
MEDICAL IMAGING IN A CLOUD COMPUTING 
ENVIRONMENT 

Louis Parsonson, Li Bai 

School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, U.K. 

Laurence Bourn, Atif Bajwa, Soeren Grimm 
Biotronics3D, 16 Heron Quays, Canary Wharf, London, E14 4JB, U.K. 

Keywords: Medical imaging, Volume rendering, Cloud computing. 

Abstract:  In this paper we present a cloud computing environment for medical imaging which deals with the issues of 
scaling a traditionally single-user solution to a software-as-a-service solution. We will first introduce 
volume rendering for medical imaging, and the issues with volume rendering of medical images on the 
cloud. We will then describe our method for accelerating CPU based volume rendering on the cloud and for 
scaling the system to a software-as-a-service solution. 

1 INTRODUCTION 

Over the past few years, there has been a change in 
the way software solutions are delivered. Provision 
of software has moved from locally installed 
systems to remotely invoked virtual instances, 
accessed through a web browser or alike. The 
motivation is a paradigm shift due to increased 
prevalence of the Internet, an increase in the 
commoditization of IT hardware, and pressure to cut 
IT budgets. Consequently, software is no longer 
delivered as a product, but offered as a service, i.e. 
Software as a Service (SaaS) (Jaekel et al, 2010). 

The removal of specialised hardware 
requirements and its associated capital expenditure 
are both instrumental to the success of this strategy. 
SaaS requires service providers to assume risks 
associated with start-up costs, while facilitating 
consumers with immediate access to purchased 
software solutions: first contact with the product 
involves gaining access to the services as opposed to 
cumbersome, failure prone, invasive installation 
procedures. Successful examples of the SaaS 
paradigm include Google Docs, a web-based text 
editing solution freely available over the internet, 
VPS NET, a virtual private server hosting company, 
and Facebook, a social networking website. For 
many of these services, access only requires account 

creation and access to an internet-enabled computer 
Centralized information can be manipulated and 
shared in a flexible and transparent manner. 
Additionally, the service provider can update and 
modify the service without requiring interruption or 
active participation of the user. SaaS solutions are 
also suitable for the ‘pay-as-you-go’ charging 
scheme, which allows users to create a subscription 
which can be cancelled and/or upgraded at any time, 
without incurring administrative costs to the solution 
provider. 

SaaS has interesting implications for medical 
imaging applications. State-of-the-art systems are 
currently installed on high-end, standalone 
workstations, often requiring bespoke hardware. 
This entails an overburden in administration of load 
balancing and redundancy control. These standalone 
workstations are often idle for large periods of time, 
rendering them costly, inefficient and promptly 
outdated. Additionally, due to their cost, they are 
often shared, causing scheduling conflicts, and 
reducing overall efficiency. 

A medical imaging cloud offers an alternative 
solution. It removes the need for expensive 
workstations, although presents difficulties of its 
own. The processing power required for a medical 
imaging application is more than a cloud solutions 
have typically provided. In this paper we show how 
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to effectively apply the cloud computing model to a 
medical imaging platform. 

2 MEDICAL IMAGING 

Medical imaging deals with the capture and analysis 
of images of the body, taken using equipment 
utilising electromagnetic radiation. This covers 
many techniques including x-ray based methods 
such as radiography and Computed Tomography 
(CT), ultrasound, Magnetic Resonance Imaging 
(MRI), and more. Images in this context are often 
referred to as slices since they describe a cross-
section slice of a particular part of the body. While 
some imaging techniques result in a single image, 
for instance an x-ray of a broken bone, others can 
produce multiple images, such as an MRI scan. If a 
scan acquires multiple images, the resulting 
collection is referred to as a series. In some cases, 
multiple series of images are taken over a period of 
time. In all of these cases, the collected scan data of 
a single patient is called a study. 

These studies are then sent for analysis by a 
specialist. This specialist will have a set of such 
studies to analyse, and after completing analysis will 
send the results to the patients physician for further 
treatment. Traditionally, studies are viewed as single 
images or as a set of consecutive slices (Figure 1.). 
However, a single study can comprise of as many as 
a thousand images, resulting in more than 1.5 
gigabytes of data. Because of this, difficulties can 
arise when processing scans on a slice by slice basis. 
The use of volumes is therefore desirable. By 
assigning a thickness to each slice in a scan (which 
can be determined by the interval at which the 
patient was scanned) these slices can be composited  

 
Figure 1: Display showing multiple images in a series. 

to a volume representation of the patient’s body. 
This volume can then be used to produce a three-
dimensional visualisation of the patient through 
volume rendering. 

