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Abstract: An optimal control strategy of mixed state steering in finite-dimensional closed quantum systems is 
proposed in this paper. Two different situations are considered: one is the target state is in statistical 
incoherent mixtures of energy eigenstates in which the target states are diagonal. Another is not all of the 
off-diagonal elements in the target states are zeros. We change the trajectory tracking problem into the state 
steering one by introducing the unitary transformation with all energy eigenstates in the inner Hamiltonian 
of system controlled. Based on Lyapunov stability theorem the stable parameters of controller designed is 
selected and the optimality of the control law proposed is proven. Moreover, two numerical system control 
simulations are performed on the diatomic molecule described by the Morse oscillator model under the 
control law proposed. The system control simulation experimental results demonstrate that the control 
strategies proposed are efficient even when the controlled system is not completely controllable. 

1 INTRODUCTION 

As one of the greatest achievements in the 20th 
century, quantum mechanics has urged the human 
view of the matter to the microcosm. An enormous 
amount of revolution in theory and engineering 
science have been undertaken due to the 
development and applications of quantum physics, 
quantum chemistry, quantum computation and 
quantum information. (Nielsen and Chuang, 2000). 
In these new interdisciplinary fields, how to control 
the quantum systems has become a challenging 
subject. One part of the quantum control theories is 
about the applications of classical and modern 
control theory to quantum systems. (Wang and 
Schirmer, 2008) Now there have been various control 
schemes applied to the quantum systems, such as the 
Lyapunov-based method (Grivopoulos and Bamieh, 
2003; Mirrahimi, Rouchon, and Turinici, 2005; 
Beauchard et al. 2007; Cong and Kuang, 2007; 
Kuang and Cong, 2008), optimal control method 
(Peirce, et al. 1988; D’Alessandro and Dahleh, 

2001; Girardeau, et al. 1998; Schirmer, et al. 2000), 
learning control method (Judson and Rabitz, 1992; 
Phan and Rabitz, 1999), state estimation method 
(Doherty and Jacobs, 1999; Zhang, Li, and Guo, 2000), 
and stochastic control method (Belavkin, 1992; 
Bouten, et al. 2004), etc. Generally, the control aim 
of a quantum system is to search for a control field 
by means of minimizing an energy-type cost 
function of system that usually requires a maximal 
transition probability from an initial state to a 
particular target state. Among all of the quantum 
control strategies, optimal control methods are the 
most popular approaches that have been widely used 
specially in quantum chemistry fields. Since the mid 
1980s, the quantum optimal control theory has 
attracted attentions from many researchers. 
However, many proposed optimal control methods 
are generally obtained by means of complex numeral 
iterative algorithms, which are off-line control 
methods and quite inconvenient to operate and 
realize. Thus, how to obtain an optimal method 
without iterative solutions is of great significance. 
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There is another method called local optimal 
control which defines a general performance index 

( )y t  as a function of the expectation values of 
physical observables. Then it designs a control field 
that drives the quantum system satisfying the 
monotonous increasing condition of ( )y t  (Ohtsuki, 
1998; Sugawara, 2003). Local optimal law is 
explicitly derived without iteration and can satisfy 
the necessary condition for a solution to the optimal 
control problem. In the applications of optimal 
control theory, we can select different performance 
index and get different control laws. Here we will 
select the error between the states as a performance 
index of the control law. The difference between 
Ohtsuki (1998), Sugawara (2003) and this paper is 
that the derived control law in this paper satisfies the 
sufficient condition for optimal. We have applied 
this method to a pure state quantum system (Zhang 
and Cong, 2008). As a further step, in this paper we 
would like to consider the mixed-state control 
problem based on the formulas of statistical 
mechanics, and apply the idea in Ref. Zhang and 
Cong (2008) to the Liouville equation. In quantum 
system, two reasons lead to mixed-state: one is 
quantum dissipation due to quantum system entangle 
with environment. In such a situation, the system 
will be open. Quantum state will become a mixed-
state even though it is a pure state at the beginning. 
Here, evolution of density matrix in this open system 
will not be unitary. Second, a mount of same 
particles in different pure states are incoherent 
mixed, which would be a quantum ensemble. 
Particles in different pure states are in this ensemble 
with some probability, viz. average statistically. In 
this paper, we only consider closed system without 
action with environment, so mixed-state here refers 
to mixed-state in ensemble. 

