
EXPLORING EMPIRICALLY THE RELATIONSHIP BETWEEN
LACK OF COHESION IN OBJECT-ORIENTED SYSTEMS AND

COUPLING AND SIZE

Linda Badri, Mourad Badri and Fadel Toure
Software Engineering Research Laboratory, Department of Mathematics and Computer Science

University of Quebec at Trois-Rivières, Trois-Rivières, Quebec, Canada

Keywords: Software Quality, Quality Attributes, Software Attributes, Metrics, Lack of Cohesion, Coupling, Size.

Abstract: The study presented in this paper aims at exploring empirically the relationship between lack of cohesion of
classes in object-oriented systems and their coupling and size. We designed and conducted an empirical
study on various open source Java software systems. The experiment has been conducted using several well
known code-based metrics related to cohesion, coupling and size. The results of this study provide evidence
that a lack of cohesion may actually be associated with (high) coupling and (large) size.

1 INTRODUCTION

A large number of object-oriented (OO) metrics
have been proposed in the literature. They are used
to assess different software attributes. Software
metrics can be calculated automatically from source
code. The assessment of even large software systems
can then be performed quickly at a low cost.
Software metrics can be useful in predicting
software quality and supporting various software
engineering activities (Basili, 1996; Bansiya, 2002;
Briand, 2000; Chidamber, 1998; Darcy, 2005; El
Emam, 1999; Fenton, 1996).

Cohesion is considered as one of most important
OO software attributes. Many metrics have been
proposed in the last several years to measure class
cohesion in OO systems. Class cohesion (more
specifically, functional cohesion) is defined as the
degree of relatedness between members of a class. In
OO systems, a class should represent a single logical
concept, and not to be a collection of miscellaneous
features. OO analysis and design methods promote a
modular design by creating classes with high
cohesion and low coupling (Larman, 2003;
Pressman, 2005; Sommerville, 2004). Improper
assignment of responsibilities in the design phase
can produce low cohesive classes with unrelated
members. The reasoning is that classes that lack
cohesion are poorly designed and will be difficult,
among others, to understand, to test and to maintain.

However, there is no empirical evidence on these
claims. In fact, studies have failed to show a
significant relationship between cohesion metrics
and software quality attributes such as fault-
proneness or changeability (Briand, 1998; Briand,
2000; Kabaili, 2001). Moreover, studies have noted
that cohesion metrics fail to properly reflect
cohesion of classes (Aman, 2002; Chae, 2000; Chae,
2004; Kabaili, 2000; Kabaili, 2001). As against,
several studies have showed that there exist a
significant relationship between software attributes
such as complexity, coupling and size and software
quality attributes such as fault-proneness, testability
and maintainability.

One possible explanation of the lack of
relationship between cohesion (according to
experimented cohesion metrics) and some software
quality attributes is due to the difficulty of
measuring cohesion from syntactic elements of code
(Briand, 1998; Briand, 2000; Henderson-sellers,
1996; Stein, 2005). Moreover, cohesion metrics are
in our opinion based on restrictive criteria, in the
sense that they do not consider some characteristics
of classes, which lead in many situations to some
inconsistency between the computed cohesion
values and the intuitively expected ones (Badri,
2004; Chae, 2000; Chae, 2004; Kabaili, 2001).
However, an empirical study performed by Stein et
al. (Stein, 2005) pointed to a more basic relationship
between cohesion and complexity: that a lack of

317
Badri L., Badri M. and Toure F. (2010).
EXPLORING EMPIRICALLY THE RELATIONSHIP BETWEEN LACK OF COHESION IN OBJECT-ORIENTED SYSTEMS AND COUPLING AND SIZE.
In Proceedings of the 5th International Conference on Software and Data Technologies, pages 317-324
DOI: 10.5220/0003012203170324
Copyright c© SciTePress

cohesion may be associated with high complexity.
In this paper, we decided to explore empirically

the relationship between lack of cohesion (disparity
of the code) of classes in OO systems and their
coupling and size. Our hypothesis is that classes
with high (strong) coupling and/or large size will
lack cohesion. To test our hypothesis, we chose in
our experiment two well-known lack of cohesion
metrics: LCOM (Lack of COhesion in Methods)
(Chidamber, 1994) and LCOM* (Henderson-sellers,
1996). In order to facilitate comparison with our
class cohesion measurement approach (Badri, 2004;
Badri, 2008), and knowing that the selected cohesion
metrics are basically lack of cohesion metrics
(inverse cohesion measures), we derive a lack of
cohesion measure from the cohesion metric we
proposed.

