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Abstract. Sequence classification based on Hidden Markov Models (HMMs) is
widely employed in gesture recognition. Usually, HMMs are trained to recog-
nize sequences by adapting their parameters through the Baum-Welch algorithm,
based on Maximum Likelihood (ML). Several articles have pointed out that ML
can lead to poor discriminative performances among gestures. This happens be-
cause ML is not optimal for this purpose until the modellized process is actu-
ally an HMM. In this paper we present a gesture recognition system featuring a
discriminative training algorithm based on Maximal Mutual Information (MMI)
and the integration of environment information. The environment is described
through a set of fuzzy clauses, on the basis of which a priori probabilities are
computed. Adaptive systems such as unsupervised neural networks are used to
build a codebook of symbols representing the hand’s states. An experiment on a
set of meaningful gestures performed during the interaction with a virtual envi-
ronment is then used to evaluate the performance of this solution.

1 Introduction

1.1 Aim of the Work

Gesture recognition is becoming an important task in technology and science. At first
it can be considered as an advanced way to interface the user to an interactive system:
exploiting the significance of natural human actions as commands would increase the
efficiency, both in using and in learning how to use the system[1].

While performing an operation in a virtual environment a user can test the effective-
ness of his practical choices and train himself to work in various situation. Meanwhile
the gesture recognition system could trace the steps performed: a model of the behavior
of a skilled performer could be produced, and a generic user can be aided by the sys-
tem to reproduce it. This can be useful in context where staff training, and producing
documentation are crucial economical issues in the working process[2].

The gesture recognition system described in this work is designed to provide a tool
to track tasks of interest during the assembly of mechanical parts. This system has been
developed together with a virtual environment where the task is set. The system is ori-
ented to scalability, in order to be suitable to work on task of realistic complexity. To
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achieve this the system takes advantage of discriminative training to adapt the hidden
Markov models (HMM) used to recognize gestures and a system that produces prior
probabilities for gestures. Prior probabilities are computed on the basis of the situation
in which the gestures are performed. This makes possible to compare, at every recog-
nition performed, just a small subset of plausible gestures, making the system scalable
to an higher number of gestures. If an information about prior probabilities is known
during the classifier training, the algorithm used incorporate it. The result is a classifier
trained focusing on the differences between gestures more likely to be performed in
the same context (and hence confused). Notice that when performing a meaningful task
every object has really few ways to be used.

1.2 Structure of the Paper

Sections 2, 3 and 4 describe the solution proposed. In particular section 2 describes
how a codebook to translate raw data into symbols is built; section 3 describes how
HMMs are trained to classify sequences of symbols produces by user gestures and
section 4 describes how the environment description is implemented and integrated with
the recognition process. In section 5, an application of the system is presented together
with the recognition accuracy achieved. Conclusions and planned improvements are in
the section 6.

2 Codebook Definition and Use

2.1 Components and Parameters

Three steps are performed in order to build the codebook:

– complexity reduction by principal component analysis (PCA);
– frequency analysis by Fourier transform;
– quantization by neural networks;

The encoding process is summarized in figure 1, where a series of 11 signals is
reduced to 3 by PCA. Note that once the PCA is applied the other two operations are
applied independently on the series. This elaboration requires several parameters to be
specified:

– the number of series kept after PCA. This parameter determines the total variance
preserved;

Fig. 1. Encoding input data.
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– the time window on which the Fourier transform is applied. This is a trade off
between the precision and the responsiveness of the system;

– the number of overlapping samples between time sequences;
– the number of symbols that the sequence classifier should recognize: If the symbols

are too many the parameters of the sequence classifier can grow excessively in
number and overfitting to the training set can occur.

2.2 Principal Component Analysis

Principal component analysis[3] is a procedure to obtain a linear transformation that,
when applied to data series results in independent series. The series produced are or-
dered on the basis of the variance they hold: almost the whole variance of the system is
kept using just some of them.

Usually PCA is applied to data offline, once a series is fully available. In this work
an online encoding is needed. The codebook should be defined in a unique way, so the
transformation can not be computed online just on a given time window. The training set
is hence used to define the transformation offline and to estimate how many components
should be hold to achieve a decent precision. The transformation is then applied online
to incoming data.

2.3 Frequency Analysis

A discrete Fourier transform is applied on the series before using the neural networks.
This allows the system to focus on the dynamics more than on the position. To make
the results independent from the position, the first component of the Fourier transform,
which represents the mean, is dropped from the obtained vector. The Fourier transform
results in a complex vector, and in this form it is used as input for the neural network.

