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Abstract We address the problem of reconstructing 3D scenes from a set of unconstrained images. These image 
sequences can be acquired by a video camera or handheld digital camera without requiring calibration. Our 
approach does not require any a priori information about the cameras being used. The camera's motion and 
intrinsic parameters are all unknown. We use a novel combination of advanced computer vision algorithms 
for feature detection, feature matching, and projection matrix estimation in order to reconstruct a 3D point 
cloud representing the location of geometric features estimated from input images. In a second step a full 
3D model is reconstructed using the projection matrix and a triangulation process. We demonstrate with 
data sets of different structures obtained under different weather conditions that our algorithm is stable and 
enables inexperienced users to easily create complex 3D content using a simple consumer level camera.  

1 INTRODUCTION 

The design of digital 3D scenes is an essential task 
for many applications in diverse fields such as 
architechture, engineering, education and arts. 
Traditional modelling systems such as Maya, 3D 
Max or Blender enable graphic designers to 
construct complicated 3D models via 3D meshes. 
However, the capability for inexperience users to 
create 3D models has not kept pace. Even for trained 
graphic designers with in-depth knowledge of 
computer graphics, constructing a 3D model using 
traditional modelling systems can still be a 
challenging task (Yang et al., 2010). Hence, there is 
a critical need for a better and more intuitive 
approach for reconstructing 3D scenes and models. 

The past few years have seen significant progress 
toward this goal with the emergence of structure 
from motion (SFM)  methods  in the research 
community. There are two common approaches: 
laser scanners and image-based modelling approach. 
Laser scanners are very robust and highly accurate. 
However, they are very costly and have restrictions 
on the size and the surface properties of objects in 
the scene (Hu et al., 2008). In contrast, an image-
based modelling approach reconstructs the geometry 
of a complex 3D scene from a sequence of images. 
The technique is usually less accurate, but offers a 

very intuitive and low-cost method for 
reconstructing 3D scenes and models. 

We aim to create a low-cost system that allows 
users to obtain 3D reconstruction of a scene using an 
off-the-shelf handheld camera. The users accquire 
images by freely moving the camera around the 
scene. The system will then perform 3D 
reconstruction using the following steps:  

1. Image Accquisition and Feature Extraction 
2. Feature Matching 
3. Fundamental Matrix and Projection Matrix 

Estimation 
4. Bundle Adjustment and Refinement 
5. Point Cloud Generation 
6. Surface Reconstruction 

The remainder of this paper is structured as follows. 
Section 2 disucsses relevant literature in the field. 
Section 3 presents our approach for reconstructing 
3D scenes. Section 4 discusses our results. Section 5 
concludes and summarises the paper and gives a 
brief outlook on directions for future research. 

2 RELATED WORK 

2.1 Image-based Modelling 

Various   image-based   modelling   techniques  have 
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been explored in recent years. In this section, we 
discuss the most closely related work in image-based 
3D reconstruction. 

(Brown and Lowe, 2005) presented an image-
based modelling system which aims to recover 
camera parameters, pose estimates and sparse 3D 
scene geometry from a sequence of images.  

(Snavely et al., 2006) presented the Photo 
Tourism (Photosynth) system which is based on the 
work of Brown and Lowe, with some significant 
modifications to improve scalability and robustness. 
(Schaffalitzky and Zisserman, 2002) proposed 
another related technique for calibrating unordered 
image sets, concentrating on efficiently matching 
points of interest between images. Although these 
approaches address the same SFM concepts as we 
do, their aim is not to reconstruct and visualise 3D 
scenes and models from images, but only to allow 
easy navigation between images in three dimension. 

(Debevec et al., 1996) introduced the Facade 
system for modelling and rendering simple 
architectural scenes by combining geometry-based 
and image-based techniques. The system requires 
only a few images and some known geometric 
parameters. It was used to reconstruct compelling 
fly-throughs of the Berkeley campus and it was 
employed for the MIT City Scanning Project, which 
captured thousands of calibrated images from an 
instrumented rig to compute a 3D model of the MIT 
campus. While the resulting 3D models are often 
impressive, the system requires input images taken 
from calibrated cameras. 

(Hua et al., 2007) tried to reconstruct a 3D 
surface model from a single uncalibrated image. The 
3D information is acquired through geometric 
attributes such as coplanarity, orthogonality and 
parallelism. This method only needs one image, but 
this approach often poses severe restrictions on the 
image content.  