In order to explore the relationship between lack
of cohesion and coupling and size, we investigate in
this study a small selection of coupling and size
metrics. We focus on measures defined at the class
level. We chose the well-known coupling metrics:
CBO (Coupling Between Objects) (Chidamber,
1994) and FO (Fan-Out) (Kitchenham, 1990), and
size measures: LOC (Lines Of Code), NOA
(Number of Attributes) and NOO (Number of
Operations) (Henderson-sellers, 1996). Our aim in
this project, as a next step, is to investigate lack of
cohesion as a predictor of some relevant external
software quality attributes such as testability and
maintainability. These issues will be addressed in a
future work. We designed and conducted an
empirical study on several open source Java
software systems. The achieved results provide
evidence that a lack of cohesion may actually be
associated with high coupling and large size,
validating some fundamental design principles of
software engineering.

The rest of the paper is organized as follows:
We give in Section 2 an overview of major class
cohesion metrics. Section 3 presents some related
work. Section 4 presents briefly our approach for
class cohesion measurement. Section 5 gives some
characteristics of the systems we used in our
experiment. We present and discuss in Section 6 and
Section 7 the empirical investigation that we
conducted to explore respectively the relationship
between lack of cohesion and coupling and the
relationship between lack of cohesion and size.
Finally, Section 8 summarizes the contributions of
this work, discusses some of its limitations and
outlines directions for further research.

2 COHESION METRICS

Yourdon et al. (Yourdon, 1979) defined cohesion, in
the procedural paradigm, as a measure of the extent
of the functional relationships of the elements in a
module. In the OO paradigm, Booch (Booch, 1994)
described high functional cohesion as existing when
the elements of a class all work together to provide
some well-bounded behavior. There are several
types of cohesion: functional cohesion, sequential
cohesion, coincidental cohesion, etc. (Henderson-
sellers, 1996; Yourdon, 1979). In this work, we
focus on functional cohesion.

Many metrics have been proposed in the last
several years in order to measure class cohesion in
OO systems. The argument over the most
meaningful of those metrics continues to be debated
(Counsell, 2006). Major of proposed cohesion
metrics are based on the notion of degree of
similarity of methods, and usually capture cohesion
in terms of connections between members of a class.
They present, however, some differences in the
definition of the relationships between members in a
class (mechanism that defines cohesion and its
measure). A class is more cohesive, as stated in
(Chae, 2000), when a larger number of its instance
variables are referenced by a method (LCOM*
(Henderson-sellers, 1996), Coh (Briand, 1998)), or a
larger number of methods pairs share instance
variables (LCOM1 (Chidamber, 1991), LCOM2
(Chidamber, 1994), LCOM3 (Li, 1993), LCOM4
(Hitz, 1995), Co (Hitz, 1995), TCC and LCC
(Bieman, 1995), DCD and DCI (Badri, 2004; Badri,
2008)). We chose in our study the cohesion metrics:
LCOM (Chidamber, 1994) and LCOM*
(Henderson-sellers, 1996). LCOM (referenced in the
literature as LCOM2, as a refinement of LCOM1) is
defined as the number of pairs of methods in a class
having no common attributes minus the number of
pairs of methods having at least one common
attribute. LCOM is set to zero when the value is
negative. LCOM* is somewhat different from the
LCOM metric. LCOM* is different also from the
other versions of the LCOM metric proposed by Li
et al. (Li, 1993) and Hitz et al. (Hitz, 1995). It
considers that cohesion is directly proportional to the
number of instance variables that are referenced by
the methods of a class.

These metrics are known as structural metrics,
which is the most investigated category of cohesion
metrics. They measure cohesion on structural
information extracted from the source code. Several
studies, using the Principal Component Analysis
technique, have been conducted in order to

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

318

understand the underlying orthogonal dimensions
captured by some of these metrics (Aggarwal, 2006;
Briand, 1998; Chae, 2000; Etzkorn, 2004; Marcus,
2005). Briand et al. (Briand, 1998) developed a
unified framework for cohesion measurement in OO
systems that classifies and discusses several
cohesion metrics. Development of metrics for class
cohesion assessment still continues (Badri, 2008;
Chae, 2004; Chen, 2002; Counsell, 2006; Marcus,
2005; Marcus, 2008; Meyers, 2004; Woo, 2009;
Zhou, 2002; Zhou, 2003). Recent approaches for
assessing class cohesion focus on semantic cohesion
(De Lucia, 2008; Marcus, 2008). We focus in this
work on structural cohesion metrics.