The implemented neural networks can work with complex values as well as real
ones. When just the modulus of the Fourier transform is used as input for the neural
networks the performance can be strongly degraded. This happens because, often, the
phase is an important element in defining the nature of a gesture.

2.4 Neural Quantization

The neural networks are used to finally produce the encoding symbol. The competitive
neural network exploited performs a quantization splitting the input space into several
clusters[4].

The neural network output is an integer representing the cluster in which the input
vector ha been classified. These numbers have no particular meaning, and no relation
one with the other.

During the training phase the same training set is used both for the neural networks
and the HMMs. The neural networks are trained before the HMMs because they are
needed to produce the symbols. The networks are trained by iteratively minimizing the
quadratic quantization error on the training set.
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3 Sequence Recognition

3.1 Classification Principles

In recognition applications HMM are trained through examples to modelize the process
to recognize,typically with an HMM for every process[5] [6]. The classification is usu-
ally performed by the assignment of a given input sequence to the class associated to
the HMM with the highest probability to emit it, as described in the formula:

C = maxargi (P (S|Mi)) (1)

Where C is the class given as output for the input sequence S, and M is the performed
gesture. In this application, for reasons that will be explained in the next section, the
classification is performed by a different formula:

C = maxargi (P (Mi|S)) (2)

By this formalism, which represents the emission probability as a conditioned prob-
ability, the sequence is considered as the evidence produced by the gesture performed.
Every gesture Mi is associated to its own probability

P (Mi) (3)

That is supposed to be given a priori and not to be dependent on parameters. This makes
sense considering P(Mi) to be a higher level concept than P(S|Mi). For example, when
recognizing gestures, the probability of a sequence to be observed during a gesture is
related to movement coordination (low level), while the probability of a gesture to be
performed is connected to the task performed (high level). The probability of a sequence
S to be observed (namely, produced by the models featured by the classifier) is

Pθ(S) =
∑
i

Pθ(S|Mi)P (Mi) (4)

where the subscript θ marks the probabilities dependent on the parameters, represented
by the vector θ

3.2 Parameter Estimation

Training the parameters of an HMM to maximize the emission probability of a given
sequence is a well known problem for which several algorithms have been proposed in
literature. Maximization of likelihood is the basis of the most of them. But representing
a well-known and (relatively) easy principle to match the model to the distribution of
examples is not optimal for classification problems in the general case[7]

Hence the principle of Maximum Mutual Information (MMI) is followed. The Mu-
tual Information between a sequence S and the model Mi associated to the class i is:

I(Mi;S) = log
Pθ(S,Mi)
Pθ(S)P (Mi)

= logPi(S|Mi)− log(P (S)) (5)
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The aim of the training is to maximizing the Mutual Information between the given
sequence and the model representing the class which the sequence is supposed to be
classified in. Another interpretation of MMI[8] is useful to show how the term P (Mi)
is not dependent on θ:

I(Mi;S) = logPθ(Mi|S)− logP (Mi) (6)

Finding the MMI over θ is equivalent to maximize Pθ(Mi|S), or adapt parameters
to enhance the probability that, if the sequence S is observed, it has been produced by
the process Mi. Notice again that Pθ(Mi|S) is a property of the whole classifier rather
than the single HMM. Unlike ML, MMI approach could not be implemented by an
expectation-maximization algorithm[9]. A gradient algorithm is therefore exploited.

The sets of sequences and models are considered in the training by maximizing the
function:

Fθ =
∑
i

∑
k

Iθ(Mi;Sk) (7)

So the gradient is the sum of the gradients of Iθ(Mi;Sk) for every HMM Mi and every
sequence Sk:

∇θFθ =
∑
i

∇θ
∑
k

Iθ(Mi;Sk) (8)

Function 7 resembles the mutual information defined between two probability distribu-
tions of sequences and gestures that caused it∑

i

∑
k

P (Mi, Sk)Iθ(Mi;Sk) (9)

but the term P (Mi, Sk) is missing because the probability distribution P (M,S) is not
directly available, and computing it from the emission probabilities would cause the
gradient to lose the property stated in 8. Anyway the training set itself works as a rep-
resentation of sequences distribution, in the sense that a sequence Sk associated to an
high actual P (Mi, Sk) is represented by a large number of sequences similar to it in
the training set, so the formula 7 is an approximation of formula 9. The derivative of
formula 7 respect to a parameter θi could be written as