(Criminisi et al., 1999) proposed an approach 
that computes a 3D affine scene from a single 
perspective view of a scene. Information about 
geometry, such as the vanishing lines of reference 
planes, and vanishing points for directions not 
parallel to the plane, are determined. Without any 
prior knowledge of the intrinsic and extrinsic 
parameters of the cameras, the affine scene structure 
is estimated. This method requires only one image, 
but manual input is necessary.  

2.2  Surface Reconstruction 

Surface reconstruction from point clouds has been 
studied extensively in computer graphics in the past 

decade. A Delaunay-based algorithm proposed by 
(Cazals and Giesen, 2006) typically generates 
meshes which interpolate the input points. However, 
the resulting models often contain rough geometry 
when the input points are noisy. These methods 
often provide good results under prescribed 
sampling criteria (Amenta and Bern, 1998). 

(Edelsbrunner et al., 1994) presented the well-
known α-shape approach. It performs a 
parameterised construction that associates a 
polyhedral shape with an unorganized set of points. 
A drawback of α-shapes is that it becomes difficult 
and sometimes impossible to choose α for non-
uniform sampling so as to balance hole-filling 
against loss of detail (Amenta et al., 2001). 

(Amenta et al., 2001) proposed the power crust 
algorithm, which constructs a surface mesh by first 
approximating the medial axis transform (MAT) of 
the object. The surface mesh is then produced by 
using an inverse transform from the MAT. 

Approximate surface reconstruction works 
mostly with implicit surface representations 
followed by iso-surfacing. (Hoppe et al., 1992) 
presented a clean abstraction of the reconstruction 
problem. Their approach approximated the signed 
distance function induced by the surface F and 
constructed the output surface as a polygonal 
approximation of the zero-set of this function. 
Kazhdan et al. presented a method which is based on 
an implicit function framework. Their solution 
computes a 3D indicator function which is defined 
as 1 at point inside model and 0 as point outside 
model. The surface is then reconstructed by 
extracting an appropriate isosurface (Kazhdan et al., 
2006). 

3 METHODOLOGY 

3.1 Feature Matching 

The input for our reconstruction algorithm is a 
sequence of images of the same object taken from 
different views. The first step is to find feature 
points in each image. The accuracy of matched 
feature points affects the accuracy of the 
fundamental matrix and the computation of 3D 
points significantly. Many sophisticated algorithms 
have been proposed such as the Harris feature 
extractor (Derpanis. K, 2004) and the SUSAN 
feature extractor (Muyun et al., 2004). We use the 
SIFT (Scale Invariant Feature Transform) operator 
to detect, extract and describe local feature 
descriptors. Feature points extracted by SIFT are 
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distinctive and invariant to different transformations, 
changes in illumination and have high information 
content (Hua et al., 2007) , (Brown et al., 2005).   

The SIFT operator works by first locating 
potential keypoints of interest at maxima and 
minima of the result of the Difference of Gaussian 
(DoG) function in scale-space. The location and 
scale of each keypoint is then determined and 
keypoints are selected based on measures of stability. 
Unstable extremum points with low contrast and 
edge response features along an edge are discarded 
in order to accurately localise the keypoints. Each 
found keypoint is then assigned one or more 
orientations based on local image gradients. Finally, 
using  local image gradients information, a 
descriptor is produced for each keypoint (Lowe et al., 
1999). 

Once features have been detected and extracted 
from all the images, they are matched. Since 
multiple images may view the same point in the 
world, each feature is matched to the nearest 
neighbours. During this process, image pairs whose 
number of corresponding features is below a certain 
threshold are removed. In our experiment, the 
threshold value of 20 seems to produce the best 
results. 

The feature points matching between two images 
could be achieved by comparing each keypoint of 
the one image with keypoints of the other image. 
The Euclidean distance  

( )∑ −=−=
dim

2),( dd BABABAD  (1) 

is used to measure the similarity between two 
keypoints A and B. A small distance indicates that 
the two keypoints are close and thus of high 
similarity (Hu et al., 2008). However, a small 
Euclidean distance does not necessarily mean that 
the points represent the same feature. In order to 
accurately match a keypoint in the candidate image, 
we identify the closest and second closet keypoints 
in the reference image using a nearest neighbour 
search strategy. If the ratio of them is below a given 
threshold, the keypoint and the closest matched 
keypoint are accepted as correspondences, otherwise 
that match is rejected (Hu et al., 2008). 

