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Abstract: Intention recognition has significant applications in ambient intelligence, for example in assisted living and 
care of the elderly, in games and in crime detection. In this paper we describe an intention recognition 
system based on a formal logic of actions and fluents. The system, called WIREC, exploits plan libraries as 
well as a basic theory of actions, causality and ramifications. It also exploits profiles, contextual 
information, heuristics, the actor’s knowledge seeking actions, and any available integrity constraints. 
Whenever the profile and context suggest there is a usual pattern of behaviour on the part of the actor the 
search for intention is focused on existing plan libraries. But, when no such information is available or if the 
behaviour of the actor deviates from the usual pattern, the search for intentions reverts to the basic theory of 
actions, in effect dynamically constructing possible partial plans corresponding to the actions executed by 
the actor. 

1 INTRODUCTION 

Intention recognition is the task of recognizing the 
intentions of an agent by analyzing their actions 
and/or analyzing the changes in the state 
(environment) resulting from their actions. Research 
on intention recognition has been going on for the 
last 30 years or so. Early applications include story 
understanding and automatic response generation, 
for example in Unix help facilities. Examples of 
early work can be found in Scmidt et al. (1978) and 
Kautz and Allen (1986). More recently new 
applications of intention recognition have attracted 
much interest.  

These applications include assisted living and 
ambient intelligence (e.g. Pereira and Anh, 2009, 
Roy et al., 2007, Geib and Goldman, 2005), 
increasingly sophisticated computer games (e.g. 
Cheng and Thawonmas, 2003), intrusion and 
terrorism detection (e.g. Geib and Goldman, 2001, 
Jarvis et al., 2004) and more militaristic applications 
(e.g. Mao and Gratch, 2004 and Suzic and Svenson, 
2006). These applications have brought new and 
exciting challenges to the field. For example assisted 
living applications require recognizing the intentions 
of residents in domestic environments in order to 
anticipate and assist with their needs. Applications in 
computer systems intrusion or terrorism detection 

require recognizing the intentions of the would-be-
attackers in order to prevent them.  

Cohen, et al. (1981) classify intention 
recognition as either intended or keyhole. In the 
former the actor wants his intentions to be identified 
and intentionally gives signals to be sensed by other 
(observing) agents. In the latter the actor either does 
not intend for his intentions to be identified, or does 
not care; he is focused on his own activities, which 
may provide only partial observability to other 
agents. Our approach is applicable to both classes, 
but here we describe it for the first only. 

The intention recognition problem has been cast 
in different formalisms and methodologies. 
Prominent amongst these are logic-based, case-based 
and probabilistic approaches. Regardless of the 
formalism, much of the work on intention 
recognition is based on using pre-specified plan 
libraries that aim to predict the intentions and plans 
of the actor agent. Use of the plan libraries has 
obvious advantages, amongst them managing the 
space of possible hypotheses about the actor’s 
intentions. But it also has a number of limitations. 
For example anticipating, acquiring and coding the 
plan library are not easy tasks, and if intention 
recognition relies entirely on plan libraries then it 
cannot deal with cases where the actor’s habits are 
not  well-known  or if the actor exhibits new, unanti- 
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cipated behaviour. 
The contributions of this paper are as follows.  

We propose a new logic-based approach to intention 
recognition based on deduction and the Event 
Calculus (Kowalski and Sergot, 1986) which is a 
formalism for reasoning about events, causality and 
ramifications. The system we propose is called 
WIREC (Weighted Intention Recognition based on 
Event Calculus). It exploits any available 
information about the actor and the context, 
including the actor’s context-based usual behaviour, 
and constraints, for example his inability to perform 
certain tasks in certain circumstances.  

WIREC takes into account the actor’s physical 
actions as well as any knowledge-seeking actions, 
and reasons with what it infers about the actor’s 
knowledge. It can exploit plan libraries if any plans 
correspond to the known profile of the actor, and it 
can revert to a basic theory of causality if no such 
plans are available or if the actor’s behaviour 
deviates from his known profile.  WIREC 
incorporates a concept of “weight-of-evidence” to 
focus the search for intentions and to rank the 
hypotheses about intentions.  