The rest of the paper is organized as follows. In 
Sec. 2 we introduce the system models in Hilbert 
space and in Liouville space. Section 3 gives the 
control law theorem and its proof based on the 
Lyapunov stability theorem and principle of 
optimality under the condition that the target state is 
diagonal and non-diagonal, respectively. The 
numerical simulation on the diatomic molecule 
described by the Morse oscillator model is presented 
in Sec. 4. Finally, Sec. 5 concludes the study of the 
paper. 

2 MODEL OF THE SYSTEM 
CONTROLLED 

The state of a quantum mechanical system can be 
described in various ways. When a system is in a 
pure state un-entangled with its environment, the 
state of the system can be described by a wave 
function that evolves according to a control-
dependent Schrödinger equation. One can also 
describe the state of the system by a density operator 
ˆ ( )tρ , which can not only represent a pure state but 

also a mixed state. The density operator ˆ ( )tρ  
acting on the system’s Hilbert space H  evolves 
with time according to the quantum Liouville 
equation: 

ˆˆ ˆ( ) [ ( ), ( )]i t H t t
t
ρ ρ∂

=
∂

, 

0
1

ˆ ˆ ˆ( ) ( )
M

m m
m

H t H f t H
=

= +∑  
(1) 

where 0Ĥ  is the system’s internal (or free) 

Hamiltonian, and ˆ
mH  is the interaction (or control) 

Hamiltonian, respectively, all of them will be 
assumed to be time-independent. ( )mf t  is the 
admissible real-valued external control field. We set 
the Planck constant 1= for convenience.  

Because ˆ( )tρ  is a N N×  density matrix in 
Hilbert space, it’s difficult to solve the differential 
Eq. (1). One may introduce the Liouville operator in 
the Liouville space according to the concept of Dirac 
operator to simplify this problem. There is a natural 
connection between the density matrix and Liouville 
space (Barnett and Dalton, 1987; Ohtsuki, et al. 
1989). In the Liouville space, Eq. (1) can be 
represented in the same form as the Schrödinger 
equation 

( ) ( ) ( )i t t t
t
ρ ρ∂

=
∂

L , 

0
1

( ) ( )
M

m m
m

t f t
=

= +∑L L L  
(2) 

where ( )tρ  is defined as a Liouville ket, and L  
is the Liouville operator defined by the dual 
correspondence  

ˆ ˆ( ) ( ) [ , ( )]t t H tρ ρ↔L  (3) 

The basis vectors respectively belonging to 
Liouville space and Hilbert space are defined by the 
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bijective correspondence mn m n↔  
(Schirmer, 2000). Then one has 

,

*

ˆ[ , ]
ˆ( [ , ])

ˆ ˆ( )

ˆ ˆ

jk mn

i

nk jm jm nk kn jm

jk mn j H m n k

tr k j H m n

i k j H m n i i k j m n H i

j H m n H k H Hδ δ δ δ

= =

=

= −

= − = −

∑

L L

 
(4) 

For an N N×  density matrix ˆ ( )tρ  in Hilbert 

space, its replacement form ( )tρ  is an 2N  
column vector in Liouville space, and L  is an 

2 2N N×  matrix. In such a way it is much easier to 
solve Eq. (2) than Eq. (1) expressed in terms of 
some commutators. Hence, Eq. (2) will be adopted 
as the investigated model in following sections of 
the paper. 

3 CONTROL LAW DESIGN 

The quantum control problems can be formulated in 
state steering (or transfer) problem, that is to say 
steer the system from a given initial state to a 
desired target state. In this section we’ll develop an 
optimal control method based on Lyapunov theorem 
for the Liouville equation.  

