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Abstract: Bayes-Nets are a suitable means for probabilistic inference. Such nets are very restricted concerning the com-
munication language with the user, however. MinREnt-inference in a conditional environment is a powerful
counterpart to this concept. Here conditional expressions of high complexity instead of mere potential tables
in a directed acyclic graph, permit rich communication between system and user. This is true as well for
knowledge acquisition as for query and response. For any such step of probabilistic reasoning, processed
information is measurable in the information theoretical unit [bit]. The expert-system-shell SPIRIT is a pro-
fessional tool for such inference and allows realworld (decision-)models with umpteen variables and hundreds
of rules.

1 THINKING AND EXPERT
SYSTEMS

1.1 From the Human Expert to his
Artificial Counterpart

Humans’ capabilities to memorize and recall knowl-
edge and images, to infer facts from other facts, and to
justify or explain their conclusions are admirable. The
most surprising is man’s ability concerning nonmono-
tonic reasoning: An ostrich is a bird and ”all” birds
fly but an ostrich does not, is contradictory but nev-
ertheless accepted even by little childs (Rödder and
Kern-Isberner, 2003a), p. 385. It was a long and a
painful way for scientists to understand all such capa-
bilities and to do first steps in the direction of mod-
eling them. Respective studies fructified significantly
artificial intelligence in its effort to simulate such phe-
nomena on the computer. From this research resulted
a great number of computer programs, called expert-
systems.

1.2 Milestones in the History of
Expert-Systems

After the overwhelming enthusiasm in the scien-
tific community after the 1956 AI-workshop in Dart-
mouth, very famous researchers in the AI-field ex-
perimented with expert-systems like Advice Taker

(1958) by McCarthy, General Problem Solver (1960s)
by Newell and Simon, Mycin (1972) by Buchanan
and Shortcliff, Prosepector (1979) by Duda. Fur-
ther projects were Dendral, Drilling Advisor etc. For
a more extensive discussion see (Harmon and King,
1985). Duda proposed a modified bayesian concept
to calculate the strength of rules in a rule based sys-
tem. As Duda’s concept often did not show up com-
prehensible results a new generation of probabilistic
expert-systems came up.

Scientists tried to beat the difficulties of mod-
eling human thinking by various concepts: propo-
sitional logics, predicate logics, default logics, cir-
cumscription, conditional logics, uncertainty logics,
rough sets, trues maintenance systems, among others.
A still actual overview of such concepts the reader
might find in (Sombe, 1990), even if already pub-
lished in 1990. Only very few ideas, however, re-
sulted in computer programs able to handle large scale
knowledge domains and at the same time simulate hu-
man thinking in an adequate way.

It was in the late 1980s and in the 1990s that
purely probabilistic concepts for expert-systems have
been developed: HUGIN since 1989 (Hugin, 2009)
and SPIRIT since 1997 (Spirit, 2009). Even if both
expert systems permit probabilistic reasoning they
follow absolute different philosophies, however.
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2 PROBABILISTIC REASONING

2.1 Probabilistic Reasoning in
Bayes-Nets

Following Jensen (Jensen, 2002), p. 19, a bayesian
network is characterized as follows:

• a set of finite valued variables linked by directed
edges,

• the variables and the edges form a directed acy-
cled graph,

• to each variable with its parents there is attached
a potential table,

• the variables might be of type decision variable,
utility variable or state variable.

For a deeper discussion of traditional Bayes-Nets
confer (Jensen, 2002). Such nets can be formed
by an expert as well by empirical data. Later ver-
sions of the expert-system shell HUGIN also permit
continues rather than discrete variables, only. The
great advantage of such a Bayes-Net is the stringent
(in)dependency-structure. This is advantageous, in as
much as it forces the user to a likewise strict model-
ing of reality. The advantage might turn into a disad-
vantage when the user does not dispose of all desired
probabilities. Such a model of reality feigns an epis-
temic state about the knowledge domain which is a
biased image of reality, and consequently causes er-
roneous results when predicting facts from evident
facts. Rödder and Kern-Isberner (Rödder and Kern-
Isberner, 2003a), p.385, formulate ”Inference is more.
Inference is the result of the presumption and logi-
cal entailment about the vague population of our per-
ception or even contemplation. Inference takes place
in spite of incomplete information about this popu-
lation.” Probabilistic reasoning under maximum en-
tropy and/or minimum relative entropy, respectively,
is a promising alternative to overcome this flaw.

