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Abstract: We present an efficient and robust computational model for brain state interpretation from EEG single trials. 
This includes identification of the most relevant time points and electrodes that may be active and contribute 
to differentiation between the mental states investigated during the experiment. The model includes a 
regularized logistic regression classifier trained with cross-validation to find the optimal model and its 
regularization parameter. The proposed framework is generic and can be applied to different classification 
tasks. In this study we applied it to a classical visual task of distinction between faces and houses. The 
results show that the obtained single trial prediction is significantly better than chance. Moreover, correct 
choice of the regularization parameter significantly improves classification results.  In addition, the obtained 
spatial-temporal information of brain activity can give an indication to correlated activity of regions of the 
brain (spatial) as well as temporal activity correlations between and within EEG electrodes.  This spatial-
temporal analysis can render a far more holistic interpretability for visual perception mechanism without 
any a priori bias on certain time periods or scalp locations.  

1 INTRODUCTION 

A major challenge in neuroscience is inferring how 
momentary mental states are mapped into a 
particular pattern of brain activity. Inference, which 
is based on EEG single-trial (i.e. short segment of 
the EEG) has practical implementations for brain 
computer interface (BCI) applications. Those BCI 
applications are designated for people suffering from 
physical disabilities, by helping them to 
communicate with an electronic device through 
decoding their brain signals in real time (Wolpaw 
et al., 2002; Allison et al., 2007; Dornhege et al., 
2007; Blankertz et al., 2007).  

The most common way to analyze EEG single-
trials is through classification (for review, see Lotte 
et al., 2007). One of the main challenges of 
classifying EEG single-trial signals is the amount of 
data needed to properly describe the different states. 
The later increases exponentially with the 

dimensionality of the data; this is known as the curse 
of dimensionality problem (Bellman, 1961).  

To reduce the dimension of the data, many feature 
selection methods have been developed for 
identifying and choosing an optimal subset of 
features from the data.  Often, researchers focus on 
few electrodes based on algorithms for channel 
selection, which pick the most promising channels 
for classification. Muller et al. (2000) utilized 
Spatial Pattern Analysis and PCA for channel 
selection and compared it to a set of four electrodes 
chosen based on prior knowledge. As a result, 
Spatial pattern analysis enhanced the higher 
classification rate; (Palaniappan et al., 2002) and 
(Schröder et al., 2003) found the appropriate 
channels via a Genetic Algorithm; (Lal et al., 2004) 
used Recursive Feature Elimination and Zero-Norm 
Optimization to reduce the number of electrodes 
from 39 to 12. (Tomika and Muller, 2010) reduced 
the dimension of the data by down-sampling the 
signals.   
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Another way to alleviate the curse of 
dimensionality is via regularization methods, which 
stabilize the solutions by introducing prior 
knowledge or by restricting the solution (Jain et al., 
2000; Duda et al., 2001). Cross-validation can be 
used to find the optimized model and its 
regularization parameter (Tomioka and Muller, 
2010; Christoforou et al., 2008; Tomioka et al., 
2007; Zhdanov et al., 2007).    

As data is becoming more readily available, it is 
more desirable to let the data guide the choice of the 
model (namely, determine the most relevant 
electrodes and most relevant time points) while 
minimizing a-priori assumptions. Therefore, a two-
dimensional representation of the spatio-temporal 
predictive information of the brain activity is highly 
needed for research and diagnosis, especially for 
development of new paradigms, for which the neural 
correlates may not be known in advance (Murray et 
al., 2008).  

Modern data-driven analyses, such as microstate 
segmentation (Lehmann and Skrandies, 1980; 
Lehmann et al., 1987), have been developed and 
used to study the spatio-temporal activity in the 
brain. Microstate segmentation uses the spatial 
distribution of the ERP which involves averaging 
over multiple trials of similar brain activity (for 
review, see Murray et al., 2008). Such a predictive 
map lacks the correlated activity between electrodes. 
This correlation information is lost in the traditional 
ERP approach. Moreover, the ability to assess the 
trial-to-trial variability in event-related potential 
experiments can provide new insights into brain 
function which may be ignored during ERP 
averaging. 