Chen et al. (2008) also use the event calculus for 
reasoning about intentions in a framework for 
assisted living, but in their work they know the 
intention of the actor a priori, and use the event 
calculus to plan for the intention in order to guide 
the actor through the required actions. Hong (2001) 
shares with us concerns about the limitations of 
intention recognition based entirely on plan libraries. 
In his work he does not use plan libraries and uses a 
form of graph search through state changes. But his 
aim is to identify fully or partially achieved goals, by 
way of explaining executed actions rather than to 
predict future intentions and actions. 

2 MOTIVATING EXAMPLES 

Example 1: A simple example for ambient 
intelligence at home may be based on the following 
scenario. John is boiling some water. There are 
multiple possible intentions, beyond the immediate 
intention of having boiled water, for example to 
make a hot drink (tea or coffee), to make a meal or 
to use the hot water to unblock the drain. Several 
factors can help us narrow the space of possible 
hypotheses and to rank them. One set of factors 
involves any information about John’s usual habits 
(John’s profile) and constraints, and the current 
context, such as time of day, and temperature (e.g. 

John usually has tea during the day if it is cold, and 
he does not drink coffee). 

Another set of factors involves “weight of 
evidence”, which can be used if John’s profile is not 
known, or in conjunction with his profile, or if John 
is behaving in a way unanticipated by his known 
profile. Weight of evidence can be based on what we 
know about what John knows based on his 
“knowledge seeking” actions (e.g. John has already 
looked in the cupboard and our RFID tag readers 
indicate there is no tea). It can also take into account 
John’s other “physical” actions, and the accumulated 
effort towards one intention or another (e.g. John 
gets the pasta sauce jar, strengthening the hypothesis 
that he intend to make a meal, or John takes the 
boiled water to the sink strengthening the hypothesis 
that he intends to pour the water down the sink to 
unblock the drain). 

Example 2: An example with a game flavor is as 
follows. Located on a grid are towns, treasures, keys 
to treasures, weapons, monsters, and agents. The 
agents can move through the grid stepping through 
adjoining locations, can pick up weapons, enter 
towns, kill monsters, and pick up treasures. They 
may have some prior knowledge about the locations 
of these various entities. Each agent has one or more 
intentions (goals), including killing monsters, 
collecting treasures or arriving at towns. The actions 
that the agents can perform have preconditions, for 
example to kill a monster, the agent must have a 
weapon and be co-located with the monster, and to 
collect a treasure the agent must have a treasure key 
and be co-located with the treasure. We have no 
prior knowledge of the “profiles” of the agents. We 
can guess their intentions only from their actions 
(and sometimes from lack of actions), for example if 
their progress through the grid gets them closer to a 
weapon or to a treasure key, if they seek to move to 
a grid position with a monster on it, or if despite 
being co-located with a weapon they do not pick it 
up. 

3 BACKGROUND 

The approach we take in this paper is based on the 
Event Calculus (EC). This formalism has been used 
for planning (Mancarella et al., 2004, for example), 
and has an ontology containing a set of action 
operators, symbolized by A, a, a1, a2, b, c, etc, a set 
of fluents (time-dependent properties), symbolized 
by P, p, p1, p2, .., q, r, neg(p), etc, and a set of time 
points.  There  are  two types of fluent, primitive and 
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ramification. 
The semantics of actions are specified in terms of 

their preconditions and the primitive fluents they 
initiate and terminate. Initiation, termination and 
preconditions are domain-dependent rules of the 
form: 

Initiation: 

initiates(A,P,T) ← holds(P1,T) …  holds(Pn,T) 
Termination: 
terminates(A,P,T) ← holds(P1,T)  … holds(Pn,T) 
Precondition: precondition(A,P) 
 

The conditions holds(P1,T) …  holds(Pn,T), 
above, are called qualifying conditions. The first two 
rule schemas state that at a time when P1, …, Pn 
hold, action A (if executed) will initiate, or 
terminate, respectively,  fluent P. The last rule 
schema states that for action A to be executable 
fluent P must hold. An action may have any number 
of preconditions. 