3 COUPLING AND SIZE
METRICS

Coupling between two classes exists if one class
access or uses some elements of the other class.
Chidamber et al. (Chidamber, 1994) proposed the
CBO (Coupling Between Objects) metric that counts
for a class the number of other classes to which it is
coupled. This metric has been validated by Basili et
al. (Basili, 1996) as a fault prone indicator.
Kitchenham et al. (Kitchenham, 1990) defined FO
(Fan-Out) as a count of the number of classes that
are called by a given class. Various other coupling
metrics have been proposed in the literature (Briand,
1997; Hitz, 1995; Li, 1993; Li, 1995). Studies
showed, in fact, that coupling metrics are good
predictive indicators of software quality (Aggarwal,
2006; Briand, 2000; Bruntink, 2006; Chaumum,
2000; Harrison, 1998; Xu, 2008; Zhou, 2006). Well
known practices of software engineering promote
modular design with low coupling between classes
in order to facilitate, among others, comprehension,
testing, maintenance and evolution (Larman, 2003;
Pressman, 2005; Sommerville, 2004). Furthermore,
size is also a good indicator of various attributes of
software quality. The metric LOC (Lines Of Code),
widely accepted in the software engineering
community as a size/complexity metric (Dunsmore,
1984; Henderson-sellers, 1996; Levitin, 1986; Pant,
1995; Weyuker, 1988), has been used for a number
of different software development activities. Many
empirical results showed its usefulness (Basili, 1996;
Bruntink, 2006; Henderson-sellers, 1996; Dagpinar,
2003; El Emam, 1999; Xu, 2008). NOA (Number of
Attributes) and NOO (Number of Operations) are
alternative size metrics more appropriate to an OO
context.

4 CLASS COHESION
MEASUREMENT

We give, in this section, a brief overview of our
approach for class cohesion measurement. For more
details see (Badri, 2004; Badri, 2008). The approach
is based on different cohesion criteria. It takes into
account different ways of capturing functional
cohesion in a class.
Used Attributes: Two methods Mi and Mj are
directly related if there is at least one attribute shared
by the two methods.
Invoked Methods: Two methods Mi and Mj are
directly related if there is at least one method
invoked by the two methods. We also consider that
Mi and Mj are directly related if Mi invokes Mj, or
vice-versa.
Common Objects Parameters: Two methods Mi and
Mj are directly related if there is at least one
parameter of object type used by the two methods.
Two methods Mi and Mj may be directly connected
in many ways: they share at least one instance
variable in common, or interact at least with another
method of the same class, or share at least one object
passed as parameter. Let us consider a class C with n
methods. The maximum number of methods pairs is
[n * (n – 1) / 2]. Consider an undirected graph GD,
where the vertices are the methods of the class C,
and there is an edge between two vertices if the
corresponding methods are directly related. Let ED
be the number of edges in the graph GD. The
cohesion of the class C, based on the direct relation
between its methods, is defined as: DCD = |ED| / [n *
(n – 1) / 2] Є [0,1]. DCD gives the percentage of
methods pairs, which are directly related.

In order to facilitate comparison with the metrics
LCOM and LCOM*, we derive a lack of cohesion
measure (following the same approach of LCOM)
from our approach. We associate to a class C (with n
methods) a lack of cohesion measure (not
normalized) based on the direct relation given by:
LCD = [n * (n – 1) / 2] – 2 * |ED|. When the
difference is negative, LCD is set to zero.

5 SELECTED SYSTEMS

In order to achieve significant results, the data used
in our empirical study were collected from several
open source Java software systems. We used in our
experiment eight systems from different domains
and of varying sizes. The analyzed systems consist
of a total of more than 2 000 classes (more than

EXPLORING EMPIRICALLY THE RELATIONSHIP BETWEEN LACK OF COHESION IN OBJECT-ORIENTED
SYSTEMS AND COUPLING AND SIZE

319

Table 1: Some characteristics of the used systems and mean values of the selected metrics.

 #Classes #Attributes #Methods #LOC CBO FO LOC NOA NOO LCOM LCOM* LCD
GNUJSP 79 207 373 5225 5.28 4 66.14 2.62 9.47 94.85 60.57 52.67
JFLEX 47 403 401 9086 6.66 3.87 193.32 8.57 8.53 38.2 55.17 59.6
DBUNIT 213 464 874 11562 6.03 4.12 54.28 2.18 3.82 12.97 44.42 8.58
FREECS 115 712 822 15244 9.43 4.74 132.56 6.19 7.15 71.60 72.89 74.30
JHOTDRAW 301 688 3109 20767 8.26 5.34 68.99 2.29 8.51 125.82 46.16 80.46
JMOL 294 1942 1972 28967 7.88 4.76 98.53 6.61 6.14 249.92 68.68 161.78
ANT 657 3244 5822 63518 6.81 4.87 96.68 4.94 7.87 76.74 61.76 61.80
JFREECHART 411 2344 5589 67481 9.72 6.92 164.19 5.70 12.78 198.32 54.08 236.04

200 000 lines of code). We provide in what follows
some background on the systems that are used in this
study.
- GNUJSP (http://www.klomp.org/gnujsp/). A free
implementation of JSP (Java Server Pages). The
analyzed version (1.0.1) contains 79 classes.
- JMOL (http://www.openscience.org). A software
for visualizing molecules for students, educators and
researchers. The analyzed version (7) contains 294
classes.
- FREECS (http://freecs.sourceforge.net/). An
online chat server. The analyzed version (1.2.2)
contains 115 classes.
- JFLEX (http://jflex.de/). A lexical analyzer
generator. The analyzed version (1.4) contains 47
classes.
- ANT (www.apache.org). A Java-based build tool,
with functionalities similar to the Unix "make"
utility. The analyzed version (1.5.3) contains 657
classes.
- JHOTDRAW (http://www.jhotdraw.org). A Java
GUI framework for technical and structured
graphics. The analyzed version (5.4) contains 301
classes.
- JFREECHART (http://www.jfree.org/jfreechart).
A chart library for the Java (tm) platform. The
analyzed version (1.1.0) contains 411 classes.
- DBUNIT (http://www.dbunit.org). A Database
Testing Framework. The analyzed version (2.1)
contains 213 classes.
Table 1 summarizes some characteristics of the used
systems and gives the mean values of the selected
metrics.