∂I(M ;A)
∂θi

=
∂Pθ(S|M)

∂θi

Pθ(S|M)
−

∑
M̂

∂Pθ(S|M̂)
∂θi

P (M̂)
Pθ(S)

(10)

where M̂ are the generic models and M is the model related to the class wanted to
recognize the sequence S. In order to compute

∂Pθ(S|M)
∂θi

(11)

the parameters could be evidenced in Pθ(S|M), for a and b

Pθ(S|M) =
T∑
t=1

∑
i

α(t− 1)aijbj(Ot)β(t) (12)
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and for π:
Pθ(S|M) =

∑
i

πiaijbj(O0)β(0) (13)

Applying the product rule to compute, for example, the derivative for a:

∂Pθ(S|M)
∂aij

=
∑T
t=1

∑
i α(t− 1)∂aij∂aij

bj(Ot)β(t) =

∑T
t=1

∑
i α(t− 1)bj(Ot)β(t)

(14)

Only the sequences considered likely to be confused are chosen as negative example. A
confusion margin is quantified by the formula:

P (Mk|Sj) > αP (Mi|Sj) (15)

Where Sj is a sample for the class i, and k is the class which takes Sj as negative
example when the condition is verified and α is a parameter to be specified: for α = 0
all the sequences are taken in account, for α = 1 only the ones misclassified at a certain
step of the training algorithm become negative examples.

As previously explained P (M |S) is connected with prior probabilities. This al-
lows to take advantage from high level information in the training process. Batches of
samples could be presented with different prior probabilities in order to decide which
classes should be affected by negative training.

For example, if a sample Sj for the class i is presented during the training together
with a null prior probability P (Mk),Sj will not be a negative example for the class k,
being P (Mk|Sj) = 0 and so, never greater than αP (Mi|Sj) that is never negative.
This is useful because there are some gestures that could occur together in a certain
environment and in a certain situation and hence a priori more likely to be confused.

4 Environment Description

4.1 Representation through Fuzzy Logic

An ad hoc defined language [10] is used to describe a logical model of the environment:
objects, classes of objects and proposition about both objects and classes can be defined
in a fashion that represents a simplification of a complete syntax for predicative logic.
Fuzzy logic is particularly suitable to represent physical concepts like proximity or
alignment[11].
In details the environment description consists of:

– a set of statements with their truth values, needed to describe environment state i.e.,
”the hand is near the screw, with truth value 0.5”;

– a set of rules to compute the truth values of statements from other statements truth
values, used to compute the state of the system and to update the description coher-
ently i.e., ”if a screw is screwed on a bolt then that screw is blocked”;

– a set of rules to compute the probability of a certain gesture to be performed by the
user, needed to use the environment description in the recognition process, a brief
explanation of the method used is in the next paragraph;
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– a set of rules to define the consequences of an action performed by the user, needed
to update the scheme in realtime i.e. ”if the user performs the action pick and the
hand is near an object that object is then in-hand with truth value 1”;

Describing the language in details is beyond the intention of this article, the syntax
actually used in the application is hence not presented in this context where it could
appear confusing. The examples in the previous list, given in plain text, are intended to
show quickly the kind of statements that the described system can represent.

4.2 Inference Engine and Prior Probabilities

The inference engine is the set of functions that computes truth values of arbitrary
statements from the logical description. In this section the algorithms exploited are
described. When the truth value of a statement is required, the following action are
performed by the engine:

1. The statement is searched in the description, if it is present its truth value is returned
and the research is ended;

2. A rule having the state as effect is searched. If found the procedure is repeated for
all the terms in the cause. The value of truth is than computed and returned.

3. If a value is not found in previous steps, 0 is returned.

Searching the truth value of a statement is like building an inference tree where the
nodes are rules and leaves are known statements. To avoid that an infinite loop arises
sub-threes in the inference tree cannot include the rule that represent their root. There
is another feature that makes this system different from an usual theorem demonstra-
tor[11]: it relies on rules written by the user to compute the truth values of statements
from other statements truth values the latter exploits fixed inferential rules to find true
sentences from true sentence.

A vector of gestures prior probabilities is specified for several logical condition.
The logical conditions are fuzzy statements. When prior probabilities are required by
the application a weighted sum of all the prior probability vectors is given. The truth
value of the condition is used as weight for the related vector.