3.2 Image Matching 

The next stage of our algorithm attempts to find all 
matching images. Matching images are those which 
contain  a common subset of 3D points. From the 
feature matching stage, we have identified images 
with  a  large  number  of corresponding features. As  

 
Figure 1: Feature Extraction - The red arrow symbol 
indicates the detected features. Detected features are 
displayed as vectors indicating scale, orientation and 
location. 

 

Figure 2: Matched Features. 

each image could potentially match every other 
image, the problem may seem at first to be quadratic 
in the number of images. However, it has been 
shown by (Brown et al., 2005) that it is only 
neccessary to match each image to k neighbouring 
images in order to obtain a good solution for the 
image geometry. In our system, we use k = 6. 

3.3 Feature Space Outlier Rejection 

We employ a feature space outlier rejection strategy 
that uses imformation from all of the images in the 
n-image matching context to remove incorrect 
matches. It has been shown that comparing the 
distance of a potential match to the distance of the 
best incorrect match is an effective strategy for 
outlier rejection (Brown et al., 2005).  

The outlier rejection method works as follows: 
Assuming that there are n images which contain the 
same point in the world. Matches from these images 
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are placed in an ordered list of nearest-neighbour 
matches. We assume that the first n - 1 elements in 
the list are potentially correct, but the element n is 
incorrect. The distance of the nth element is denoted 
as outlier distance. We then verify the match by 
comparing the match distance of the potential 
correct match to the outlier distance. A match is only 
accepted if the match distance is less than 80% of 
the outlier distance, otherwise it is rejected. In 
general,  the feature space outlier rejection test is 
very effective and reliable. For instance, a 
substantial number  of the false matches (up to 80%) 
can be simply eliminated  for a loss of less than 10% 
of correct matches. This allows for a significant 
reduction in the number of RANSAC iterations 
required in subsequent steps (Brown et al., 2005). 

3.4 Fundamental Matrix Estimation 

At this stage, we have a set of putative matching 
image pairs, each of which shares a set of individual 
correspondences. Since our matching procedure is 
only based on the similarity of keypoints, it 
inevitably produces mismatches. Many of matches 
will therefore be spurious. Fortunately, it is possible 
to use a geometric consistency test to eliminate 
many of these spurious matches. The epipolar 
geometry of a given image pair can be expressed 
using the fundamental matrix F.   

For each remaining pair of matching images, we 
use their corresponding features to estimate the 
fundamental matrix. This geometric relationship of a 
given image pair can be expressed as 

0=Fvu T  (2) 

for any pair of matching features vu ↔ in the two 
images. The coefficients of the equation (2) can be 
written in terms of the known coordinates u and v. 
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Thus a unique solution of F (up to scale) can be 
determined if we are given 8 correspondences 

(Hartley et al., 2003). Usually considerable more 
than 8 correspondences are used because of 
inaccuracies in the feature estimates. The resulting 
overdetermined system can be solved resulting in a 
solution optimal in a least squares sense, which is 
then used to compute the fundamental matrix. 

Many solutions have been proposed to estimate 
the fundamental matrix. In our system, we use 
RANSAC (Hartley et al., 2003) to robustly estimate 
F. Inside each iteration of RANSAC, the 8-point 
algorithm, followed by non-linear estimation step, is 
used to compute a fundamental matrix (Hartley et al., 
2003). The computed epipolar geometry is then used 
to refine the matching process. 

3.5 Bundle Adjustment  

Next, given a set of geometrically consistent 
matches between images, we need to compute a 3D 
camera pose and scene geometry. This step is critical 
for the accuracy of the reconstruction, as 
concentration of pairwise homographies would 
accumulate errors and disregard constrains between 
images. The recovered geometry parameters should 
be consistent. That is,  the reprojection error, which 
is defined by the distance between the projections of 
each keypoint and its observations, is minimised 
(Brown et al., 2005).  