6 RELATIONSHIP BETWEEN
LACK OF COHESION AND
COUPLING

We present, in this section, the empirical study we
conducted in order to assess the relationship between
lack of cohesion and coupling. We performed
statistical tests using correlation. The null and

alternative hypotheses were:

 H0: There is no significant correlation between
lack of cohesion and coupling.

 H1: There is a significant correlation between
lack of cohesion and coupling.

In this experiment, rejecting the null hypothesis
indicates that there is a statistically significant
relationship between lack of cohesion and coupling
(chosen significance level α=0.05). We used the
coupling metrics CBO and FO, and the lack of
cohesion metrics LCOM, LCOM* and LCD. The
metrics LCOM, LCOM*, CBO and FO have been
computed using the Borland Together tool. The LCD
metric has been computed using the tool we
developed. Several classes in the selected systems
have, in fact, only one method. These classes were
considered as special classes and have been
excluded from our measurements. We also excluded
all abstract classes. Special methods like
constructors were also removed. These methods may
artificially increase or decrease the cohesion of a
class.

We collected the metrics data from the eight
selected systems. Given the distribution of the
measures we observed, we preferred a non-
parametric measure of correlation in order to test the
correlation between lack of cohesion and coupling.
We used the Spearman’s correlation coefficient.
This technique, based on ranks of the observations,
is widely used for measuring the degree of linear
relationship between the ranks of two variables (two
sets of ranked data). It measures how tightly the
ranked data clusters around a straight line.
Spearman's correlation coefficient will take a value
between -1 and +1. A positive correlation is one in
which the ranks of both variables increase together.
A negative correlation is one in which the ranks of
one variable increase as the ranks of the other
variable decrease. A correlation close to zero means
that there is no linear relationship between the ranks.

We also used the Kendall method to investigate
if the two rankings (lack of cohesion and coupling)
are consistent. Kendall's rank correlation reflects the
strength of the dependence between the variables

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

320

Table 2: Correlations between Lack of cohesion and Coupling metrics.

Spearman Kendall

Spearman Kendall Spearman Kendall

Spearman Kendall

CBO FO CBO FO CBO FO CBO FO CBO FO CBO FO CBO FO CBO FO

JH
O

TD
R

A
W

LCOM 0.568 0.608 0.431 0.474

G
N

U
JS

P

LCOM 0.517 0.467 0.373 0.353

A
N

T

LCOM 0.508 0.519 0.373 0.388

JM
O

L

LCOM 0.338 0.393 0.242 0.292
210 0 0 0 0 26 0.007 0.016 0.011 0.017 498 0 0 0 0 161 0 0 0 0

LCOM* 0.368 0.366 0.275 0.28 LCOM* 0.58 0.569 0.468 0.459 LCOM* 0.466 0.45 0.346 0.333 LCOM* 0.167 0.154 0.128 0.117
176 0 0 0 0 21 0.006 0.007 0.005 0.006 456 0 0 0 0 123 0.064 0.089 0.044 0.068

LCD 0.598 0.61 0.459 0.477 LCD 0.497 0.478 0.366 0.348 LCD 0.598 0.622 0.46 0.486 LCD 0.33 0.438 0.258 0.357
301 0 0 0 0 36 0.002 0.003 0.004 0.006 657 0 0 0 0 294 0 0 0 0

 CBO FO CBO FO CBO FO CBO FO CBO FO CBO FO CBO FO CBO FO

FR
EE

C
S

LCOM 0.545 0.553 0.414 0.432
JF

LE
X

LCOM 0.508 0.478 0.382 0.359

JF
R

EE
C

H
A

R
T

LCOM 0.568 0.562 0.42 0.419

D
B

U
N

IT

LCOM 0.368 0.294 0.267 0.214
105 0 0 0 0 41 0.001 0.002 0.001 0.003 362 0 0 0 0 130 0 0.001 0 0.001

LCOM* 0.457 0.445 0.32 0.314 LCOM* 0.563 0.499 0.437 0.408 LCOM* 0.276 0.304 0.202 0.223 LCOM* 0.246 0.294 0.19 0.23
111 0.001 0.002 0.002 0.003 35 0 0.002 0 0.001 392 0 0 0 0 99 0.014 0.003 0.01 0.002

LCD 0.509 0.542 0.386 0.44 LCD 0.606 0.588 0.456 0.445 LCD 0.566 0.566 0.421 0.423 LCD 0.424 0.46 0.323 0.353
115 0 0 0 0 47 0 0 0 0 411 0 0 0 0 213 0 0 0 0

being compared. High values of the Kendall’s
correlation coefficient means that the most pairs of
values are concordant, indicating that the two
rankings (lack of cohesion and coupling) are
consistent. Analysis of the data sets is done by
calculating the Spearman’s and Kendall’s correlation
coefficients for each pair of metrics (lack of
cohesion metric, coupling metric). We have a total
of six pairs of metrics.

