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Abstract: It is challenging to detect foreground objects when background includes an illumination variation, shadow 
or structural variation due to their motion. Basically pixel-based background models suffer from statistical 
randomness of each pixel. This paper proposes an algorithm that incorporates Markov random field(MRF) 
model into pixel-based background modelling to achieve more accurate foreground detection. Under the 
assumptions the distance between the pixel on the input image and the corresponding background model 
and the difference between the scene estimates of the spatio-temporally neighboring pixels are exponentially 
distributed, a recursive approach for estimating the MRF regularizing parameters is proposed. The proposed 
method alternates between estimating the parameters with the intermediate foreground detection results and 
detecting the foreground with the estimated parameters, after computing them with the detection results of 
the pixel-based background subtraction. Extensive experiment is conducted with several videos recorded 
both indoors and outdoors to compare the proposed method with the codebook-based algorithm. 

1 INTRODUCTION 

Computer vision systems such as visual surveillance, 
object tracking need to separate the moving objects 
from the scene background. Background subtraction 
in the field of view of stationary video camera is a 
common approach for detecting foregrounds from 
the dynamic backgrounds. Usually background 
subtraction employs pixel-based background model. 
Its simplest model assumes a pixel can be modelled 
with statistical informations such as mean and 
variance estimated from the corresponding pixel 
location of a sequence of video frames. This method 
tries to detect the foreground by thresholding the 
intensity or color difference between the current 
frame and the background model. However it is very 
sensitive to the selection of threshold and rarely 
deals with the dynamics of backgrounds, like 
illumination variations or the local motion of the 
background objects, e.g. waving trees. Their 
dynamics causes the pixel intensity values to vary 
significantly with time. Many authors proposed 
several promising schemes to model such variations. 
Among them are the generalized mixture of 
Gaussians (Stauffer and Grimsom, 1999), 
nonparametric kernel model (Elgammal, et al., 2002), 

or codebook model (Kim, et al., 2005), etc. Stauffer 
and Grimsom model the pixel intensity with a 
mixture of 3 to 5 Gaussian distributions and use the 
EM algorithm for adaptation of the mixture model. 
Elgammal, et al. estimate the density function of 
each pixel nonparametrically using a kernel function. 
When the Gaussian kernel function is adopted it can 
be viewed as a generalization of the Gaussian 
mixture model. Kim, et al. adopt a codebook 
quantization scheme to construct a background 
model from long observation sequences. Each 
background pixel has a codebook composed of 
group of codewords. Although a single codeword 
may be enough to model static background pixel, 
mixed background pixel can be modelled by 
multiple codewords whose number depends on the 
dynamics of the pixel. All the above approaches are 
similar in that they handle the complex backgrounds 
by modelling a pixel with multi-modal distributions. 
However, Pixel-based algorithms like the above 
approaches basically assume the statistics of each 
pixel are independent although they are highly 
correlated with the neighboring ones. Some 
researchers employ the block-based models or 
Markov random field techniques to improve the 
pixel-based algorithms. MRF-based methods usually 
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exploit the spatial and temporal dependencies of the 
pixels by developing MRF models for background 
subtraction. MRF assumes that each variate 
corresponding to its pixel location is connected to its 
four or eight nearest neighbours. MRF needs cost 
functions which are related with the compatibility 
functions between the scene variable and the 
corresponding pixel value. Basically any 
background model can be used to define the cost 
functions. This paper chooses a codebook-based 
background model for the cost functions. Almost all 
MRF-based background models select the fixed 
values for all MRF parameters. For example, 
(Migdal, et al., 2005) assigns the constant energy 
potentials for all the spatial, posterior and temporal 
cliques and (Wu, et al., 2010) assumes all 
compatibility functions are exponentially distributed 
with constant parameters.  (McHugh, et al., 2009) 
models the background subtraction as a binary 
hypothesis test and determines the detection 
threshold by means of Ising model. (Xu, et al., 2008) 
recovers the background image from a sequence of 
images containing moving foreground objects. A 
loopy belief propagation is employed for 
background estimation.  
A loopy belief propagation is also adopted in this 

paper. However its roles are quite different in that it 
decides whether an image pixel belongs to 
background or foreground in this paper, while Xu, et 
al. use it to indicate from which frame the pixel 
should be selected. 