First we will introduce principle of optimality 
and the sufficient condition for optimality. Suppose 
the controlled system is in the form 
of ( ) [ ( ), ( ), ]t t t t=x f x u , where 1 2[ , ]t T T∈ , 

1 2( ) [ , ]nt T T⊂ ×x , 1 2( ) [ , ]mt T T⊂ ×u . Let X  be 
a given region in 1 2[ , ]n T T×  and contain the 
target set S . For each 0 0( , )tx  in X , one need 
determine the control u  which transfers 0 0( , )tx  
to S  and minimizes the performance index 

1

0

( , , ) [ ( ), ( ), ]d
t

t
J t L t t t t= ∫x u x u . Define * ( , )J tx is the 

minimum of ( , , )J tx u . The Hamiltonian 
( , , , )H tx p u  is given by  

( , , , ) ( , , ) , ( , , )H t L t t= + 〈 〉x p u x u p f x u  

Principle of Optimality: If * ( )tu  is an optimal 
control and if * ( )tx , for 0 1[ , ]t t t∈ , is the optimal 
trajectory corresponding to * ( )tu , then the 
restriction of * ( )tu  to a subinterval 1[ , ]t t  of 

0 1[ , ]t t  is an optimal control for the initial pair 
*( ( ), )t tx . 

Sufficient Condition for Optimality (Athans and 
Falb, 1966): Suppose that 1 2( , )nX T T= × , H  is 
normal relative to 1 2( , )n T T× , and ( , , )tu x p  is 
the H -minimal control relative to 1 2( , )n T T× . 
Let * ( )tu  be an admissible control such that: 

a. * ( )tu  transfers 0 0( , )tx  to S . 
b. There is a solution * ( , )J tx  of the 
Hamilton-Jacobi equation  

( , ) [ , ( , ), ( , ( , ), ), ] 0J J Jt H t t t t
t

∂ ∂ ∂
+ =

∂ ∂ ∂
x x x u x x

x x
 

satisfying the boundary condition ( , ) 0J t =x  for 
( , )t S∈x , such that 

*
* * *( ) ( ( ), ( ( ), ), )Jt t t t t∂

=
∂

u x x
x

 

for t  in 0 1( , )t t . 

Then * ( )tu  is an optimal control. 

3.1 Stationary Target States 

Assume the target state is the statistical incoherent 

mixtures of energy eigenstates: 
1

ˆ
N

f n
n

w n nρ
=

= ∑ , 

ˆ fρ  is a stationary target state, e.g. 

1 01 3 1ˆ 0 0 1 1
0 34 4 4fρ
⎛ ⎞

= + = ⎜ ⎟
⎝ ⎠

. In this case, all of 

the off-diagonal elements in the target state are 
zeros. If so, the optimal control law is given by the 
following theorem 1. 
Theorem 1. For the system defined in the Liouville 
space by Eq. (2), given the performance index 

2

0
1

1 1{ [Im( )] ( ) ( )}d
2

M

f m
m m

J P t R t t
r

ρ ρ ρ
∞

=

= − +∑∫ Tf fL  (5) 

where 1 2( ) [ ( ) ( ) ( )]T
Mt f t f t f t=f , R  is a 

diagonal matrix with positive elements, 0mr > , 
( 1, 2, , )m M= , and P  is a positive definite 
symmetric matrix that satisfies the equation 

†
0 0 0P P− =L L  (6) 

Then there exists an optimal control law 

1 Im( )m f m
m

f P
r

ρ ρ ρ∗ = − − L , 

( 1, 2, , )m M=  
(7) 
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such that the system (2) is stable and the 
performance index (5) is minimum. 
In fact, according to the Lyapunov indirect stability 
theorem, P  is a positive definite symmetric matrix 
that should satisfy Lyapunov equation 

†
0 0( ) ( )P i i P Q+ = −L L . Because 0L  is a linear 

Hermitian operator, whose eigenvalues are real. So 
0iL  is a skew Hermitian operator, whose 

eigenvalues are pure imaginary. Accordingly, 
0Q = , which results in the condition (6). 