(Tomioka and Muller, 2010) suggested an EEG 
single trials spatio-temporal interpretation, which 
was based on three different regularizers. The 
regularizers were used to reveal different and 
complementary aspects of the localization of the 
discriminative information.  (The channel selection 
regularizer was used for spatially localizing the 
discriminative information, the temporal-basis 
selection regularizer localized the discriminative 
information in the temporal domain and the DS 
regularizer provided a small number of pairs of 
spatial and temporal filters that showed both spatial 
and temporal localization of the discriminative 
information in a compact manner).  The regularizers 
were applied on a block diagonal data matrix 
concatenated first order changes (short segment of 
filtered EEG signal with C channels and T sampled 
time-points) and second order changes (the 
covariance matrix of a short segment of band-pass 

filtered EEG). The proposed model has shown 
competitive performance against conventional 
methods.  

However, the deriving complexity of the learning 
problem is high due to the size of the data matrix. 
Moreover, using down sampling for reducing the 
data dimension does not solve the problem, as it 
ignores important properties of the signal, which are 
visible in the EEG high temporal resolution. The use 
of different regularizers (Tomioka and Muller, 2010) 
may be problematic as it may produce contrasting 
interpretations with no clear ability to determine 
which of them is more accurate. 

In this work, we follow the framework introduced 
by (Zhdanov et al., 2007) and present an efficient 
and robust computational model for brain state 
interpretation from EEG single trials.  Our approach 
is based on the use of regularization techniques to 
optimize the classifier coefficients and find the 
correct model.  We further demonstrate how to 
identify the most relevant time points and electrodes 
that might be most pertinent in contributing to 
differentiation between the mental states 
investigated.  

Our approach employs a two-step classification: 
First we locate the most informative time points and 
the most active electrodes in these time points. Then 
we try to combine some time points together to 
analyze the information flow in the brain related to 
the paradigm. This two-step framework allows us to 
use a small number of parameters (dozens of 
parameters compared with thousands parameters in 
(Tomioka and Muller, 2010)) and maintain a high 
temporal resolution of the EEG data. In addition, our 
spatio-temporal analysis of the brain activity is 
presented in one model, which makes it clear and 
easy to interpret.  

The proposed framework is generic and can be 
applied to different classification tasks. In this study 
we applied it to a classical visual task of distinction 
between faces and houses.  

2 MATERIALS AND METHODS 

2.1 Experiment Setup 

Four subjects (SUBJ1-SUBJ4, 4 females, two left 
handed, aged 23-28), participated in this experiment. 
All subjects gave informed consent to participate in 
the study, which was approved by the ethics 
committee of the Tel Aviv Sourasky Medical 
Center. Subjects were presented with images from 
two different categories-faces and houses. The 

BIOSIGNALS 2011 - International Conference on Bio-inspired Systems and Signal Processing

60



 

images of faces were taken from the (Ekman and 
Friesen, 1976) and (Lundqvist et al., 1998) databases 
and include fearful or neutral facial expression.   

The experiment included 4 sessions, each of 138 
epochs 2- seconds-long. During each epoch, the 
subject was presented with one image of a fearful 
face, neutral face, house or blank (32, 32, 64 and 10 
epochs respectively). To achieve visual field 
segregation, participants were explicitly instructed to 
ignore the pictures and to concentrate on a fixation 
dot at the center of the screen. Throughout the 
experiment, participants were asked to report the 
color change of the central fixation dot.  

2.2 EEG Data Acquisition 

Continuous EEG data was recorded simultaneously 
with fMRI acquisition. In this study, we are focusing 
on the EEG data and have set aside the combined 
fMRI data for further research. Good signal-to-noise 
ratio of the EEG data in the combined approach was 
previously shown at our lab (Sadeh et al., 2008; 
Ben-Simon et al., 2008). 

 We used a 32-channel BrainCap electrode cap 
with sintered Ag/AgCl ring electrodes (30 EEG 
channels, 1 ECG channel and 1 EOG cannel, Falk 
Minow Services, Herrsching-Breitbrunn, Germany) 
and a MR-compatible, 32-channel, battery-operated 
amplifier (Brain Products, GmBH, Germany). The 
electrodes were positioned according to the 10/20 
system. The reference electrode was between Fz and 
Cz (Laufs et at., 2003). The signal was amplified, 
and sampled at 5000 Hz using the Brain Vision 
Recorder software (Brain Products). The EEG data 
was transmitted from the scanner room via an 
optical fiber to a PC in the control room. The exact 
timing of stimulus onset and MRI scanner gradient 
switching was transmitted to the EEG amplifier and 
recorded together with the EEG signal. 