This error minimization problem can be solved 
using Bundle Adjustment. Bundle Adjustment is a 
well-known method of refining a visual 
reconstruction to produce joinly optimal 3D 
structure and viewing parameter estimates. It 
attemps to minimise the reprojection error between 
observed and predicted image points, which is 
expressed as the sum of squares of a number of non-
linear real-valued functions (Brown et al., 2005).  
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where ),( ijij yxp = denotes the coordinate of an 

image point, and )~,~(~
ijij yxp = denotes the observed 

image point. 
The minimization can be formulated as a non-

linear least squares problem and solved with 
algorithms such as Levenberg-Marquardt (LM). 
Such algorithms are particularly prone to bad local 
minima, so it is important to provide a good initial 
estimate of the parameters (Snavely et al., 2006). 

The bundle adjustment algorithm starts by 
selecting an initial image pair, which has a large 
number of matches and a large baseline. This is to 
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ensure that the location of the 3D observed point is 
well-conditioned. The bundle adjustment algorithm 
will then estimate geometry parameters for the given 
pair. Subsequent images are added to the bundle 
adjuster one at a time, with the best matching 
(maximum number of matched) image being added 
at each step.  Each image is initialised with the same 
rotation and focal length as the image to which it 
best matches. This has proved to work very well 
even though images have different rotation and scale 
(Snavely et al., 2006), (Brown et al., 2005). 

Figure 3 shows the original model of the 
Daliborka tower and its generated point clouds. 

Figure 3: Model of the Daliborka  tower (3D 
Reconstruction Dataset. Centre for Machine Perception) 
and its generated point clouds. 

3.6 Surface Reconstruction 

The final step is to reconstruct surfaces from the 
obtained point clouds. Our objective is to find a 
piecewise linear surface that closely approximates 
the underlying 3D models from which the point 
clouds was sampled (Kazhdan et al., 2006). Many 
sophisticated surface reconstructions have been 
proposed and extensively studied. In our system, we 

employ the Power Crust algorithm (Amenta et al., 
2001) for remeshing the surfaces. 

The Power Crust algorithm reconstructs surfaces 
by first attempting to approximate the medial axis 
transform of the object. The surface representation 
of the point clouds is then produced by the inverse 
transform. The algorithm is composed of 4 simple 
steps: 1) A 3D Voronoi diagram is computed from 
the sample points. 2) For each point s, select the 
furthest vertex v1 of its Voronoi cell, and the furthest 
vertex v2 such that the angle v1sv2 is greater than 90 
degree. 3) Compute the Voronoi diagram of the 
sample point and the Voronoi vertices selected from 
the second stage. 4) Create Delaunay triangulation 
from the Voronoi diagram in the previous stage. An 
example of the resulting 3D model is illustrated in 
figure 4. The complete algorithm is summarised in 
figure 5. 

 
 

 
Figure 4: The reconstruction of the model of the Daliborka  
tower in Figure 3. 
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Algorithm for 3D Object Reconstruction  

Input: n unordered and unconstrained images 
1. Extract features from all input images using 

SIFT operator 
2. Find t nearest neightbors for each feature 
3. For each image: 

a. Select k candidate matching images 
(those which have highest number of 
features matched to this image) 

b. Find geometrically consistent feature 
matches using RANSAC to solve for 
fundamental matrix between pairs of 
images. 

4. Compute 3D camera pose and scene geometry 
using Bundle Adjustment. 

5. Reconstruct surface for the obtained point 
clouds. 

6. (Future work) Apply hole-filling alogorithm for 
the resulting model. 

Output: 3D model of the object 

Figure 5: Algorithm for 3D Object Reconstruction. 

4 RESULTS 

We have tested our system with a number of 
different datasets, both indoor and outdoor scenes. In 
all our test cases, the system produces good results 
for rough, non-uniform and full-of-feature datasets. 
Datasets with smooth and uniform surfaces often 
result in inadequate number of 3D points generated, 
since the feature detector (SIFT) has trouble 
detecting and extracting features from these images. 
The size of our test datasets varies from as few as 6 
images to hundreds of images, which are all taken 
with a simple handheld camera. 

Dataset 1 

The first data set consists of 37 images taken from 
arbitrary view directions on ground level using a 
normal consumer-level SONY DSC-W180 camera. 
The reconstructed 3D model has 19568 faces and is 
of good quality. The original object can be easily 
identified. Some holes exist near concave regions 
and near sharp corners. This is caused by large 
variations in the point cloud density, which the 
surface reconstruction algorithm was unable to deal 
with. 
Dataset 2 
The second data set comprises 55 images taken at 
ground level from two sides of the Saint Benedict 
Church in Auckland, New Zealand. The other two 
sides were not accessible. The images were taken 
with the same camera as in the previous case and 
under slightly rainy conditions. The reconstruction 
results are satisfactory. The resulting model which is  

 

Figure 6.1: The statue of Queen Victoria, Mt Albert Park, 
Auckland - Original view. 