Proof: (1) Proof of stability 
Select the following Lyapunov function 

1( )
2 f fV Pρ ρ ρ ρ ρ= − −  (8) 

where P  is a positive definite symmetric matrix 
satisfying Eq. (6). The first-order time derivative of 

( )V ρ  is 

( ) Re( )fV Pρ ρ ρ ρ= −  (9) 

Substituting Eq. (2) into Eq. (9) yields 

0

1

( ) Im( )

( ) Im( )

f

M

m f m
m

V P

f t P

ρ ρ ρ ρ

ρ ρ ρ
=

= − +

−∑

L

L

 (10) 

Since †
0 0 0P P− =L L  and 

0 0fρ =L , 

0Im( ) 0f PLρ ρ ρ− =  holds. Hence, Eq. (10) can 

be re-written as 

1
( ) ( ) Im( )

M

m f m
m

V f t Pρ ρ ρ ρ
=

= −∑ L  (11) 

Substituting control law (7) into Eq. (11) yields 

2

1

1( ) [Im( )] 0
M

f m
m m

V P
r

ρ ρ ρ ρ
=

= − − ≤∑ L  (12) 

Thus, the system (2) is stable under the control law 
(7). Next we will prove this control law is optimal. 

(2) Proof of optimality 
a) The Sufficient Condition for Optimality says 

that if a system can be transferred from some initial 
state to a target set by applying admissible control, 
then an optimal control exists and may be found by 
determining the admissible control mf

∗  that causes 
the system to reach the target set S. A description of 
the target set S is assumed to be known. So for the 
system (2) it now only remains that one needs to 
construct a proper target set S. Here we use the 
similar way we have proven in reference 8 to 
construct the target set S. In fact, in the Lyapunov-

based control design, the Lyapunov function V can 
be seen as a target set S. So one can define the target 
set S is the Lyapunov function V by constructing an 
appropriate matrix P.  

P  is selected a positive definite symmetric 
matrix that satisfies the Eq. (6). At the same time, 
the eigenvectors with the largest eigenvalue are the 
maxima of V, the eigenvectors with the smallest 
eigenvalue are the minima and all others are saddle 
points. Then select the smallest eigenvalue of P is 

fP  with the corresponding target state fρ . In such 
a way, a target set S with a monotonic function and 
the target state as the minima value are constructed, 
in which the initial state can be transferred to the 
target state by the control law mf

∗ . 
b) From Eq. (7) and Eq. (12), we can get 

*( , )J tρ  as following 
*

2

1

2

1

( , )

1 1{ [Im( )] ( ) ( )}d
2

1{ [Im( )] }d

( ) t ( )

M

f mt mm
M

f mt mm

t

J t

P t R t t
r

P t
r

V d V

ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ

∞

=

∞

=
∞

= − +

= −

= − =

∑∫

∑∫

∫

* T *f fL

L

 

(13) 

Thus, the Hamiltonian function of the system can be 

†
0

1

( , )

( )
( , ) Im[( ) ( ( ) ) ]

M

m m
m

H

V
L f t

ρ

ρ
ρ ρ

ρ =

∂
= + +

∂ ∑

f

f L L

 
(14) 

where  

2

1

1 1 [Im( )] ( ) ( )
2

M

f m
m m

L P t R t
r

ρ ρ ρ
=

= − +∑ Tf fL  

Because 
*

( , ) 0J t
t

ρ∂
=

∂
, a part of the sufficient 

condition for optimality is 

min[ ( , )] 0
MR

H ρ
∈

=
f

f  (15) 

From Eq. (14), one can obtain 

2

1

0
1

2

1

2

1 1

2

1

1 1( ( ) , ) [Im( )] ( ) ( )
2

Im( ( ( ) ) )

1 1 [Im( )]
2

( ) ( ) Im( )

1 1 [Im( ) ( )] 0
2

M

f m
mm

M

f m m
m

M

f m
mm

M M

m m m f m
m m

M

f m m m
mm

H t P t R t
r

P f t

P
r

r f t f t P

P r f t
r

ρ ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

=

=

=

= =

=

= − + +

− +

= − +

+ −

= − + ≥

∑

∑

∑

∑ ∑

∑

Tf f fL

L L

L

L

L

 