Primitive fluents hold as a result of actions: 

holds(P,T2) ← do(A,T1)  initiates(A, P, T1)  
T2=T1+1 

holds(neg(P),T2) ← do(A,T1)  terminates(A, P, T1) 
 T2 = T1+1 

Ramifications hold as a result of other fluents 
(primitive or ramification) holding: 

holds(Q, T) ← holds(P1,T)  … holds(Pn,T) 
 

In the rules above all the variables are assumed 
universally quantified in front of each rule. 

As an example of EC specification consider the 
following (self-explanatory) domain-dependent 
rules: 

 

Example 3:  
initiates(pushOnButton(Actor, radio), on(radio), T) 

←holds(hasBattery(radio),T) 
holds(neg(on(radio)),T)              

terminates(pushOnButton(Actor,radio), on(radio), 
T)  ← holds(on(radio),T) 
precondition(pushOnButton(Actor,radio), 
   co-located(Actor, radio)) 
holds(co-located(X,Y), T) ← holds(loc(X,L), T)  
      holds(loc(Y,L),T). 

4 INTENTION RECOGNITION: 
OUR APPROACH 

We make the following assumptions. There are two 
agents, the observer (which is the WIREC system), 

and the actor, who is assumed to be a rational agent, 
and may have multiple (concurrent) intentions. We 
observe all the actions of the actor and in the order 
they take place, and the actions are successfully 
executed.  

As well as actions, we also observe fluents. In an 
ambient intelligence assisted living scenario, for 
example, the house will have a collection of sensors, 
and readings from these can periodically update the 
representation of state kept by the system. Such 
observed fluents will typically be properties that can 
change without the intervention of the actor, for 
example, whether the actor is alone or has company, 
and whether it is a hot day.  

An intention may be an action or a fluent. In the 
former case, the actor’s actions are directed towards 
achieving the preconditions of the intended action, 
thus making the action executable.  In the latter case 
the actor’s actions are directed towards achieving the 
intended fluent. 

4.1 Architecture of WIREC 

Figures 1 and 2 illustrate the architecture of 
WIREC. 

 

Figure 1: Architecture of WIREC. 

 

Figure 2: Architecture of the Intention Recognizer (IR) in 
WIREC. 
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The Action Recognizer can be based on some 
form of activity recognition (e.g. Philipose et al. 
2005), and is beyond the scope of this paper. 
Observed fluents and actions update a database S 
representing the current state of the environment. 
The updating is done according to the semantics of 
actions and fluents given by EC. S contains only 
primitive fluents, the ramifications remaining 
implicit. Observed actions and state S are then used 
by the Intention Recognizer (IR). 

IR first consults Profile to see if, in the current 
context, there is any information about the actor’s 
profile identifying possible intentions and plans. If 
so then appropriate plans are selected from the Plan 
Library PL, providing an (initial) focus for the 
search. If not, or if the sequence of actions observed 
thus far does not correspond to any plans that may 
be selected from PL, then the search uses the Basic 
Action Library, BL.   Both PL and BL are based on a 
graph representation of the Event Calculus. 

4.2 Graph Representation of the Event 
Calculus 

We adopt a graph-like representation of the Event 
Calculus axioms (and plans). This representation is 
introduced in Table 1. Each instance of a graph 
given in the last column is called a graph fragment. 
This graphic representation allows our intention 
recognition algorithm to be interpreted both in terms 
of reasoning and in terms of graph matching or 
traversal. 

Plans (and thus plan libraries) can be constructed 
using this graph-like representation. For example 
Fig. 3(i) shows a plan for achieving intention r by 
doing actions a1, a2, a3 in any order, and doing a4 
after a1 and a2.  Fig. 3(ii) gives a more conventional 
representation of the same plan used by other 
intention recognition systems.  The approach in Fig. 
3(i) compared to Fig. 3(ii) and to other approaches 
such as the Hierarchical Task Network models (Erol  
et al., 1994) has a number of advantages. 