This paper makes major contributions that 
exploits both the spatial and temporal dependencies 
by developing MRF models for background 
subtraction and proposes a recursive approach for 
estimating the MRF regularizing parameters.  

2 MRF-BASED FOREGROUND 
DETECTION 

Let { }iX x= denote a set of binary random variable, 
where i represents a pixel location. A state space is 
assumed, say { }0,1Λ =  , so that ix ∈Λ for all i . Let 
Ω be the set of all possible configurations:  

( ){ }1 2, , , : ,1N ix x x x i NωΩ = = ⋅⋅⋅ ∈Λ ≤ ≤  (1) 

And a set of random variable X is assumed to be 
a MRF. Then the probability ( )P X ω= is a Gibbs 
distribution, depicted as: 

( )
( )1 U
TP X e

Z

ω

ω
−

= =  (2) 

where Z is a normalizing constant called the 
partition function, T is a constant called the 
temperature and ( )U ω  is the energy function. The 
energy is a sum of clique potentials ( )cV ω over all 
possible cliques c∈ , which is defined as  

( ) ( ) ( ) ( ),
,

,c i i i j i j
c i i j

U V V x V x xω ω
∈

= = +∑ ∑ ∑  (3) 

For MRF-based background model, a superscript 
is added to the random variable ix so that ix is 
replaced with t

ix , where t represents a time index. 
The energy function ( )U ω  is extended in the 
following way, to include the time dependency as 
well as the spatial dependency. 

( ) ( )

( ) ( ) ( )1
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, ,
         , ,

c
c

t t t t t
i i i j i j i j i j
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The scene variable t
ix is associated with the pixel 

value t
iy  at time t  and pixel location i . That is, t

ix  
has a value of 0 when its corresponding pixel value 

t
iy  comes from the background model and 1t

ix = in 
case of foreground.  

There is some statistical dependency between the 
pixel value t

iy  at time t  and its corresponding 
decision result or scene variable t

ix  at each pixel 
location i . A background pixel must come out from 
the background model, and so the potential ( )t

i iV x  in 
(4) measures how the background pixel deviates 
from the background model, for the same case with 
the foreground pixel. Thus, ( )t

i iV x  can be defined as: 

( ) ( )t t
i it

i i t
i

d y y Background
V x

y Foreground

μ⎧ ∈⎪= ⎨
Γ ∈⎪⎩

 (5) 

where μ  is the proportional constant and Γ  is 
the potential associated with the foreground pixel, 
which is optimally adjusted using the EM algorithm, 
as explained later in 2.2. And ( )t

id y can be obtained 
using any pixel-based background model. Since this 
paper employs the codebook model (Kim, et al., 
2005), ( )t

id y  is defined as a minimum distance 

between an input pixel t
iy  and the centroids of the 

codeword kc  belonging to the codebook iC .  
The node i  is arranged in a two-dimensional grid, 

and so its scene variable t
ix  should be compatible 

with the nearby scene variables t
jx . Let λ  be a 
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probability that t
iy will come out from the 

background model and ( )t
i iE x be the energy term 

corresponding to ( )t
i iV x . Then ( )t

i iE x can be reduced 
to  

( ) ( ) 1t
id yt

i iE x e
M

μ λλ − −
= +  (6) 

where M eΓ= . Then (5) can be depicted as: 

( ) ( ) 1log
t
id yt

i iV x e
M

μ λλ − −⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 (7) 

The potential ( ), ,t t
i j i jV x x  between t

ix  and t
jx  is 

defined so that it has a larger value when the 
variable t

ix is different from t
jx , as follows: 

( ), ,t t t t
i j i j i jV x x x xν= −  (8) 

Likewise, ( )1
, ,t t

i j i jV x x −   is defined as  

( )1 1
, ,t t t t

i j i j i jV x x x xσ− −= −  (9) 

where ν  and σ are the proportional constants. 
Then, (4) can be represented as:  

( )

( )
( )

1

,

1log

              

t
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i

t t t t
i j i j
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∑
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The above equation can be further simplified by 
noting that a function of the form ( )log b xae c−− +  is 

tightly upper bounded by ( )min ,xβ γ α+ , where 

( )log a cα = − + , ab
a c

β =
+

 and log a c
c

γ +⎛ ⎞= ⎜ ⎟
⎝ ⎠

. Thus, 

minimizing (10) is equivalent to minimizing  

( )( )
( )

( )

1

,

min ,

           

t
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i

t t t t
i j i j

i j
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where 1
M

λμκ λλ
=

−
+

 and log 1
1

Mλθ
λ

⎛ ⎞= +⎜ ⎟−⎝ ⎠
. 