(16) 

Substituting Eq. (7) into Eq. (16) yields  
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( ( ) , ) 0H tρ =*f  

Thus, the control law (7) is optimal and minimizes 
the performance index (5). The proof of theorem 1 is 
completed.  
The design steps of the optimal control law proposed 
based on Theorem 1 are as follows: 

(1) Select the weighting on the control vector 

diag( )iR r= , 0ir > , 1, 2, ,i m=  
(2) Solve Eq. (6) for obtaining the positive define 

matrix P . 

(3) Calculate the optimal stabilizing control law 
from (7). 

3.2 Non-stationary Target States 

If not all of the off-diagonal elements in the target 
state are zeros, which is also a case of a mixed-state, 
e.g.  

1 2 2 1 2 2ˆ 1 1 ( 0 1 ) ( 0 1 )
2 2 2 2 2 2
1 11
1 34

fρ = + + +

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

 

In this case, the target state ˆ ( )f tρ  is in fact not 

stationary which evolves under 0Ĥ  according to 
the Liouville-von Neumann equation 

0
ˆˆ ˆ( ) [ , ( )]f fi t H t

t
ρ ρ∂

=
∂

 (17) 

Now the target state is a time-dependent function, 
and the control problem becomes a trajectory 
tracking problem. From the system control point of 
view, a trajectory tracking problem can be easily 
solved by translating it into the state steering 
problem. To do so, we first carry out the following 
unitary transformations 

†ˆ ( ) ( ) ( )t U t U tρ ρ=  (18) 

And 
†ˆ ( ) ( ) ( )f ft U t U tρ ρ=  (19) 

in which fρ  is a stationary target state which 

equals 1 2( ) ( , , , )NiE tiE t iE tU t diag e e e−− −=  and 

, 1,...,iE i N=  satisfy 0 1 2
ˆ ( , , , )NH diag E E E=  in 

Eq. (1). 
Substituting Eq. (18) into Eq. (1), one can obtain 

1

( ) [ ( ) ( ), ( )]
M

m m
m

i t f t H t t
t
ρ ρ

=

∂
=

∂ ∑  (20) 

where ˆ( ) ( ) ( )m mH t U t H U t+= .  
Owing to the unitary transformation, ˆ ( )tρ  and 

( )tρ  have the same populations, which means that 
Eq. (1) and Eq. (20) describe the same physical 
system. In such a way, the problem of system (1) 
tracking a time-dependent target state ˆ ( )f tρ  in Eq. 
(17) is equivalent to a problem of steering the state 
in system (20) to the stationary target state fρ .  

In the Liouville space, Eq. (20) can be 
represented as 

1

( ) ( ) ( ) ( )
M

m m
m

i t f t t t
t
ρ ρ

=

∂
=

∂ ∑ L  (21) 

The optimal control law of Eq. (21) is given by 
the following theorem 2. 
Theorem 2. For the system defined by Eq. (21), give 
the performance index 

2

0
1

1 1{ [Im( ( ) )] ( ) ( )}d
2

M

f m
m m

J P t t R t t
r

ρ ρ ρ
∞

=

= − +∑∫ Tf fL  (22) 

where 1 2( ) [ ( ) ( ) ( )]T
Mt f t f t f t=f , R  is a 

diagonal matrix with positive elements, 0mr > , 
( 1, 2, , )m M= , and P  is a positive definite 
symmetric matrix. Then there exists an optimal 
control law 

1 Im( ( ) )m f m
m

f P t
r

ρ ρ ρ∗ = − − L , 

( 1, 2, , )m M=  
(23) 

such that the system (21) is stable and the 
performance index (22) is minimum. 
The proof method of theorem 2 is the same as that of 
theorem 1, thus it will not be repeated here. In 
computer simulation, we need to choose an 
appropriate discrete propagation method to solve the 
differential equation (2) or (21). A simple approach 
would be adopting the first-order Euler method. But 
to obtain more efficient result, we employ four-order 
Runge-Kutta method, which has higher precision 
and faster convergence rate. 