Table 2 summarises the results of the correlation
analysis. It shows, for each used system and between
each distinct pair of metrics, the obtained values for
the Spearman’s and Kendall’s correlation
coefficients with their corresponding p-values.
Moreover, under each metric name in Table 2, we
mention the number of classes that were actually
used in the analysis. The cohesion values of several
classes (like classes having no attributes) are not, in
fact, computed by the Together tool for the metrics
LCOM and LCOM*. This is due to the definition of
measures themselves. The cohesion values of such
classes are, however, computed (using our tool) for
the metric LCD. These classes have, in fact, several
methods which are connected according to the
cohesion criteria defined in section 4.

The obtained Spearman’s correlation coefficients
are significant (at α=0.05). Moreover, the measures
have positive correlation. Since the used cohesion
metrics are, in fact, lack of cohesion measures
(inverse cohesion measures), the positive
coefficients indicate that the ranks of both lack of
cohesion and coupling increase together, which is
consistent with the idea on cohesion and coupling in
the software engineering community. Moreover, the
obtained values of the Kendall’s correlation
coefficient are also significant (at α=0.05). They
confirm that there is more concordance than
discordance in the pairs of metrics, confirming that
the two rankings are consistent. Overall, the results
of the correlation analysis support the idea that the

more strongly a class is coupled to other classes, the
less cohesive the class is likely to be.

We can also see from Table 2 that the metric
LCD is more strongly correlated with the coupling
measures than the metrics LCOM and LCOM*. The
higher correlation values are observed for systems
JHOTDRAW, ANT and JFLEX (metric LCD). The
fact that the metrics LCOM and LCOM* are based
on the concept of sharing instance variables only,
which is a restrictive way of capturing cohesion in
our opinion, leads to lack of cohesion values that do
not, in fact, reflect properly the cohesion of classes.
The metric LCD, compared to the metrics LCOM
and LCOM*, is based on various and complementary
cohesion criteria. It captures more pairs of connected
methods than LCOM and LCOM* metrics. It
captures additional dimensions of cohesion
measurement. This explains, in our opinion, why
LCD obtains higher correlation values with coupling
measures than the metrics LCOM and LCOM*.

7 RELATIONSHIP BETWEEN
LACK OF COHESION AND
SIZE

We present, in this section, the empirical study we
conducted in order to assess the relationship between
lack of cohesion and size. We performed statistical
tests using correlation. The null and alternative
hypotheses were:
 H0: There is no significant correlation between

lack of cohesion and size.
 H1: There is a significant correlation between

lack of cohesion and size.
Rejecting the null hypothesis, in this experiment
also, indicates that there is a statistically significant
relationship between lack of cohesion and size

EXPLORING EMPIRICALLY THE RELATIONSHIP BETWEEN LACK OF COHESION IN OBJECT-ORIENTED
SYSTEMS AND COUPLING AND SIZE

321

Table 3: Correlations between Lack of cohesion and Size metrics.

Spearman

LOC NOO NOA LOC NOO NOA LOC NOO NOA LOC NOO NOA

JH
O

TD
R

A
W

LCOM 0.688 0.81 0.441

G
N

U
JS

P

LCOM 0.749 0.873 0.269

JM
O

L

LCOM 0.698 0.805 457

A
N

T

LCOM 0.752 0.852 0.692
210 0 0 0 26 0.007 0 0.183 161 0 0 0 498 0 0 0

LCOM* 0.384 0.81 0.731 LCOM* 0.68 0.253 0.719 LCOM* 0.425 0.34 0.467 LCOM* 0.652 0.688 0.761
176 0 0 0 21 0.001 0.267 0 123 0 0 0 456 0 0 0

LCD 0.744 0.853 0.578 LCD 0.67 0.67 0.419 LCD 0.705 0.845 0.634 LCD 0.797 0.886 0.793
301 0 0 0 36 0.002 0 0.011 294 0 0 0 657 0 0 0

 LOC NOO NOA LOC NOO NOA LOC NOO NOA LOC NOO NOA

FR
EE

C
S

LCOM 0,590 0.749 0.463
JF

LE
X

LCOM 0.512 0.483 0.419

D
B

U
N

IT

LCOM 0.529 0.574 0.146

JF
R

EE
C

H
A

R
T

LCOM 0.689 0.721 0.561
105 0 0 0 41 0.001 0.002 0.007 130 0 0 0.099 362 0 0 0

LCOM* 0.753 0.601 0.575 LCOM* 0.545 0.674 0.561 LCOM* 0.478 0.384 0.649 LCOM* 0.359 0.446 0.672
111 0 0 0 35 0.001 0 0.001 99 0 0 0 392 0 0 0