The representation in Fig. 3(i) provides 
information about qualifying conditions (p1 and p2 
for the initiation of q1), preconditions (q1 and q2 for 
the executability of action a4) and ramifications (r 
holding as a result of r1 and r2). All this information 
can be useful in intention recognition. For example 
if the observer knows that the actor knows that p1 
does not hold, then if the actor performs action a1 he 
certainly does not intend q1, nor a4, and thus is very 
unlikely to intend r. 

Also the observer may not see actions a1 and a2  

executed, but sees a4. The plan makes it clear that 
a1 and a2 are needed only to establish the 
preconditions for the executability of a4. So not 
having observed them does not distract from the 
possibility of r being an intention. The preconditions 
of a4 may have already held and the actor 
opportunistically executed a4. 

Table 1: EC graph representation. 

EC Axiom
Name 

EC Axiom schema Graph 
Representation 

Initiation initiates(A,P,T) ← 
holds(P1,T) …  
holds(Pn,T)  

A 
P1 
.                       P 
. 
Pn 

Termination terminates(A,P,T) 
←holds(P1,T) …  
holds(Pn,T)  
 

A 
P1 
.               neg(P) 
. 
Pn 

Precondition precondition(A,P1) 
precondition(A,P2) 
. 
. 
precondition(A,Pn) 
being all the precon-
dition axioms for A 

 
P1 
.                    A 
. 
Pn 

Ramification holds(Q,T) ← 
holds(P1,T) …  
holds(Pn,T)  

P1 
.                       Q 
. 
Pn 

 
a1              r 
p1  q1 
p2 

  a4      r1 
a2           q2            r     a1  a2  a3   a4 
 
a3     r2 
 3(i)         3(ii) 

Figure 3(i): An EC plan for achieving an intention r  
3(ii): A conventional representation of the plan. 

4.3 Generating Hypothesis 
by Graph Traversal 

Plan libraries (PL) in WIREC consist of “joined-up” 
graph fragments such as the one in fig. 3(i), and 
basic action libraries (BL) in WIREC consist of 
graph fragments such as instances of those in table 
1. Whether the intention recognizer uses PL or BL, 
the search for hypothesis about intentions focuses on 
the executed actions, propagating them through 
graph matching (which can also be thought of as 
forward reasoning) and propagating the “weight of 
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evidence”. Weight of evidence, which is a number 
between 0 and 1, takes into account several factors, 
amongst them how many actions the actor has 
executed so far towards an intention, and what the 
actor knows because of his knowledge-seeking 
actions. 

Note that when the search uses BL, it amounts to 
dynamically constructing new partial plans matching 
the executed actions. We illustrate the algorithm by 
an example. 

 

Example 4: Suppose BL consists of the fragments in 
table 2, where a,b,c,d,e are actions, and p, p1, p2, 
p3, q, q1, .., q4, r, r1, t are fluents. Fragment 2i and 
2iii represent action preconditions, 2viii represents a 
ramification and the others represent fluent 
initiations. 

Table 2: An Example of Part of BL. 

2i 2ii 2iii 2iv 2v 

p        a   a         q q        b c       p1 a          t 

2vi 2vii 2viii 2ix 2x 

b       q1 
p1 

b       q2 
p2  

q2        r 
q3 

d        r1 
q4 

e       p3 
q1    

 

Suppose we observe that action a has been 
executed. Reasoning forward from a amounts to 
traversing (some of) the paths starting at a. We 
assign weights as we do the traversal:   <q,1> and 
<t, 1> (because of 2ii and 2v, q and t actually hold 
now because of a), <b,1> (2iii, action b is enabled - 
i.e. its precondition(s) now hold because of a), 
<q1,1/2> (2vi, action b is enabled by the actor but 
he has made no effort towards p1 yet, so only one 
half of the conditions for achieving q1 are in place), 
<q2,1/2> (2vii, similar to 2vi), <r,1/4> (2viii, the 
actor has made some effort towards q2 but none 
towards q3 yet), <p3, 1/4> (2x, similar to 2viii). 