4 NUMERICAL SIMULATIONS 
AND RESULTS ANALYSIS 

As an explicit example we consider a typical 
diatomic molecule model with N  discrete 
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vibrational energy levels nE  corresponding to 
independent states n  of the system. The internal 
Hamiltonian is given by 

0
1

ˆ
N

n
n

H E n n
=

= ∑  (24) 

Assume that the diatomic molecular system is 
controlled by a single control field ( )f t . Then the 
total Hamiltonian of the system can be represented 
as 0 1

ˆ ˆ ˆ( ) ( )H t H f t H= + , and the corresponding 

Liouville operator is 0 1
ˆ ˆ ˆ( ) ( )t f t= +L L L . The 

interaction Hamiltonian can be chosen as the dipole 
form 

1

1
1

ˆ ( 1 1 )
N

n
n

H d n n n n
−

=

= + + +∑  (25) 

Next we will separately study the diatomic 
molecules described by the Morse oscillator model 
and the Harmonic oscillator model. 

4.1 Morse Oscillator Model 

To simplify the calculation, we consider a hydrogen 
fluoride (HF) molecule described by a four-level 
Morse oscillator model. The vibrational energy 
levels are as follows (Schirmer, etc. 2001) 

0
1 1 11
2 2 2nE n n Bω ⎡ ⎤⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (26) 

where 14 1
0 7.8 10 sω − −= ×  and 0.0419B = . Thus 

the corresponding energy levels are 1 0.4948E = , 

2 1.4529E = , 3 2.3691E =  and 4 3.2434E =  in 
units of 0ω . In the following calculations, all the 
parameters are expressed in atomic units (a.u.). Here 
the dipole moments in Eq. (25) are nd n= , 
( 1,2,3)n = . This system is completely controllable 
verified in Ref. Schirmer, etc. 2001.  

 Assume that the system is initially in the thermal 

equilibrium, i.e., 
4

0
1

ˆ n
n

w n nρ
=

= ∑  with weights 

4 1exp[ /( )]n nw C E E E= − − . This is a Boltzmann 
distribution, and the normalization constant 

31 2 4// / / 1( )E kTE kT E kT E kTC e e e e−− − − −= + + +  with 

4 1kT E E= − . Concretely, 1 0.3877w = , 

2 0.2736w = , 3 0.1961w = , and 4 0.1426w = . The 
control task is to determine the control field ( )f t  

so as to steer the system from the initial state 0ρ̂  to 

the target state 
4

5
1

ˆ f n
n

w n nρ −
=

= ∑ . The state 

control problem and the observable control problem 
are inter-convertible. Thus the problem in this paper 
is equivalent to that in Refs. 13 and 14 with the goal 
to maximize the expectation value of the observable 

0
ˆ ˆA H= . 

According to theorem 1, the optimal control law 
can be obtained as 

1
1

1( ) Im( )ff t P
r

ρ ρ ρ= − − L  (27) 

The initial state of the system lies within the set of 
states resulting in 0 1 0Im( ) 0f Pρ ρ ρ− =L , at 

the moment the control field 0 0f = . This problem 
can be solved by applying an initial small magnitude 
disturbance to excite the system out of its initial 
equilibrium state (Beauchard, et al. 2007). In our 
numerical system simulations, the initial control 
field 0 0.05 a.u.f = , the target time 200 . .ft a u= , 

and the sampling time 0.1 a.u.dt = . The suitable 
choice of the parameters 1r  and P  is crucial to 
get good results. In order to obtain a higher 
probability of the target state, P  can be chosen to 
make the Lyapunov function described by Eq. (8) 
larger at the initial time, and the diagonal elements 
of the initial state are ordered in a non-increasing 
sequence, the corresponding elements of P  are 
also arrayed in non-increasing sequence (Kuang and 
Cong, 2008). After several times of tuning, we select 