LCD 0.678 0.897 0.631 LCD 0.802 0.933 0.469 LCD 0.719 0.847 0.432 LCD 0.826 0.992 0.736
115 0 0 0 47 0 0 0.001 213 0 0 0 411 0 0 0

(chosen significance level α=0.05). We used the
well-known size metrics LOC (Lines Of Code),
NOA (Number of Attributes) and NOO (Number of
Operations). We used also, as for the previous
empirical study, the lack of cohesion metrics
LCOM, LCOM* and LCD. In this experiment also,
special classes and methods have been excluded
from our measurements. We collected the metrics
data from the eight selected systems. We used the
Spearman technique to assess the correlation. Table
3 summarises the results of the correlation analysis.
It shows, for each used system and between each
distinct pair of metrics (lack of cohesion metric, size
metric), the obtained values for the Spearman’s
correlation coefficient (with their corresponding p-
values). We have a total of nine pairs of metrics. The
obtained correlations in this experiment also are
significant (at α=0.05). Furthermore, the correlation
values are positive. This indicates that the ranks of
both lack of cohesion and size increase together,
which is consistent with the idea on cohesion and
size in the software engineering community.

These findings indicate that there is a relative
strong correlation between lack of cohesion and the
quantities measured by size (particularly the number
of methods). The obtained results support the idea
that the larger the class is, the less cohesive the class
is likely to be. It is, in fact, plausible that the larger a
class is, particularly in terms of number of attributes
and methods, the more tasks it includes, so there is
an increased likelihood that some of those tasks are
unrelated which reduces the cohesion of the class.

Overall, we can observe from Table 3 that the
obtained correlation values are higher than those
obtained with coupling (Table 2). Moreover, the
metric LCD is more strongly correlated, in this
experiment also, with the size measures than the
metrics LCOM and LCOM*. The higher correlation
values between LCD and LOC are observed for

systems JFREECHART, JFLEX, ANT,
JHOTDRAW and DBUNIT. The same trend is also
observed with the metric NOO. The correlation
between LCD and particularly the metric NOO is
very strong. As it was the case in the previous
empirical investigation, this confirms that LCD
captures additional dimensions of cohesion
measurement compared to the metrics LCOM and
LCOM*. Moreover, the number of classes in a
system seems not influencing the correlation values.
In fact, the higher values of correlations are
observed in relative small systems (such as JFLEX
with 47 classes) as well as in relatively large systems
(such as ANT with 657 classes).

8 CONCLUSIONS AND FUTURE
WORK

The paper investigates the relationship between lack
of cohesion in OO systems and coupling and size.
We performed an empirical study on various open
source Java software systems. We used several well-
known code-based metrics related to cohesion,
coupling and size. The achieved results support the
idea that a lack of cohesion may actually be
associated with (high) coupling and (large) size,
validating some fundamental design principles of
software engineering. The correlation analysis
showed also that, essentially, the metric LCD has
higher correlation values with coupling and size
measures than the metrics LCOM and LCOM*,
which confirms that it captures additional
dimensions in class cohesion measurement. We hope
this study will contribute to a better understanding of
the relationship between cohesion (lack of cohesion)
and other OO software attributes.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

322

The analysis performed here is correlational in
nature. We have demonstrated that there is a
statistically and practically significant relationship
between lack of cohesion of classes in OO systems
and coupling and size. Such statistical relationships
do not imply causality. They only provide empirical
evidence of it. Only controlled experiments, where
the measures would be varied in a controlled
manner, could really demonstrate causality.
However, such experiments would be difficult to
perform in practice as stated by Briand et al. in
(Briand, 2000).

The study performed in this paper should be
replicated across many environments and systems,
particularly large-scale systems, in order to draw
more general conclusions about the relationship
between lack of cohesion and coupling and size. In
fact, there are a number of limitations that may
affect the results of the study or limit their
interpretation and generalization.

Firstly, the obtained results are based on the data
set we collected from the analyzed systems. Our
study involved a relatively small number of systems
considering the fact that there are plenty of OO
systems available. This may pose a threat to the
scalability of the results. Even if we believe that the
total number of analyzed classes is enough large to
allow obtaining significant results, the study should
be, however, replicated on a large number of OO
systems to increase the generality of the results.
Secondly, the systems used in the experiment are
rather small or medium. Our study should be
replicated on large systems. Thirdly, it is also
possible that facts such as the development process
used to develop the analyzed systems (for example,
using design heuristics to guide the design process)
and the development style of a given development
team might affect the results or produce different
results for specific applications. Moreover, our study
involved only software systems written in Java.
While there is no reason to suspect that the results
would be different with systems written in other OO
languages (such as C++), it would be interesting to
study systems written in other languages.