The belief propagation is adopted to solve the 
above equation (Yedidia, et. Al., 2002). Let ijm be 
the message that node i sends to a neighboring node 
j at time t . It is determined by the message update 

rules: 

( ) ( )( )
( ) ( )

( )( )

1

, /

min ,

       min

t t t
ij j i

i

t t t t t t
i j i j ki i

i j k N i j

m x d y

x x x x m x

κ θ

ν σ −

∈

= +

+ − + − +

∑

∑ ∑
 (12) 

And the belief ( )t
i ib x at a node i  is computed as  

( ) ( )( ) ( )
( )

min ,t t t
i i i ki i

k N i
b x d y m xκ θ

∈

= + ∑  (13) 

where ( )N i  denotes the nodes neighboring i . The 

scene variable t
ix  is selected so that ( )t

i ib x should be 
minimized, namely 

 ( ) ( )
( ) ( )

1 b 0 b 1
0 b 0 b 1

i it
i

i i
x

⎧ >⎪= ⎨ ≤⎪⎩  
(14) 

2.1 Estimating ν  and σ  

The parameters ν and σ are initialized using the 
detection results of the pixel-based background 
subtraction method. The energy term associated with 
the potential ( ), ,t t

i j i jV x x corresponds to the joint 
probability, called the compatibility function, given 
as: 

( ), ,
t t
i jx xt t

i j i jE x x e ν− −
=  (15) 

So the probabilities corresponding to t t
i jx x= and 

t t
i jx x≠ are computed from the histogram of the 

detection results at time t , where j is the neighbour 
of i . The parameter ν can be estimated as 

( )
( )

( )
( )

,

,

log

t t
i j

i j

t t
i j

i j

h x x

h x x
ν
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⎩ ⎭

∑

∑
 (16) 

where ( )h ⋅ is the histogram computed from the 

segmented image  { }t t
iX x= .           

Likewise, σ can be obtained by  

( )
( )

( )
( )

1

,

1

,

log

t t
i j

i j

t t
i j

i j

P x x

P x x
σ
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∑

∑
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using tX  and 1tX − .  

2.2 Estimating  μ  and λ  

The parameters μ and λ are estimated using the 
expectation maximization algorithm. Let 
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( ){ }max 1t
iL d y= + be the number of possible 

distance values of the pixels which come out from 
the background model. A random variable iξ is 
assigned to each pixel t

iy , indicating whether the 
pixel comes out from the background model. In 
other words, iξ  has a value of 0 when t

iy  belongs to 
the background model, otherwise iξ  equals 1 . Then 
the conditional probability of iξ can be computed as  

( )( )
( )

( )

0 , ,

    
1

t
i

t
i

t
i i i

d y

d y

P d y

e

e
M

μ

μ

ρ ξ λ μ

λ
λλ

−

−

= =

=
−

+

 (18) 

Using the method proposed by (Zhang, Seits, 2007), 
the parameters μ and λ are estimated by 
maximizing the expected log-probability 

( )( )log , ,
i

t
i iE P d yξ ξ λ μ⎡ ⎤

⎣ ⎦ , where ( )( ), ,t
i iP d y ξ λ μ  is 

given as   

( )( ) ( )

( )( )
, 0 ,

1, 1 ,

t
id yt

i i

t
i i

P d y e

P d y
M
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λξ λ μ

−
= =

−
= =

 (19) 

Using the above equations, ( )( )log , ,
i

t
i iE P d yξ ξ λ μ⎡ ⎤

⎣ ⎦  

can be expressed as follows. 
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This equation can be reduced to be  

( )( )
( ) ( )( ) ( )

log , ,

1      = log 1 log

i

t t
i i
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i i

t
i i i
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(21) 

By setting the partial derivatives of the above 
equation with respect to λ and μ to be zero, λ  is 
estimated as  

( )1
t
i

t t
i i

i
y b

i i
y B y F

ρ
λ

ρ ρ
∈
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=
+ −

∑

∑ ∑
 (22) 

where B and F represent background and 
foreground, respectively. λ  actually can be 
approximated as the ratio of the number of pixels 

decided as background over the total number of 
pixels. And μ  is the solution of the equation 

