upper-case, following the conventions of
Doctrine. The EReferncecolumns is filled with Col-
umn elements that are generated for all of theEn-
tity’s ValueProperties and navigableReferenceProp-
erties with a cardinality of 1. Additionally for each
ReferenceProperty with a cardinality of 1 a relation is
created that similarly to a foreign key points to the ref-
erencedModel. Additional platform-specific details
such as the default encoding of the database table and
selected charset are set by the transformation defini-
tion by default to UTF8 such that the developer does
not have to add those settings to the target model after
each transformation.

5 CONCLUSIONS

We have presented the WASL MDSD generator that
allows fully automatic generation of web applications
based on typical web platforms such as Java EE, PHP,
and Python. The proposed approach contributes to
the field of model-driven web engineering as it (1)
realizes the MDA vision by platform-specific and
platform-independent modeling, (2) supports multi-
ple web platforms, (3) utilizes established MDA stan-
dards, and (4) represents platform concepts directly
through platform-specific DSLs.

Future work includes efforts for extending the
metamodel of WASL Generic with additional lan-
guage elements for specifying additional presentation
and logic concepts, e.g. for tethering the web ap-
plication to service-oriented architectures by specific
LogicTuples. Also a metamodel for the Google Web
Toolkit (GWT) promises interesting possibilities in
RIA modeling. Furthermore it is intended to decom-
pose the platform-specific WASL languages to sub-
metamodels with each of them representing exactly
one web development framework such as Doctrine.
This would allow composing project-specific model-
ing languages suited to the set of frameworks used in
specific software development projects.

REFERENCES

Ben-Kik, O., Evans, C., and dt Net, I. (2009).YAML Ain’t
Markup Language (YAML) Version 1.2.

Brambilla, M., Ceri, S., Fraternali, P., and Manolescu, I.
(2006). Process modeling in web applications.ACM
Transactions on Software Engineering and Methodol-
ogy, 15(4):360–409.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai,
S., and Matera, M. (2002).Designing Data-Intensive
Web Applications. Morgan Kaufmann, San Francisco.

Conallen, J. (1999). Modeling web application archi-
tectures with uml. Communications of the ACM,
42(10):63–70.

Conallen, J. (2002).Building Web Applications With Uml.
Addison-Wesley, Reading, USA, 2 edition.

Fons, J., Pelechano, V., Albert, M., and Pastor, O. (2003).
Development of web applications from web enhanced
conceptual schemas. InWorkshop on Conceptual
Modeling and the Web, ER’03, volume 2813 ofLNCS,
pages 232–245, Chicago, USA. Springer.

Gerber, A. and Raymond, K. (2003). Mof to emf: There
and back again. In Burke, M. G., editor,OOPSLA
Workshop on Eclipse Technology eXchange (OOP-
SLA2003), pages 60–64, Anaheim, California. ACM-
Press.

Ginige, A. and Murugesan, S. (2001). Web engineering - an
introduction.IEEE MultiMedia, 8(1):14–18.

Koch, N. (2001). Software Engineering for Adaptive Hy-
permedia Systems. PhD thesis, LMU Mnchen.

Koch, N., Knapp, A., Zhang, G., and Baumeister, H. (2008).
Web Engineering: Modelling and Implementing Web
Applications, volume 12, chapter 7, pages 157–191.
Springer, Heidelberg.

Koch, N., Pigerl, M., Zhang, G., and Morozova, T. (2009).
Patterns for the model-based development of rias.
In Proc. 9th Int. Conf. Web Engineering (ICWE’09),
volume 5648, pages 283–291, San Sebastian, Spain.
Springer.

Kraus, A., Knapp, A., and Koch, N. (2007). Model-
driven generation of web applications in uwe. InProc.
MDWE 2007 - 3rd International Workshop on Model-
Driven Web Engineering, CEUR-WS, volume 261.

Kroiss, C. and Koch, N. (2009). Uwe4jsf: A model-driven
generation approach for web applications. InProc.
9th Int. Conf. Web Engineering (ICWE’09), volume
5648 ofLNCS, pages 493–496, San Sebastian, Spain.
Springer.

Maple, C., Phillips, A., and Morris, B. (2010). Uk secu-
rity breach investigations report - an analysis of data
compromise cases 2010. Technical report, 7Safe.

Miller, J. and Mukerji, J. (2003). Mda guide. Technical
report, Object Management Group.

Moreno, N., Fraternali, P., and Vallecillo, A. (2006). A
uml 2.0 profile for webml modeling. InWorkshop on
Model-Driven Web Engineering (MDWE2006), Palo
Alto, USA.

Moreno, N., Fraternali, P., and Vallecillo, A. (2007). Webml
modeling in uml.IET Software, 1(3):67 – 80.

ICSOFT 2011 - 6th International Conference on Software and Data Technologies

170



O’Dell, J. (2009). Rockyou hacker - 30% of sites store plain
text passwords.The New York Times.

OMG (2007). Uml 2.1.2 infrastructure. Technical report,
Object Management Group.

Pastor, O., Gmez, J., Insfrn, E., and Pelechano, V. (2001).
The oo-method approach for information systems
modeling: from object-oriented conceptual model-
ing to automated programming.Information Systems,
26(7):507–534.

Reenskaug, T. (1979). Models - views - controllers. Tech-
nical report, Xerox Parc.

Schauerhuber, A., Wimmer, M., Kapsammer, E.,
Schwinger, W., and Retschitzegger, W. (2007).
Bridging webml to model-driven engineering: From
dtds to mof.IET Software, 1(3):81–97.

Schwinger, W. and Koch, N. (2006).Web Engineering: The
Discipline of Systematic Development of Web Applica-
tions, pages 39–64. John Wiley and Sons.

Stahl, T., Voelter, M., and Czarnecki, K. (2006).Model-
Driven Software Development: Technology, Engineer-
ing, Management. John Wiley and Sons, Chichester,
England.

Vallecillo, A., Koch, N., Cachero, C., Comai, S., Frater-
nali, P., Garrigs, I., Gmez, J., Kappel, G., Knapp, A.,
Matera, M., Meli, S., Moreno, N., Prll, B., Reiter, T.,
Retschitzegger, W., Rivera, J. E., Schauerhuber, A.,
Schwinger, W., Wimmer, M., and Zhang, G. (2007).
Mdwenet: A practical approach to achieving interop-
erability of model-driven web engineering methods.
In Koch, N., Vallecillo, A., and Houben, G.-J., edi-
tors,Proc. 7th Int. Conf. Web Engineering (ICWE’07),
volume 261 ofCEUR Workshop Proceedings. CEUR-
WS.org.

Wolffgang, U. (2009). Web application specification lan-
guage (wasl). Technical report, ERCIS.

Zucker, D. F. (2007). What does ajax mean for you?inter-
actions, 14(5):10–12.

MULTI-PLATFORM MODEL-DRIVEN SOFTWARE DEVELOPMENT OF WEB APPLICATIONS

171