As future work, we plan to investigate the
relationship between lack of cohesion and some
relevant external software quality attributes such as
testability. In addition, we will extend this study by
integrating other class cohesion metrics, particularly
semantic cohesion metrics.

ACKNOWLEDGEMENTS

This project was financially supported by NSERC
(National Sciences and Engineering Research
Council of Canada).

REFERENCES

Aggarwal, K. K., Yogesh, S., Arvinder K., Ruchika, M.,
2006. Empirical study of object-oriented metrics.
Journal of Object Technology. vol. 5. no. 8.

Aggarwal, K. K., Yogesh, S., Arvinder, K., Ruchika, M.,
2006. Investigating the effect of coupling metrics on
fault proneness in object-oriented systems. SQP, vol. 8
no. 4.

Aman, H., Yamasaki, K., Yamada, H., Noda, M.T., 2002.
A proposal of class cohesion metrics using sizes of
cohesive parts. Knowledge-Based Sof. Engineering. T.
Welzer et al. (Eds) IOS Press.

Badri, L., Badri, M., 2004. A proposal of a new class
cohesion criterion: An empirical Study. Journal of
Object Technology. vol. 3, no. 4, Special issue:
TOOLS USA.

Badri, L., Badri, M., Gueye, A., 2008. Revisiting class
cohesion, An empirical investigation on several
systems. Journal of Object Technology. vol. 7, no. 6.

Basili, V. R., Briand, L.C., Melo, W., 1996. A validation
of object-oriented design metrics as quality indicators.
IEEE TSE, 22 (10).

Bansiya, J., Davis, C.G., 2002. A hierarchical model for
object-oriented design quality assessment. IEEE TSE,
vol. 28, no. 1.

Bieman, J. M., Kang, B. K., 1995. Cohesion and reuse in
an object-oriented system. Proc. of the Symposium on
Software Reusability.

Booch, G., 1994. Object-Oriented Analysis and Design
With Applications, Benjamin/Cummings. 2nd edition.

Briand, L. C., Daly, J., Porter, V., Wuest, J., 1997. The
dimensions of coupling in object-oriented design.
Proceedings of OOPSLA’97.

Briand, L.C., Daly, J., Porter, V., Wuest, J., 1998. A
unified framework for cohesion measurement in
object-oriented systems. Empirical Software
Engineering, 3 (1).

Briand, L. C., Daly, J., Porter, V., Wuest, J., 2000.
Exploring the relationships between design measures
and software quality in object-oriented systems.
Journal of Systems and Software, No. 51.

Bruntink, M., Van Deursen, A., 2006. An empirical study
into class testability. Journal of Sysems and Software,
79, 9.

Chae, H. S., Kwon, Y. R., Bae, D. H., 2000. A cohesion
measure for object-oriented classes. Software Practice
and Experience, No. 30.

Chae, H. S., Kwon, Y. R., Bae, D. H., 2004 Improving
cohesion metrics for classes by considering dependent
instance variables. IEEE TSE. vol. 30, no. 11.

EXPLORING EMPIRICALLY THE RELATIONSHIP BETWEEN LACK OF COHESION IN OBJECT-ORIENTED
SYSTEMS AND COUPLING AND SIZE

323

Chaumun, M. A., Kabaili, H., Keller, R. K., Lustman, F.,
St-Denis, G., 2000. Design properties and object-
oriented sotware changeability. Proc. of the 4th
Euromicro Working Conference on Software
Maintenance and Reengineering.

Chen, Z., Zhou, Y., Xu, B., Zhao, J., Yang, H., 2002. A
novel approach to measuring class cohesion based on
dependence analysis. Proc. 18th International
Conferrence on Software Maintenance.

Chidamber, S. R., Kemerer, C.F., 1991. Towards a
Metrics Suite for Object-Oriented Design. OOPSLA.
Special Issue of SIGPLAN Notices, Vol. 26, No. 10.

Chidamber, S. R., Kemerer, C. F., 1994. A Metrics suite
for object Oriented Design. IEEE TSE. Vol. 20, No. 6.

Chidamber, S. R., Darcy, D. P., Kemerer, C. F., 1998.
Managerial use of metrics for object-oriented
software : An exploratory analysis. IEEE TSE, Vol.
24, No. 8.

Counsell, S., Swift, S., 2006. The interpretation and utility
of three cohesion metrics for object-oriented design.
ACM TSEM. vol. 15, no. 2.

Dagpinar, M., Jahnke, J. H., 2003. Predicting
maintenability with object-oriented metrics – An
empirical comparaison. Proc. of the 10th working
conference on reverse engineering (WCRE’03). IEEE
computer society.

Darcy, D., Kemerer, K., 2005. OO metrics in practice,
IEEE Software. vol. 22, no. 6.