( )
1

1 1
t
i

t
i

t
i i

y b
L

i
y b

d y
L

e eμ μ

ρ

ρ
∈

∈

− =
− −

∑

∑
 (23) 

According to our experimentation results, L  is over 
30 , so that the second term of the left-hand side of 
(23) is negligible. Thus, the above equation can be 
solved explicitly as  

1log 1μ
χ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (24) 

where χ is the right-hand side of (23). 
The proposed method alternates between 

estimating the parameters with the intermediate 
foreground detection results and detecting the 
foreground with the estimated parameters, after 
computing them with the detection results of the 
codebook-based background subtraction. 

3 EXPERIMENTAL RESULTS 

The proposed method is tested with the real videos 
recorded indoors and outdoors, whose ground truths 
are manually segmented. Codebook algorithm (Kim, 
et. al., 2005) is selected as a pixel-based background 
model. Any postprocessing operations such as 
morphologies or connected component labelling are 
not used to demonstrate the effectiveness of the 
proposed method.  

In the first sequence, illumination variation 
occurs according to the distance between the camera 
and the foreground object. Fig. 1 depicts the 
comparative detection results on the video recorded 
indoors. The third and fourth columns show the 
results of the codebook algorithm and the proposed 
method, respectively. The input frames show the 
lower limbs can rarely be identified from their 
background regions due to their slight color 
difference under the dark background, while the 
upper body of the object is very discriminative from 
the background. The proposed method detects the 
lower limbs more clearly than the codebook 
algorithm. 

Fig. 2 shows the results on the video recorded 
outdoors. As can be seen from the input frame on the 
first column, the color of the lawn near the center 
region is very similar to that of her jacket. The 
codebook algorithm can not distinguish between 
them clearly and yields the streaks of false negatives 
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Figure 1: The comparative experimental results on the 
video recorded indoors. Column 1: original images. 
Column 2: ground-truths. Column 3: detection results of 
codebook-based algorithm. Column 4: detection results of 
our method. 

near the middle of the detected foreground. 
Basically the pixel-based algorithms can hardly 

distinguish the foreground objects from the 
background under the above situation. However, 
MRF can solve it by communicating with the 
adjacent pixels through the compatibility functions 
mentioned above. However, the proposed method 
misclassifies some background regions as 
foreground, which are revealed as small blobs 
scattered.   

Fig. 3 shows the similarity test results to evaluate 
the performance of the proposed method 
quantitatively. The similarity (Chen, et. al., 2007) is 
defined as follows, 

( ) ( )
( )

, t t
t t

t t

L G
S L G

L G
∩

=
∪

 (25) 

 

 
Figure 2: The comparative experimental results on the 
video recorded outdoors. Column 1: original images. 
Column 2: ground-truths. Column 3: detection results of 
codebook-based algorithm. Column 4: detection results of 
our method. 

where tL  and tG represent the detection result and 
the corresponding ground truth, respectively. The 

ground truths are manually segmented every 4  
frame. The similarity value approaches 1 when the 
overlapped region between tL  and tG increases. The 
proposed method shows the similarity value higher 
than that of the codebook algorithm at almost every 
frame. However at some frames of video recorded 
outdoors, the segmentation performance degrades 
slightly due to increase of false positives. 

4 CONCLUSIONS 

The algorithm that incorporates MRF model into the 
pixel-based background model is proposed. 
Basically almost all MRF-based background models 
select the fixed values for all MRF parameters. The 
proposed method shows the improved foreground 
detection by estimating all the parameters adaptively, 
instead of using the fixed parameters.  

Extensive experiment conducted with videos 
recorded indoors and outdoors demonstrates the 
proposed MRF model effectively reduces the false 
negatives in detecting the foreground objects under 
complex background. However it is shown that the 
proposed method misclassifies some background 
regions as foreground slightly more, compared with 
the pixel-based segmentation algorithms. More 
efforts will be needed to reduce the number of such 
misclassifications without an appreciable 
degradation in classification speed. 

 
(a) 

 
(b) 

Figure 3: The similarity curves for the codebook-based 
algorithm and the proposed method on the video recorded 
(a) indoors and (b) outdoors. 
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