2.3 EEG Analysis 

EEG analysis were performed with EEGLAB 6.01 
software package (Schwartz Center for 
Computational Neuroscience, University of 
California, San Diego), MATLAB software and 
FMRIB plug-in for EEGLAB, provided by the 
University of Oxford Centre for Functional MRI of 
the Brain (FMRIB). Pre-processing of the EEG data 
included the following steps: MR gradient artifacts 
removal and Cardio-ballistic artifacts removal using 
a FASTR algorithm implemented in FMRIB plug-in 
for EEGLAB (Sadeh et al., 2008; Ben-Simon et al., 
2008). 

For computational efficiency, the EEG signals 
were down-sampled to 250 Hz and eye blinking 
artifacts were removed using ICA (Delorme et al., 
2001). The data was then filtered with a 0.5–45 Hz 
band-pass filter and segmented into epochs starting 
100 ms before the stimulus onset and ending 600 
after the stimulus onset. Baseline correction was 
performed using the 100ms of pre-stimulus activity. 

In this manner for each subject, we obtained 
several dozens of epochs, each containing 32 
(number of channels) x 175 (number of time 
sampling points in the segmented interval) values. 
Each epoch was associated with a class label "face" 
or "house" according to the stimulus which was 
presented.   

3 BRAIN STATE MODELLING 

In this section, we introduce the proposed brain state 
modelling approach for EEG single trials spatio- 
temporal analysis. Figure 1 shows the flowchart of 
the ensemble method.  

 
Figure 1: Brain state modelling flow chart. 

The essence of the modelling approach is creating a 
parametric family of classifiers and seeking an 
optimal member of this family by model selection 
techniques. The parameter which forms the 
collection of classifiers controls the bias/variance 
tradeoff (i.e. regularization parameter), thus a 
classifier with optimal bias/variance is chosen 
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(Geman and Bienenstock, 1992).  Each member of 
the family attempts to predict the mental states of the 
brain by finding the coefficients of the model which 
mostly differentiate the EEG data into two mental 
states. The selection of the optimal member is done 
based on the classifier ability to predict the mental 
states of the brain. 

3.1 Model Estimation 

Cross-validation is used for choosing the best model 
and estimating its predictive accuracy. This method 
is computationally expensive but is especially 
important when the number of samples is small.  
Cross-validation is applied twice: first for dividing 
the original data into train and test sets. We search 
for the optimal model on the train sets and check its 
accuracy on the test sets. For this we used m-k-fold 
cross validation, where k is the number of unique 
test sets, and m is the number of times, this process 
is repeated.  Second, an additional inner n-fold 
cross-validation procedure is applied for selecting 
the optimal model on the training sets, where n is the 
number of averaged cross-validation iterations.   

In the first cross validation procedure, the original 
data is partitioned into k disjoint sets. A single 
dataset is retained as the test data for testing the 
model, and the remaining k − 1 disjoint datasets are 
used as training data. The cross-validation process is 
then repeated k times, with each of the k sets used 
exactly once as the test data. We repeat this process 
m times. The training sets are used for choosing the 
best model and the test sets are used to check its 
predictive accuracy. The predictive accuracy of the 
model is defined as the number of wrongly predicted 
samples divided by the overall number of samples. 

The second cross-validation operation is used for 
choosing the optimal model. The training dataset is 
randomly splitted, n times, into 80-20% training and 
validation sets respectively.  The classifier runs on 
the training set with different values of the 
regularization parameter (within the range of 
interest) and selects the one that yields the best 
results (i.e. bring mean square error, MSE, to 
minimum) (see Figure 2).   

The range of regularization values of interest is 
determined using the singular values, which are 
obtained from SVD decomposition of the processed 
data matrix (used for training and testing). The range 
is bounded between the minimal and the maximal 
singular values. For computational efficiency, the 
actual regularization values in that range are 
distributed uniformly on the logarithmic scale (i.e. 
the ratio of the two successive samples is constant). 

 
Figure 2: MSE received on the validation set at the best 
time point versus the log of the regularization parameter.  
The lambda that minimizes the average error across 
iterations is chosen to be the optimal regularization 
parameter for the model. 

3.2 Regularized Logistic Regression 

The proposed regularized brain state interpretation 
can be used with a variety of linear and nonlinear 
classifiers.  The, logistic regression model is the 
appropriate one for a binary classification task. It is 
also optimal in terms of simplicity, interpretability 
of its coefficients and speed (Hosmer and 
Lemeshow, 1989; Friedman et al., 2001).  