De Lucia, A., Oliveto, R., Vorraro, L., 2008. Using
structural and semantic metrics to improve class
cohesion. Proc. of the ICSM.

Dunsmore, H.E., 1984. Software metrics: An overview of
an evolving methodology. Information Processing and
Management, 20(1-2), 183-192.

El Emam, K., Melo, W., 1999. The prediction of faulty
class using object-oriented design metrics. National
Research Council of Canada NRC/ERB 1064.

Etzkorn, L. H., Gholston, S.E., Fortune, J. L., Stein, C. E.,
Utley, D., 2004. A comparison of cohesion metrics for
object-oriented systems. Information and Software
Technology, 46.

Fenton, N., Pfleeger, S. L., 1996. Software Metrics: A
Rigorous and Practical Approach. Int. Thomson
Computer Press. 2nd edition.

Harrison, R., Counsell, S. J., Nithi, R., 1998. An
investigation into the applicability and validity of
object-oriented design metrics. Empirical Software
Engineering, vol. 3, no. 3.

Henderson-Sellers, B., 1996. Object-Oriented Metrics
Measures of Complexity, Prentice-Hall.

Hitz, M., Montazeri, B., 1995. Measuring coupling and
cohesion in object-oriented systems. Proc. of the Int.
Symp. on Applied Corporate Computing.

Kabaili, H., Keller, R. K., Lustman, F., Saint-Denis, G.,
2000. Class Cohesion Revisited: An Empirical Study
on Industrial Systems. Proc. of the Workshop on
Quantitative Approaches Object-Oriented Software
Engineering. France.

Kabaili, H., Keller, R.K., Lustman, F., 2001. Cohesion as
Changeability Indicator in Object-Oriented Systems.

Proceedings of the Fifth European Conference on
Software Maintenance and Reengineering (CSMR
2001). Estoril Coast (Lisbon), Portugal.

Kitchenham, B. A. Linkman, S.J., 1990. Design metrics in
practice. Information Software Technology.

Larman, G., 2003. Applying UML and Design Patterns,
An introduction to object-oriented analysis and design
and the unified process, Prentice Hall.

Levitin, A. V., 1986. How to measure size and how not to,
Proc. 10th COMPSAC. Chicago, oct 8-10, IEEE
Computer Society Press.

Li, W., Henry, S., 1993. Object-oriented metrics that
predict maintainability. Journal of Systems and
Software. Vol. 23.

Li, W., Henry, S., Kafura, D., Schulman, R., 1995.
Measuring Object-Oriented Design. Journal of Object-
Oriented Programming. Vol. 8, No. 4.

Marcus, A., Poshyvanyk, D., 2005. The conceptual
cohesion of classes. Proc. 21th IEEE Int. Conf. on
Software Maintenance.

Marcus, A., Poshyvanyk, D., Ferenc, R., 2008. Using the
Conceptual Cohesion of Classes for Fault Prediction in
Object-Oriented Systems. IEEE TSE. Vol. 34, NO. 2.

Meyers, T.M., Binkley, D., 2004. Slice-Based cohesion
metrics and software intervention. Proc. 11th IEEE
WCRE.

Pant, Y. R., Verner, J. M., Hendreson-Sellers, B., 1995.
S/C: a software size/complexity measure, chapter 50 in
Software Quality and Productivity: Theory, Practice,
Education and Training, eds. M. Lee, B.-Z. Barta, and
P. Juliff, Chapman & Hall, London.

Pressman, R.S., 2005. Software Engineering, A
practitioner's approach, Mc Graw Hill.

Sommervile, I., 2004. Software Engineering.
Stein, C., Cox, G., Etzkorn, L., 2005. Exploring the

relationship between cohesion and complexity.
Journal of Computer Science. 1 (2),

Weyuker, E. J., 1988. Evaluating software complexity
measures. IEEE TSE. 14(9), 1357-11365.

Woo, G., Chae, H. S., Cui, J. F., Ji, J.H., 2009. Revising
cohesion measures by considering the impact of write
interactions between class members. Information and
Software Technology, 51.

Xu, J., Ho, D., Capretz, L.F., 2008. An Empirical
Validation of Object-Oriented Design Metrics for
Fault Prediction. Journal of Computer Science, 4 (7),
571-577.

Yourdon, E., Constantine, L., 1979. Structured Design,
Prentice Hall, Englewood Cliffs. N.J.

Zhou, Y., Xu, B., Zhao, J., Yang, H., 2002. ICBMC: An
improved cohesion measure for classes. Proc. 18th
ICSM.

Zhou, Y., Wen, L., Wang, J., Chen., Y., Lu, H., Xu, B.,
2003. DRC: dependence-relationships-based cohesion
measure for classes. Proc. 10th APSEC.

Zhou, Y., Leung, H., 2006. Empirical analysis of object-
oriented design metrics for predicting high and low
severity faults. IEEE TSE. vol. 32, no. 10.

ICSOFT 2010 - 5th International Conference on Software and Data Technologies

324