2.2 Probabilistic Reasoning under
MinREnt

To build a knowledge base it needs a finite set of
finite valued variables V = {V1, ...,VL} with respec-
tive values vl of Vl . The variables might be of type
type boolean, nominal or numerical. From literals of
the form Vl = vl , propositions A,B,C, ... are formed
by the junctors ∧ (and), ∨ (or), ¬ (not) and by re-
spective parentheses. Conjuncts of literals such as
v = v1, ...,vL are elementary propositions, V is the set
of all v. | is the directed conditional operator; formu-
las as B|A are conditionals. The degree to which such

conditionals are true in the knowledge domain might
be expressed by probabilities x ∈ [0;1]; such condi-
tionals or facts we write B|A [x]. As to the semantics
a model is a probability distribution P for which such
conditional information is valid.
More precisely, probabilistic reasoning under Min-
REnt is realized as follows (Rödder et al., 2006):

1. Definition of the knowledge domain
Specification of the variables Vl and their respec-
tive values vl , providing the set of all complete
conjuncts v.

2. Knowledge Acquisition
Knowledge acquisition bases on a set of condi-
tionals or facts R = {Bi|Ai [xi], i = 1, . . . , I}, pro-
vided by the user. The solution

P∗ = arg minR(Q,P0), s.t. Q |= R (1)

is an epistemic state among all Q which mini-
mizes the relative entropy or Kullback-Leibler-
divergence R from P0, satisfying the restrictions
R. P∗ obeys the MinREnt-principle, in that it re-
spects R without adding any unnecessary infor-
mation (Rödder and Kern-Isberner, 2003b), p.
467. Bear in mind that for a uniform P0, min-
imizing the relative entropy (1) is equivalent to
maximizing the entropy H(Q). For more de-
tails about the principles MinREnt and MaxEnt
and their axiomatic foundations, the reader is re-
ferred to (Kern-Isberner, 1998), (Shore and John-
son, 1980).

3. Query
The query process consists of three steps: fo-
cus, adaptation to the focus and question plus re-
sponse. A focus specifies a temporary assumption
about the domain represented by a set of condi-
tionals or facts E = {Fj|E j [y j], j = 1, . . . ,J}. The
adaptation of P∗ to E yields the solution

P∗∗ = arg minR(Q,P∗), s.t. Q |= E. (2)

Finally for a question H|G under the facts R and
the focus E, the answer is

P∗∗(H|G) = z. (3)

The three-step process (1), (2), (3) is called Min-
REnt inference process (Rödder and Kern-Isberner,
2003b), p. 467. All values of the objective functions
in the three steps −as well as the entropies H(P0),
H(P∗), H(P∗∗)− measure in [bit]; the lower entropy
the richer acquired knowledge about the domain. This
proximaty to information theory is essential but can
not be developed here. For an extensive discussion
cf.(Rödder and Kern-Isberner, 2003a).
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3 WHAT IS THE ADVANTAGE OF
MinREnt OVER BAYES-NETS?

In this section we want to justify our position that
MinREnt is better than Bayes-Nets.
• Already the propositions A,B and the condition-

als B|A may be pretty complex, due to arbitrary
combinations of literals by the conjuncts ∧,∨,¬.
Handling such expressions in Bayes-Nets is im-
possible.

• Moreover, syntactical formulas like(B|A)∧(D|C),
(B|A) ∨ (D|C), ¬(B|A), (B|A)|(D|C), so called
composed conditionals, allow a rich linguistic se-
mantics on a domain, near human language. For
a deeper discussion , cf. (Rödder and Kern-
Isberner, 2003a), p. 387. Are already neither gen-
eral propositions nor conditionals representable in
Bayes-Nets the less are composed conditionals.

• The formulation of cyclic dependencies between
propositions, e.g. B|A,C|B,A|C is possible in
MinREnt-inference. Such dependencies are not
permitted in Bayes-Nets as they are DAGs.