1 1r =  and 

(18,1,1,1,1,1.5,1,1,1,1,1,1,1,1,1,0.01)P diag=  

The numerical simulation results are shown in 
Figures 1 to 4, in which Figure 1 shows the control 
field. The corresponding evolution populations of 
energy levels 1 through 4 are shown in Figure 2, 
from which one can see that the populations are 
inverted, i.e., the most energetic state 4  has the 
highest population, and the second one has the 
second highest population, etc. The final populations 
of energy levels are 0.1547, 0.1927, 0.2680, and 
0.3845, respectively. Figure 3 shows the 
performance index, and Figure 4 shows the distance 
from the target state. At the target time, the distance 

is 
2ˆ ˆ 0.0034fρ ρ− = , so that the mixed-state 

control is completed. In Ref. Schirmer, et al. (2000) 
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0
ˆ ˆA H= ,  and at the target time 200 a.u.ft =  the 

expectation value ˆ( )fA t  is 99%  of the 

theoretical maximum. While in this paper, this ratio 
is also 99% . Under the condition that the 
simulation result is the same, the design process of 
the control law in this paper is easier than that in 
Ref. Schirmer, et al. (2000) which needs iteration. 
Also, by comparing the results, we can find that the 
inverted rate of the levels is faster here, that is 
because the initial control value is larger. In the real 
applications, the control value can be tuned 
according to the requirement. 
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Figure 1: Optimal control field for a four-level Morse 
oscillator model. 
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Figure 2: Evolution of populations for a four-level Morse 
oscillator model. 
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Figure 3: Performance index for a four-level Morse 
oscillator model. 

 

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Time (a.u.)

D
is

ta
nc

e

 
Figure 4: Distance from target state for a four-level Morse 
oscillator model. 

4.2 Harmonic Oscillator Model 

Comparing with the above mentioned completely 
controllable Morse oscillator model, here we 
consider the diatomic molecule described by a four-
level Harmonic oscillator model. The vibrational 
energy levels are determined by 

1
2nE n= −  (28) 

Thus the energy levels are 1 0.5E = , 2 1.5E = , 

3 2.5E =  and 4 3.5E = . The dipole moments in 
this model are 1nd = , ( 1,2,3)n = . The system is 
not completely controllable because the dimension 
of the Lie algebra generated by 0Ĥ  and 1Ĥ  is less 
than 16 (Barnett and Dalton, 1987). We still suppose 
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that the initial density is 
4

0
1

ˆ n
n

w n nρ
=

= ∑ , in 

which 1 0.3850w = , 2 0.2758w = , 3 0.1976w =  
and 4 0.1416w = . The target state and the control 
law are the same as that in the situation of the Morse 
oscillator model. Starting with 0 0.15a.u.f = , 

0.1a.u.dt = , 1 1r = , and 
(4,1,1,1,1,3,1,1,1,1,2,1,1,1,1,1)P diag= , the 

simulation curves are shown in Figures 5-8. At the 
target time, the populations of energy levels are 
0.1482, 0.2003, 0.2732, and 0.3783, respectively, 
and the distance from the target state is 

2ˆ ˆ 0.0036fρ ρ− = . Despite the system is not 
completely controllable, the method in this paper is 
still efficient. 

 

0 50 100 150 200
-0.12

-0.08

-0.04

0

0.04

0.08

0.12

Time (a.u.)

Fi
el

d 
(a

.u
.)

 
Figure 5: Optimal control field for a four-level Harmonic 
oscillator model. 
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Figure 6: Evolution of populations for a four-level 
Harmonic oscillator model. 
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Figure 7: Distance from target state for a four-level 
Harmonic oscillator model. 

5 CONCLUSIONS 

In this paper we have developed an optimal control 
method based on Lyapunov theorem for the 
Liouville equation to realize the quantum control of 
the mixed states. The detailed design processes of 
the control laws have been given both in the cases of 
the target density operator of the system of interest 
being a diagonal form and a general one, 
respectively. Moreover, the numerical simulations 
were performed for the diatomic molecule described 
by the Morse oscillator model. The simulation 
results show that the method proposed is as efficient, 
even in the case that the system is not completely 
controllable. 
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