3 VOLUME RENDERING 

Volume rendering is the method by which 
projections of 3D volumes are displayed as 2D 
images. Early implementations of volume rendering 
techniques focused on rendering of texture data, 
initially as a set of blended 2D textures and later, as 
the hardware permitted, utilising 3D textures 
(Dachille et al, 1998), before ray casting was 
implemented (Kruger et al, 2003). 

3.1 Direct Volume Rendering 

Direct Volume Rendering (DVR) generates images 
without the need to create an intermediate polygonal 
representation of a volume. Instead, the volume data 
set is projected onto an image plane. In image-space 
oriented ray casting approaches, rays are cast from 
the view-point through the view-plane into the 
volume, see Figure 2. The volume is equidistantly 
sampled along the ray and the volume integral is 
computed by repeated accumulation of colours and 
opacities.  

 
Figure 2: Ray casting. 

At every sampling position a scalar value is 
interpolated between the corresponding surrounding 
eight voxels, that is, in the logical three dimensional 
extension of a pixel. This value is then classified 
according to a transfer function. If the sample is 
non-transparent, a gradient is computed from the 
surrounding voxels, in order to apply shading. 
Finally, the sample is composited with the previous 
samples of the ray. Figure 3 shows a typical example 
of a volume render: (a) shows a render of the full 
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volume; (b) and (c) show renders containing 
segmentation information where a second transfer 
function has been applied. 

 
Figure 3: Volume render. 

Three main volume rendering approaches can be 
distinguished. Two of them are hardware based; the 
first one utilizes high-end Graphics Processing Units 
(GPUs) (Heng et al, 2005); the second requires 
special purpose hardware (Shen et al, 2007); the 
third is CPU based volume rendering. 

3.2 Volume Rendering on the GPU 

GPUs are highly parallel optimisations of processor 
architecture, and ray casting has been shown to work 
well on GPUs thanks to this parallelism. In hand 
with this are recent advances in hardware which 
have made modification of the graphics pipeline 
commonplace. 

In a GPU based implementation of a volume 
renderer, entry points of rays intersecting a volume 
are computed by rendering the front faces of the 
bounding cube of the volume as a colour map. The 
back faces are then rendered in a similar manner to 
calculate the direction of each ray through the 
volume. Using this information the process then 
steps through the volume along the direction of the 
ray, interpolating tri-linearly to calculate colour 
values (Kruger et al, 2003). 

Thanks to GPU architecture being aimed at 
floating point mathematics, these operations can be 
somewhat faster than they would be on the CPU. It 
does, however, involve transfer of large amounts of 
data from main memory into video memory, which 
can cause significant slow-down. In general, 
graphics hardware often has access to less memory 
than the CPU. Today’s best cards have a maximum 
of 6GB (for example: Nvidia Tesla M2070) in 
comparison with multi-core CPU servers where 
256GB is not uncommon. Rendering of many data 
sets would therefore require frequent swapping of 

data between main and video memory. In addition, 
most GPU APIs are focused on computer game 
technologies, where precision and concurrency are 
rarely an issue.  

3.3 Volume Rendering in Hardware 

Operations which would take time to emulate in 
software or on a GPU can be specifically mapped 
onto the hardware to increase performance 
(Meissner et al, 2001). Volume rendering hardware 
is specifically optimised for the task at hand.  

Pure hardware based volume rendering solutions 
provide real-time performance and high quality 
rendering. Consequently they are the most applied 
approach in practice. Current high-end solutions 
offer high performance on volumes of 5123 voxels, 
with as much as four gigabytes of dedicated memory 
and options for clustering machines together. These 
can, however, involve using imaging applications 
specific to the hardware manufacturer, tying users to 
a single vendor. 

3.4 Volume Rendering on the CPU 

Rendering on the CPU is the obvious choice in some 
applications, and in fact was the only choice for 
some time, originating before rendering on the GPU 
was even possible (Roth, 1982). Since this first 
implementation many algorithmic advances have 
been made. 

One such advance is the shear warp algorithm 
(Lacroute et al, 1994), which accelerates rendering 
by modifying the shape of the volume in such a way 
that voxels are aligned in parallel to the image plane. 
Rays cast no longer need to worry about 
interpolation since each one passes perfectly though 
the centre of a line of voxels, with each voxel being 
a single step along the ray. This leads to very good 
cache coherency during volume traversal greatly 
improving the speed. However, because only one 
sample is made for each voxel the resulting image 
quality is low and insufficient for medical analysis. 

