
GAIA4E: A TOOL SUPPORTING THE
DESIGN OF MAS USING GAIA

Luca Cernuzzi1,2
1 DISMI, Universitá di Modena e Reggio Emilia, Reggio Emilia, Italy

cernuzzi.luca @unimore.it

2DEI, Universidad Católica “Nuestra Seóra de la Asunción”, Campus Universitario, Asunción, Paraguay

Franco Zambonelli
DISMI, Universitá di Modena e Reggio Emilia, Reggio Emilia, Italy

Keywords: CASE tool, Gaia, Eclipse, Multiagent Systems Design, Software Engineering.

Abstract: Different efforts have been devoted to improve the original version of Gaia methodology. The more relevant
is the official extension of Gaia, exploiting the organizational abstractions to provide clear guidelines for the
analysis and design of complex and open multiagent systems. However, now a day a successful design
methodology should include some other strategic factors like the support of a specific CASE tool to
simplify the work of the designer. Such a tool supporting the Gaia design process may facilitate the
adoption of the methodology in the industrial arena. The present study introduces Gaia4E, a plug-in for the
ECLIPSE environment which covers all the phases of Gaia allowing agent engineers to produce and
document the corresponding models.

1 INTRODUCTION

The Agent Oriented Software Engineering – AOSE
discipline has grown in the last few years and many
AOSE methodologies have been proposed
(Ciancarini and Wooldridge, 2001). Some of them,
(e.g. Giorgini et al. 2005; Gómez and Pavón 2003;
Zambonelli et al. 2003) are strongly mentioned in
the specialized literature. To achieve an extensive
success a methodology should include different
strategic factors. Among others, we can mention the
use of a standard and well known design language
(like UML), the support of a specific CASE tool to
simplify the work of the designer and the attention
for the automatic production of large parts of code.

Such strategic factors may facilitate a broader
introduction of the agent oriented methodologies in
the industry practice. Among them, our mainly
interest in this paper is to focus on creating and
adopting tools that may support engineers in
developing multi-agent systems according to a
particular methodology as advocated in (Zambonelli
and Omicini, 2004).

When developing an agent-based system, several
tools are necessary during the different stages of the
process. In the design phase we need tools allowing
the specification of the system (also using formal
languages when needed), its validation and
(possibly) offering good automatic code generation
capabilities.
We are especially interested in the need of such tools
for Gaia due to its large acceptation in the agent
community.

The Gaia methodology (Zambonelli et al. 2003),
explicitly focus on using organizational abstractions
to drive the analysis and design of complex and open
multiagent systems (MAS). It models both the
macro (social) aspect and the micro (agent internals)
aspect of a MAS. The design process proposed in
Gaia introduces different models, each of them with
its own notation. Some extensions of Gaia
considered the adoption of more standard notations
based on AUML (Cernuzzi and Zambonelli 2004;
Cernuzzi et al. 2004), but no proposal have focused
on tools supporting the Gaia process.

In this work, we present the design tool Gaia4E
(standing for: Gaia for ECLIPSE) which covers all

82
Cernuzzi L. and Zambonelli F. (2009).
GAIA4E: A TOOL SUPPORTING THE DESIGN OF MAS USING GAIA.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Software Agents and Internet Computing, pages 82-88
DOI: 10.5220/0001984700820088
Copyright c© SciTePress

the phases of Gaia allowing agent engineers to
document the corresponding models.

Trying to facilitate a larger acceptance and
adoption of such a tool we have implemented it as a
plug-in for the ECLIPSE environment, widely used
in the object oriented software engineering
community. The ECLIPSE Project is an open source
initiative that allows the integration of different tools
into a single “environment” (for more information,
interested reader may see the ECLIPSE web site:
http://www.eclipse.org/). Eclipse may be considered
a kind of universal tool platform - an open extensible
IDE for almost anything related to software
engineering design. The incorporation of new tools
into the platform is possible trough plug-ins that
provides new functionalities to the environment.

The paper is structured as follow: section 2
briefly introduces Gaia methodology with its
process, and its models and their relations; section 3
presents the Gai4E tool using an illustrating example
to clarify the concept and notations; and section 4
concludes.

2 GAIA IN A NUTSHELL

Gaia (Zambonelli et al. 2003) focuses on the use of
organizational abstractions to drive the analysis and
design of MASs. Gaia models both the macro
(social) aspect and the micro (agent internals) aspect
of a MAS, and devotes a specific effort to model the
organizational structure and the organizational rules
that govern the global behavior of the agents in the
organization. Gaia proposes three mainly phases,
namely, the analysis, the architectural design, and
the detailed design.

The goal of the analysis phase in Gaia, covering
the requirements in term of functions and activities,
is to firstly identify which loosely couple sub-
organizations possibly compose the whole systems
and then, for each of these, to produce four basic
abstract models: (i) the environmental model, to
capture the characteristics of the MAS operational
environment; (ii) a preliminary roles model, to
capture the key task-oriented activities to be played
in the MAS; (iii) a preliminary interactions model, to
capture basic inter-dependencies between roles; and
(iv) a set of organizational rules, expressing global
constraints/directives that must underlie the MAS
functioning.

The above analysis models are used as input to
the architectural design phase which is in charge of
defining the most proper organizational structure for
the MAS, i.e., the topology of interactions in the

MAS and the control regime of these interactions,
which most effectively enables to fulfil the MAS
goals. The definition of the organizational structure
has to account for a variety of factors, including the
need of reflecting the structure of the real-world
organization, the characteristics of the environment,
the need of simplifying the enactment of the
organizational rules, as well as the obvious need to
keep the design as simple as possible. Once the most
appropriate organizational structure is defined, the
roles and interactions models identified in the
analysis phase (which were preliminary, in that they
were not situated in any actual organizational
structure) can be finalized, to account for all
possibly newly identified interactions and roles.