• Bayes-Nets suffer from certain difficulties when
there is a multiple functional dependence between
input variables and an output variable. Such a sit-
uation forces the user to additional constructions
like ”noisy-and” or ”noisy-or” (Diez and Galan,
2003). In a MinREnt and conditional environment
such dependencies are simply and solely formu-
lated as conditionals and the rest is done by the
entropy.

All such advantages over Bayes-Nets, of course, must
be accompanied by some disadvantages. Because of
the absolute freedom in formulating rules, for the un-
experienced user there is a high risk to cause incon-
sistencies: Equation (1) is not solvable. To overcome
this problem, SPIRIT allows for solving the inconsis-
tency problem in that it offers slightly modified prob-
abilites x

′
i instead of xi for (1). And the user might

decide if he or she accepts these probabilities or not.
Usually a set R of rules does not fully determine the
epistemic state P over a domain. The freedom to ad-
mit imperfect information in R has its price. This
price is a possible unreliability of the answer (3).
SPIRIT informs the user about such unreliability or
second order uncertainty, and invites him/her to add
further information.

4 PROFESSIONALITY OF SPIRIT

SPIRIT is a professional expert-system-shell, allow-
ing for the implementation of middle and large scaled

knowledge bases. For the reader familiar with prob-
abilistic inference models, first designed for Bayes-
Nets, (Hugin, 2009), we list a few examples which
where adapted to SPIRIT. Note that the stringent syn-
tax in Bayes-Nets is overcome in SPIRIT. But vice
versa, any Bayes-Net application can be modeled in
the shell. The models blue baby (BB), troubleshooter
(TS), and car repair (CR) are well known, (Breese
and Heckerman, 1996), (Hugin, 2009). There are two
models in which utility and decision variables are ex-
plicitly involved, namely the well known oil drilling
problem (OD) and a credit worthiness support system
(CW)(Raiffa, 1990). Besides all well known applica-
tions an outstanding knowledge base of a business-to-
business approach (BS)) was modeled in SPIRIT. The
latter with 86 variables and 1051 rules, partly cyclic.
Knowledge acquisition for all the models counted in
milliseconds (Rödder et al., 2006). All models are
available at (Spirit, 2009) and can be tested by the
reader. In Table 1 we provide a few data concerning
these models. For models with up to umpteen vari-
ables and hundreds of rules a suitable form of user
interface is necessary so as to inform about the knowl-
edge structure and the inference process.

Table 1: Data for middle and large-scale models, imple-
mented in SPIRIT.

Model no. no. no. H(P0) H(P∗)
variables rules LEGs [bit] [bit]

BB 20 340 17 29.91 18.57
TS 76 574 50 76.00 12.83
CR 18 38 13 22.68 6.00
BS 86 1051 36 104.79 87.12
OD 6 18 3 8.17 4.08
CW 10 31 6 11.00 7.38

For this purpose the shell SPIRIT disposes of var-
ious communication tools: A list of all variables and
their attributes, a list of all conditionals provided by
the user, a dependency graph showing the Markov-
Net of all stochastic dependencies between such vari-
ables, the junction-tree of variable clusters−so called
Local Event Groups LEGs− indicating the factoriza-
tion of the global by marginal distributions, among
others (Rödder et al., 2006).

5 CONCLUSIONS AND THE
ROAD AHEAD

Knowledge processing in a conditional and prob-
abilistic environment under maximum entropy and
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minimum relative entropy, respectively, is a powerful
instrument supporting the user in various economical
and technical decision situations. SPIRIT is a com-
fortable and professional shell for such knowledge
processing.

Recent developments in the field are in test-stage,
such as:

• an adaptation of the system to permit simulations
of cognitive processes, (Rödder and Kulmann,
2006),

• the calculation of the transinformation or synen-
tropy between arbitrary groups of variables.

Actual research activities are:

• the removal of an eventual unreliability of an-
swers by the initiation of a self-learning process.
The theoretical basis for this concept was pub-
lished already in 2003 (Rödder and Kern-Isberner,
2003b), the implementation in SPIRIT is in the
pipeline,

• handling of a mixture of continuous and discrete
variables (Singer, 2008).

With such features the expert-system-shell SPIRIT
will become even more user-friendly and will enable
scientific work as well as applications in various dis-
ciplines.
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