There are many advantages to rendering on the 
CPU. Advanced visualization systems provide pre-
processing features such as filtering, segmentation, 
and morphological operations, among others. If such 
operations are not supported by the hardware, they 
have to be performed on the CPU and data must then 
be transferred back to the hardware. This transfer is 
very time consuming, thus interactive feedback 
becomes problematic. In contrast, within a pure CPU 
based solution this transfer is unnecessary allowing 
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more efficient processing of data (Grimm et al, 
2004). 

4 EFFICIENT RENDERING ON 
THE CLOUD 

4.1 Volume Rendering on the Cloud 

Volume rendering offers a number of challenges, 
and this is reflected when scaling to a large multi-
user solution such as a cloud. Memory is an 
important consideration. In a cloud environment 
each user needs access to enough memory to ensure 
that the system continues to run smoothly. A typical 
study can contain multiple series, of which an 
average of three hundred images per series is 
common. This results in each user requiring, on 
average, four gigabytes of memory in order to work. 
Loading of large data sets takes time, an issue which 
needs to be addressed in a cloud system. In addition, 
rendering of large data sets can take time without an 
appropriate acceleration structure. Furthermore, in a 
cloud environment dedicated hardware-based 
solutions become prohibitively expensive: setup 
cost, maintenance, and even scalability become 
limited due to hardware constraints. Finally, it is 
important to remember that while GPU architecture 
is highly parallelised, it still does not support 
multiple concurrent user access, so image requests 
would have to be served sequentially. Thus, a pure 
CPU based solution is by far the most suitable, and 
probably the only truly viable solution, for cloud 
based rendering.  

4.2 Accelerating CPU Rendering 

To accelerate CPU based rendering and image 
processing, the underlying memory management has 
to be modified. In this case we utilise a bricked 
memory layout. Cross-sectional data, e.g. CT and 
MRI, are large sets of individual images which 
combined form a volume in space. Physical memory 
is typically constructed in a sequential way, 
therefore the straightforward approach to loading 
these images into memory is to put them one after 
the other using a linear layout (Figure 4a): 
This layout has several disadvantages. In a typical 
set of cross-sectional images, an average 30 percent 
of the data actually does not contain any useful 
information. This comes from the fact that the 
human body consists of a set of tubular structures 
(e.g. arms, legs, and torso). A cross- sectional cut 
through a tubular structure using rectangular images  

      
          (a) Linear layout (b) Block volume layout 

Figure 4: Memory layout. 

does not contain the data well, leaving vast amounts 
of data to represent empty space around the body. 
Furthermore, in the case of an advanced medical 
imaging application data often needs to be processed 
in a non-sequential way. Volume ray casting has a 
strong view-dependent data access pattern, and 
consequently, taking a look at the typical cache 
hierarchy of today’s CPU (L1, L2, L3) it becomes 
clear that storing images linearly in memory would 
cause complete cache thrashing. 
In order to address the aforementioned issues a 
significant improvement is gained if the cross-
sectional data is arranged in a blocked manner. In 
this case we subdivide and reorganize the entire 
volume (one 3D-image) into smaller contiguous 
lightweight bricks, obtaining a structure analogous 
to a Rubik’s cube (Figure 4b). A blocked memory 
layout exhibits a variety of advantages, the first of 
which is saving memory. Data which contains no 
information can be merged into a single block - 
blocks are implemented in a reference counted 
manner. Furthermore, data can be processed in a 
brick-wise manner. 

 
Figure 5: Volume ray casting system exploiting thread-
level parallelism speedup: two physical CPUs, each with 
two cores. 
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Figure 5 shows how volume ray casting can be 
significantly accelerated by employing a brick-wise 
processing scheme. Not only is this scheme and 
memory layout considerably more cache friendly, it 
also has an inherent multi-threadability, all of which 
are essential to a successful cloud implementation of 
the rendering strategy. Additionally, considering 
modern hyper-threading technology in which there 
is a duplicated ALU but a shared cache, it becomes 
evident that in order to benefit from multiple cores 
constant re-fetching of data from physical memory 
has to be avoided. 