Notice that we ignore 2i, 2iv, 2ix; this is because 
we focus on the changes that are brought about by 
the actor. Now suppose the actor does action c next. 
This gives a weight of 1 to p1, and increases the 
weights of q1 to 1, and p3 to 1/2. The other weights 
remain the same. 

Our approach has a flavour of GraphPlan (Blum 
and Furst, 1997), but with two significant 
differences. Firstly in GraphPlan in each state all 
actions whose preconditions are satisfied are 
considered. In our approach we consider only those 
actions whose preconditions are (fully or partially) 
satisfied because of the actor’s actions. Secondly 
GraphPlan completely constructs all states as it 
computes paths into possible futures. We simply par- 

tially “skim” paths into the future.  

4.4 Controlling the Search 
for Hypotheses 

We make use of several features to control the 
search for hypotheses: 

(1) Intentions versus Consequences: An action can 
have several effects, some of which may be 
incidental and side-effects (e.g. increasing the water 
thermostat increases the heating bill). These we call 
consequences. Other effects may be the (immediate) 
intentions behind the execution of the action (e.g. 
having hot water) and possibly paving stones 
towards further actions and longer term intentions 
(e.g. having a shower and going to work). We use 
consequences to update the state S, but we ignore 
them in the graph traversal. 

(2) Integrity Constraints: We represent and use any 
available information about what the actor is not 
capable of doing (e.g. he cannot climb ladders), as 
well as any constraints known about the 
environment (e.g. it is not possible to open the attic 
door or it is not possible to enter a room without 
being seen by a sensor). Integrity constraints can be 
context-dependent (e.g. John never watches TV 
when he has company). In example 4 if we can infer 
that action e is not possible for the actor then we 
will ignore fragment 2x and any other paths 
originating from e.  

(3) Weight of Evidence Heuristic Threshold: We 
specify cut-off points, beyond which the Intention 
recognizer does not look further into possible 
futures. Currently we use a numerical Threshold, 
such that when the weight of a fluent/action falls 
below it no further reasoning (propagation) is done 
using it. 

(4) Knowledge-Seeking Actions: Observing the 
actor’s knowledge-seeking actions (e.g. opening and 
looking inside a cupboard) gives us information 
about what he knows. This information is used to 
increase or reduce weight of evidence of the 
hypotheses, thus affecting further graph traversals, 
sometimes cutting off propagation, much as with 
integrity constraints. 

(5) Profiles: This includes any information available 
(or acquired through learning) about the actor’s 
usual behaviour in given contexts, in terms of what 
his intentions may be and how he may go about 
achieving them. We use such information to 
highlight plans in PL to focus the search on. 
Typically  PL’s plans are “connected” subsets of the 
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(6) fragments in BL, and thus they allow more 
efficient (but less exhaustive) search for hypotheses 
about intentions. 

5 IMPLEMENTATION 

We have a prototype implementation of WIREC, 
which has been tested by test corpora generated 
automatically via the planning functionalities of the 
Event Calculus. We have conducted empirical 
studies regarding the impact of factors (2), (3), and 
(5) from the list in sub-section 4.4. The tests have 
confirmed expectations regarding reduction of 
search. However, larger scale tests and a realistic 
application are needed and are part of future work. 

6 CONCLUSIONS 

In this paper we proposed an approach to intention 
recognition based on the Event Calculus. The 
approach has been implemented and we are currently 
conducting systematic testing and empirical studies 
in performance and scalability.  

WIREC allows many further extensions and 
enhancements, amongst them a more sophisticated 
notion of weight of evidence, possibly combined 
with probabilities, as well as extensions to deal with 
scenarios involving partial observability or 
cognitively impaired actors, or groups of actors. 
Formal analysis of complexity and soundness of the 
approach are also subjects of current research. 
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