A useful variable is the odds ratio, which is 
defined as the ratio of the probability that an event 
occurs to the probability that it fails. The logit (log 
odds) of the logistic regression model is given by the 
following equations, where iw are the model's 
coefficients: 

pp xwxwxwwxg ++++= ...)( 22110  (1) 
)1/()()|1( )()( xgxg eexxYP +=== π  (2) 

)()))(1/()(log(log xgxxodds =−= ππ  
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The coefficients are often estimated via the 
Maximum Likelihood Estimation (MLE) method, 
which seeks to maximize the log likelihood over the 
entire observed data:    
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The log likelihood value represents how likely the 
dependent variable can be predicted from the 
observed values of the independent variables. 
Maximization of the above expression can be done 
in various ways, most popular being the Newton-
Raphson (NR) algorithm. 

The regularized version of the logistic regression 
algorithm seeks to find the weights (w) which 
maximizes the equation:  
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We use the Matlab-based MVPA toolbox (Detre 
et al., 2006), which implements regularized logistic 
regression following notes from (Minka, 2003). 

3.3 Features Selection 

As mentioned before, one of the main challenges 
while working with EEG signals is the high data 
dimensionality. In this case, feature selection is 
important for reducing the dimensionality of the 
input signal, removing noise, improving learning 
performance, speeding up the learning process and 
improving predictive accuracy.  

Feature selection is defined as the process of 
choosing an optimal subset of features according to 
a certain criterion. The problem of feature selection 
has been extensively researched by the machine 
learning/pattern recognition community over the 
years (Lotte et al., 2007). 

In this study, we implement a two step feature 
selection algorithm. First we employ the selection of 
32 electrodes from a single time point as an input for 
the classifier in the same manner as in (Zhdanov et 
al., 2007), second, we combine informative time-
points together as an input for the classifier.  

We obtain a set of T trials labeled data samples, 
each represented by NxM signal matrix, where N is 
the number of channels and M is the number of time 
sampling points in the segmented interval.  For each 
time point (from M), we create a feature vector that 
contains the EEG data of the entire electrodes in this 
time point. (This reduces the dimension of the data 
from 32�175 to 32). Afterwards, a family of 
classifiers is constructed with different 
regularization parameters and applied on the 
different time points. The model which achieved the 
minimum MSE on the validation set, over the entire 
time points, is chosen.  

After selecting the model, we evaluate the 
predictive accuracy of each time point using the test 
sets, by applying the best model on each time point 
and averaging the results. The outcome of this stage 
is a ranking of the entire time points according to the 
performance of the model (Figure 3). The best time 
point with the lowest error rate, best separates 
between the brain mental states. The coefficients of 
the regression equation at the time point where 
minimal prediction error is achieved indicate the 
contribution of activity in different electrodes in this 
time point towards the prediction. This can be 
interpreted as  the  strength of activity in  electrodes  

 
Figure 3: (a) Predictive accuracy of each time point, on the 
testing set. The black line show the average error rate over 
the cross-validation iterations and the blue line represents 
control results obtained using the same algorithm on data 
with randomly scrambled target labels. It can be seen that 
the best prediction is achieved around 200ms after the 
stimulus onset (N170). (b) The coefficients of the 
regression equation in the best time point. The coefficients 
indicate the most contributing electrodes in this time point; 
Blue color indicates strong negative effect of faces 
compared to houses. 

which best contributes to the mental states 
separation. 

The formulation presented so far indicates the 
most predictive time point and the configuration of 
electrodes at that time point. This spatial coding, 
where the prediction depends on a configuration of 
electrodes activity as a single time point, may not be 
the optimal code used by the brain in interpreting the 
stimuli. Therefore it is possible that a temporal or 
spatio/temporal coding is more appropriate. 

 The presented model can address this question, 
although the computational problem involved 
becomes too big for a single computer to handle, but 
thanks to a computer grid of several hundred 
personal computers, the model can be extended in 
this direction.  

In this aspect we sort the local minima in the 
prediction graph to find different distinct temporal 
locations with prediction error minimum. The 
sorting was done in an increasing order (starting 
from the most predictable time point to the least 
predictable time point).  Then a collection of models 
is applied, each using an increasing amount of 
information, where new time points (electrode 
information) are added into the model. In each such 
input data configuration we perform the full cross-
validation estimation to estimate optimal 
regularization and prediction error.  
Time points were sequentially added to the model 
using a wrapper algorithm (Kohavi and John, 1997), 
which is a feature selection technique for selecting 
an optimal subset of features from a large search 
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space. The features were assessed according to their 
usefulness to a given predictor and added to the 
subset, one by one.  The ten most predictable time 
points were included in this process and they were 
added to the model according to their contribution to 
the overall prediction.   