5 SCALING TO A CLOUD BASED 
SAAS SOLUTION 

One of the main problems faced when sharing 
hardware and software resources between multiple 
users in an arbitrary manner is the robust and 
efficient administration of the hardware available. 
Not only must each user have secured data storage 
and privacy protection, but it must also be able to 
exploit its resources without having to directly 
control how the underlying hardware and software 
resources are being utilized. Cloud systems are an 
example of a technology that requires a managing 
entity that ‘virtualizes’ the usage of hardware and 
software in a way that each user has a direct and 
transparent interaction with the system. The 
challenge is to build a lightweight instrument that 
allows for seamless interaction efficiently. A dual 
strategy that not only permits automatic 
virtualization of the resources but also specializes in 
distributing them in a coherent manner by 
performing a ‘load balancing’ of the tasks on the 
available resources is required. 

Virtualization, as described here, is instrumental 
to managing secure user sessions and is fundamental 
to the efficient distributed rendering required to 
perform advanced imaging applications. In 
particular, virtualization is achieved by creating 
‘sand-boxes’, a concept that provides restricted 
resource sets to individual users including controlled 
access to data storage, hardware resources and 
networking privileges. This creates a local, virtual 
machine for each user and removes the burden of 
requiring them to manage how their tasks are 
processed by the system.  

In order to achieve this securely and efficiently, 
the cloud system is split into the following sections: 
a Global Session Manager (GSM) responsible for 
managing user specific session sandboxes and a 

View Session Manager (VSM) responsible for 
managing viewing session sandboxes and load-
balancing. The load-balancing itself is done by the 
Rendering Resource Load Balancer (RRLB), which 
is part of the VSM. Both the GSM and VSM are 
deployed as web services and can be mirrored for 
redundancy. 

 
Figure 6: Virtualisation in the cloud. 

A typical user interaction with the system is as 
follows: as a user successfully logs in at which point 
they are assigned a global session unique identifier 
(GSUID). This GSUID allows the user to request 
within the GSM a user specific session sandbox (see 
Figure 6). The session sandbox holds all permissions 
and settings for that user within the entire system 
(data- and hardware-wise). It can only be accessed 
by that user. Furthermore, this session sandbox is 
controlled by a configurable sliding expiration. By 
default, user inactivity for more than 30 minutes will 
immediately remove the session sandbox, effectively 
logging the user out. When the user wishes to view a 
study, assuming they have the correct permission 
level, the VSM requests that the RRLB return a 
suitable rendering node resource. A new rendering 
session is created and added to the user session 
sandbox. The rendering resource starts one or more 
rendering processes based on the study data. The 
RRLB decides on which rendering node the image 
generator is created based on permissions of which 
node can be used by the user and the current load on 
nodes (number of users, available memory, CPU 
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utilization, etc.). The viewing session sandbox is 
also controlled by the configurable sliding 
expiration. 

It is important, also, to consider the bandwidth 
needs of a cloud system dealing with large amounts 
of data. Such a system needs to be able to serve 
multiple users concurrently, as well as transfer data 
between internal components quickly. Due to the 
nature of the application, much of the traffic is in the 
format of images, whether this is renders being sent 
from the server to the client, or scan data being 
uploaded from the client to the server. Even in 
compressed formats, image data takes a large 
amount of bandwidth to transmit quickly, which can 
have a significant impact on performance. 

6 RESULTS AND CONCLUSIONS 

This solution was implemented in the Biotronics3D 
cloud, and is currently running as 3dnetmedical. A 
single high-end server in the cloud can serve as 
many as 64 users concurrently, showing just how 
successful this solution is. Being a cloud, this 
solution is scalable, so any combination of servers 
can be combined for greater effect. The scalability of 
the cloud is an important feature, since it inherently 
implies a cost effective solution. At any time 
additional nodes can be added to the cloud to make 
it more powerful and the cost per user is much 
reduced compared to that of buying individual 
workstations. 

 
Figure 7: Overview of cloud infrastructure. 

The infrastructure on which the system was 
implemented was comprised primarily of a firewall, 
for security purposes, an IIS server, a rendering 
cluster and a storage cluster. Both the rendering 
cluster and the storage cluster can be expanded at 
any time to cope with an increased load of users or 
data. Both the rendering and storage clusters accept 
service requests from the IIS server, since each 
cluster is specifically optimised for the task it 

performs (for instance series uploads go straight to 
the storage cluster, and not through the rendering 
cluster) (Figure 7). 

Users can be classified as one of three types: 
casual users, active users, and power users. Whilst a 
power user may be using computationally expensive 
features of the system, e.g., choosing 
transformations and transfer functions, invoking the 
rendering cluster, casual users could be simply 
viewing an image already rendered to the screen. 
Thus, while a 32-core machine with 64 users would 
imply less than a single core per user, in reality this 
is not the case. Memory is in fact the limiting factor. 
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