5 Performance

5.1 An Application

This application consists in assembling a small computer case in the virtual environ-
ment. The user interacts with the components through an avatar of his/her hand. The

Fig. 2. A situation in a possible environment and fuzzy values for assumption on it.
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Fig. 3. The virtual environment at the beginning of the task.

recognized gestures trigger effects in the virtual environment. The finger movements
performed are registered by sensor equipped glove [12]. The three-dimensional rep-
resentation of the environment is updated coherently with the logical description. In
order to build the case components should be put in place, set with the right orientation
and than blocked. To complete the task the operations should be performed in the right
order. The case is made with a box, a base and four screws to fix them together. The
recognized gestures are: null, pick, set, screw and unscrew. The gesture null does not
produce any action, it is recognized when the hand is almost still. It is needed to avoid
recognition of random gestures when the use is not doing something. The gesture pick
is used to take and release objects. Set is used to put an object in the right position for
assembling. This overcomes the fact that in this application there is not a force feed-
back and the right position is hence difficult to find. Notice that ”being set” is a state of
an object represented in the logical environment and it is anyway needed to mount an
piece. The gestures screw and unscrew are used to fix screws on the box and to remove
them. There are 5 degrees of screwing represented by a natural number, when the ges-
ture screw is recognized the number is increased, on the opposite unscrewing decreases
the number.

5.2 Accuracy

The system has been tested using examples of the 5 gestures produced by 5 users. Every
user has been asked to perform every gesture for a minute. To build the codebook the
11 angular values describing the finger positions, sampled at 1 MHz are reduced to 3
series of data through a PCA, then the Fourier transform is applied on overlapping time
windows of 50 samples. The resulting sample series have been divided in sequences
of 8 symbols. The system has been cross-validated splitting the set of examples into 5
subset, used 4 by 4 as training set.

The main peculiarities of the proposed approach are the use of MMI instead of
ML and the use of environment informations. Hence the test consists in comparing
confusion matrices in case of HMM trained through ML and through MMI without and
with environment information.

The MMI training outperforms ML training. This is evident especially for the ges-
tures screw and unscrew that are particularly difficult to recognize, being very similar.

The last two tables show the improvement produced by the use of context infor-
mation. As told in the tables captions, the information added consist just in the hand
position and the screw state. Further performance gains would be possible adding in-
formation about the task performed by the user, for example taking in account that the
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Table 1. Confusion matrix for MMI training.

null pick set screw unscrew
null 0.946 0 0.054 0 0
pick 0 0.927 0 0.037 0.037
set 0.060 0.016 0.890 0.020 0.012

screw 0.008 0.042 0 0.832 0.117
unscrew 0 0.008 0 0.096 0.896

Table 2. Confusion matrix for ML training.

null pick set screw unscrew
null 0.915 0.015 0.010 0.030 0.010

3 0.070 0.668 0.061 0.131 0.050
set 0.060 0.10 0.702 0.048 0.090

screw 0.070 0.80 0.030 0.660 0.150
unscrew 0.080 0.70 0.080 0.140 0.680

Table 3. Confusion matrix for MMI training, the recognition exploits context information: the
hand is near a screw positioned to be screwed, the precision rises to 96.83%.

null pick screw
null 1 0 0
pick 0 0.934 0.065

screw 0.008 0.021 0.970

user started to screw after positioning a screw would make more likely his/her intention
to screw.

6 Conclusions and Future Work

The objective of the presented work was to improve HMM-based gesture recognition
performance optimizing parameters adaptation and including high level information in
the recognition process, as usually done in speech recognition applications where lan-
guage models are exploited.In the proposed system this is represented by environment
information. A test shown how adapting parameters with MMI produces a better classi-
fication performance compared with the usual ML-based training presented in literature,
expecially in the classification of similar gestures. The algorithm high computational re-
quirements have been compensated selecting a subset of the training samples at every
step, without affecting the recognition performance of the algorithm. The introduction
of environment information produced a further general performance improvement. The
proposed fuzzy logic simplified inference system assures an efficient realtime update of
environment description according to user actions.

In the presented version the action performed by the user can be saved as a list. It
should be combined with the environment informations and, produce automatically a
manual for the task performed. Another step forward will be the integration of this sys-
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Table 4. Confusion matrix for MMI training, the recognition exploits context information: the
hand is near an halfway screwed screw, the precision rises to 92.21%.

null screw unscrew
null 1 0 0

screw 0 0.935 0.065
unscrew 0.084 0.021 0.970

tem into an application representing a complex industrial task, including the possibility
for the user to use tools.
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