We compared the outcome of the classifier for a 
different number of time points and choose the ideal 
number of time points which has significantly lower 
error prediction (Figure 4). Increasing the input 
vector adds electrode activity data, but also adds free 
parameters to the model leading to higher chance of 
overfitting the training data. We thus search for the 
ideal number of time points which balances between 
the two effects. Figure 5 shows the best time points 
found for one subject and the electrodes activity in 
these time points contributing towards mental state 
discrimination. 

 
Figure 4: prediction error vs. number of time points. For 
this subject the optimal is 4, namely there was a 
significant prediction improvement up to that point 
(**p<0.05). 

 
Figure 5: (a) The ideal number of time points chosen as 
input for the classifier.  (b) The regression coefficients 
received in those time points.  

4 RESULTS 

4.1 Spatio-Temporal Analysis 

Many studies have shown that pictures of faces elicit 
a much larger ERP of negative polarity than other 
object categories. This component peaks at occipital-
temporal electrode sites at about 170 ms following 
stimulus onset (Bentin et al., 1996). The larger 
response of the N170 complex to faces is an 
undisputed observation among researchers in the 
field of face processing.  (Figure 6). 

 
Figure 6: ERP in electrodes P7 and P8. 

We reinforce this result using EEG single trial 
classification (Figure 7). For all subjects the best 
prediction achieved around 200 ms after the stimulus 
onset and the electrodes that contribute to the 
maximum separation between the mental states 
investigated are located in the occipital area. The 
coefficients obtained on single trial training 
correlated to the ERP of the corresponding 
electrodes. Negative coefficients indicate the ERP 
for faces is lower than the ERP for houses.  In 
addition, both occipital electrodes (P7 and P8) are 
correlated in that time point.  

 
Figure 7: Best time points found and the coefficients in 
these time points for different subjects  in the houses and 
faces experiment. As expected, for the entire subjects the 
best prediction is achieved around 200ms after the 
stimulus onset and the most activated electrodes are in the 
occipital-temporal area. 
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The resulting spatial-temporal weight matrix 
provides a summary representation which is easily 
interpretable. A result of the dimensionality 
reduction, which is performed during the pre- 
processing stage, where relevant time points and 
electrodes are chosen, leads to simpler 
computational model training. This is in contrast to 
reducing the dimensionality via reducing the 
sampling rate (Tomioka and Muller, 2010). 

The lowest error rates achieved for each subject 
using a single time point are summarized in Figure 8 
(the prediction error with the optimal number of 
time points is lower). The results were compared to 
the control experimental results, which were 
obtained using the same algorithm on randomly 
scrambled labels. The difference between the mean 
error estimates is significant for all subjects (P < 
0.05). 

 
Figure 8: Classification error rate for all 4 subjects. The 
classification error is compared to control results obtained 
using the same algorithm on randomly scrambled labels.  
The difference between the mean error estimates is 
significant for all subjects (*p<0.05). 

 
Figure 9: Prediction error (Error rate and MSE) received 
for 3 best time points chosen, with and without 
regularization. These figures show that results with 
regularization are significantly better (*p<0.05). 

4.2 The Impact of Regularization 

The amount of data needed to properly describe the 
different mental states increases exponentially with 
the dimensionality of the feature vectors. As the 
amount of training data is small compared to the size 
of the feature vectors, the classifier is likely to 
overfit to the training data and thus producing a 
model which does not uncover the true brain state 
discrimination.  The only way to avoid this and still 
get a reliable brain state interpretation is a robust 
training with a regularizer which has to be carefully 
picked. To demonstrate the effect of non optimal 
regularization selection, we applied the same 
algorithm, with and without a regularization 
parameter on feature vector of size 96 (three best 
time points). As it can be seen in Figure 9, the 
classification error with regularization is 
significantly lower (P < 0.05).  

5 CONCLUSIONS 

We have proposed a robust and efficient framework 
for brain state interpretation using EEG single trials. 
This framework is based on extensive feature 
selection using a regularized logistic regression 
classifier and can be used for spatial-temporal 
analysis of the EEG data. This spatial-temporal 
analysis, which indicates best electrodes and best 
time points, can render a far more holistic 
interpretability without any a priori information on 
certain optimal time points or electrode locations. It 
can thus indicate whether the coding related to the 
brain state discrimination task is  spatial, temporal or 
joint, and can indicate the network of information 
propagation (at high temporal resolution) following 
the stimuli. This method, which can also be applied 
to a Time/Frequency representation of the signal, 
can also reveal the different frequency bands at 
which brain state discrimination is optimal. 
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