 

 

Figure 6.2: Two views of the reconstructed model of the 
statue of Queen Victoria. Number of images: 37 
(2592x1944). Running time: approximately 4 hours. 

composed of 37854 faces has a high resemblance 
with the original object and even the inaccessible 
sides look plausible. A few details, such as some 
windows, are missing causing holes in the model. 
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Figure 6.3a: Saint Benedict Church, Auckland. 

 
Figure 6.3b: Reconstructed model of Saint Benedict 
Church. The yellow circle indicates a reconstructed region 
which was invisible in all input images. Number of 
images: 55 (3648x2056). Running time: approximately 
6h40 hours. 

Dataset 3 
The third data sets consisted of 63 images of Saint 
George church. All images were taken from ground 
level. Since the roof of that building is quite flat, this 
resulted in missing information about the roof 
structure and the reconstructed model contains large 
gaps in that area. We intend to overcome this type of 
problems with a sketch-based interface, which 
allows the users to add missing geometric details. 
The model contains of 28846 faces. 

 
Figure 6.4a: Saint George (3D Reconstruction Dataset. 
Centre for Machine Perception). Input images: 63 
(2048x3072).  

 
Figure 6.4b: Reconstructed model of Saint George 
Church. Number of images: 63 (2048x3072). Running 
time: approximately 9 hours. 

Dataset 4 
The fourth data set comprises 65 images taken from 
many different views of the model of the Daliborka 
tower shown in figure 3. The reconstruction result is 
of very good quality and the final model has a high 
resemblance with the original object. Small details 
such as windows are also properly reconstructed. 
The improved reconstruction is probably due to less 
geometric features in the original model and a more 
even illumination compared to outdoor scenes. The 
resulting model is composed of 29768 polygons. 
The computation time of this data set is over 9 hours. 
Figure 7 summarizes the computation time and 
parameters of the input data sets and resulting 3D 
models for the presented examples. It can be seen 
that the computation is quite slow, however, since it 
can be performed in an offline process, this is 
acceptable for our purpose. 
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Dataset 
Statue of 
Queen 

Victoria 

Saint 
Benedict 
Church 

Saint 
George 
Church 

Daliborka 
Tower 

Number of 
Images 37 55 63 65 

Image 
Resolution 2592x1944 3648x2056 2048x3072 4064x2704

Computation 
time in hour 4.1 6.4 9.0 > 9 .0 

Generated 
Polygon  19568 37854 28846 29768 

 

Figure 7: Comparison of the running time for 
reconstructing 3D models from different input data sets 
(photos). All examples were executed on a machine with 
an Intel Quad-Core i7 and 6GB RAM. 

5 CONCLUSIONS AND FUTURE 
WORK 

In this paper, we have discussed a novel approach 
for reconstructing realistic 3D models from a 
sequence of unconstrained and uncalibrated images. 
Geometry parameters such as cameras’ pose are 
estimated automatically using a bundle adjustment 
method. 3D point clouds are then obtained by 
triangulation using the estimated projection matrix. 
We reconstruct surfaces for the point clouds to 
recover the original model. In contrast to previous 
approaches, we acquired the input images in just a 
few minutes with a simple hand-held consumer level 
camera. Our results demonstrate that our algorithm 
enables inexperienced users to easily create complex 
3D content using a simple consumer level camera. 
This significantly simplifies the content creation 
process when constructing virtual environments. 
Problems, such as holes, still exist with the resulting 
model. This is caused by large variation in the point 
cloud’s density. Another disadvantage is that the 
computation is quite expensive (the system takes 
over 4 hours to process 37 images, and about 9 hours 
for 63 images on a Intel Quad Core i7 with 6GB 
RAM), but this is only an issue in applications 
where the user needs the content immediately. A 
common problem with this application is that not all 
views of a model are obtainable. Especially the roof 
is often not fully or not at all visible. Similarly in 
some cases the backside of a building or object 
might not be accessible. We propose to use sketch 
input and symmetry information to "complete" 
models in such circumstances. Additional future 
work will concentrate on improved hole filling 
algorithms and on speeding up the algorithm by 
using an GPU implementation. 
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