Past the architectural design phase, the detailed
design involves identifying: (i) an agent model, i.e.,
the set of agent classes in the MAS, implementing
the identified roles, and the specific instances of
these classes; and (ii) a services model, expressing
services and interaction protocols to be provided
within agent classes. The result of the design phase
is assumed to be something that could be
implemented in a technology neutral way.

Figure 1: Models of the Gaia methodology and their
relations in the Gaia process.

3 GAIA4E: A DESIGN TOOL
SUPPORTING GAIA

Now a day a successful design methodology should
include some other strategic factors like the support

GAIA4E: A TOOL SUPPORTING THE DESIGN OF MAS USING GAIA

83

Figure 2: General view of the Eclipse environment.

of a specific CASE tool to simplify the work of the
designer (Zambonelli and Omicini, 2004).

In this section we present Gaia4E (standing for:
Gaia for ECLIPSE), a design tool which covers all
the phases of Gaia, allowing agent engineers to
document the corresponding models according the
specific notations, and which has been implemented
as a plug-in for the ECLIPSE environment.
ECLIPSE may be considered a kind of open IDE
which functionalities could be extended trough plug-
ins that are incorporated to the environment.

In order to gain a better understanding of the
Gaia4E Plugin, we need to grasp a few concepts
related to the Eclipse Platform. The next two
paragraphs are straight forward quotations of the
Platform Plug-in Developer Guide document that
comes within the Eclipse Help Contents.

“The Eclipse platform is structured around the
concept of plug-ins. Plug-ins are structured bundles
of code and/or data that contribute function to the
system. Function can be contributed in the form of
code libraries (Java classes with public API),
platform extensions, or even documentation. Plug-
ins can define extension points, well-defined places
where other plug-ins can add functionality.”

“The workbench UI plug-in implements
workbench UI and defines a number of extension
points that allow other plug-ins to contribute menu

and toolbar actions, drag and drop operations,
dialogs, wizards, and custom views and editors.”

The main components in the GUI layout of an
Eclipse plug-in are views and editors. An editor is
typically used to edit or browse a document or input
object (generally a file). A view is more commonly
used to navigate a hierarchy of information or
display and edit properties for the active editor.

The Gaia4E plug-in makes its main contribution
to the UI by extending dialogs and wizards, through
one custom editor and two views and arranges them
all by providing a specific perspective.

The Gaia perspective includes three different
views (see Figure 2). First, located to the left side of
the window is the Eclipse Navigator view which
allows designer to open an already existing project,
to create a new project, etc. The second view, called
Gaia properties and situated in the bottom right side,
shows the properties of the specific component
selected in the active Gaia4E Editor, and allows the
user to modify it. The third view is called the
Gaia4E Image Viewer and is located in the same
space as the former (reachable by clicking its
corresponding tab). The purpose of this view is to
show an image related to the topology of an
Organization in the Architectural Phase.

At last, the editor, known as Gaia4E Editor, lets
the user work on a Gaia document file (.gaia

ICEIS 2009 - International Conference on Enterprise Information Systems

84

extension). The editor is tabbed in the bottom of its
window in response to the three phases covered by
the methodology (Analysis, Architectural Design
and Detailed Design). The user should choose the
tab according to the phase she or he wants to work
on. After selecting the phase the designer is able to
add/delete/modify whatever aspects are involved in
that particular phase. For example if the user wants
to delete a role specified in the preliminary roles
model for the Organization X, the user must click in
the lower tab “Analysis”, select the X organization
in the “Sub-Organizations tree” and go by means of
the upper tab to the roles tree, select the role to be
deleted and click the delete button in the editor’s
toolbar.

To better understand the tool we presents each
model supported by the Gaia4E using an illustrative
example: an auditing agents-based system for the
Central Bank of Paraguay (BCP – Banco Central del
Paraguay). A multi-layer agent architecture for
remote auditing in public institutions has been
proposed to solve some deficiencies of the BCP
which is in charge of the auditing process of the
financial-account management of the credit firms.

Figure 3: The model of the auditing system for the BCP.

Figure 3 shows the proposed model. As the
reader may observe, the BCP sends different agents
to the financial institutions that the BCP needs to
audit. In each financial institution the files are
validate and modified up to reach the correct
information and format. Once the proper agent has
completed its auditing activities, the obtained file are
compressed and encrypted before being sent back to
the BCP. Finally, the BCP sends an electronic
receipt to the audited institution.

The experimental results achieved with the
Auditing Agents BCP system solve the problems
identified in the actual working model of the BCP.

3.1 Modelling the BCP Auditing
System with GAIA4E

Possible Sub-organizations. The auditing system
includes four different processes: the correct format
verification, the information validity verification, the
verification of the relationships between files (also
called referential integrity), and the verification of
the sum of the debit for each client. Each
verification process operates on different data files
and includes multiple check activities, one for each
of these four different files. Thus, it is natural to
think in four different sub-organizations, one for
each verification process.

Environmental Model. In this application the
environmental model comprises the data bases of the
audited banks (accessible if the agent has the
corresponding permissions), a set of reports
generated by the different agents, and the data base
of the BCP.

Preliminary Roles Model. In this model designers
capture the basic functional requirements of the
application in terms of the roles that the different
actors can play. Independently from the
organizational structure, the main role is the Auditor
which will be in charge of the general auditing
process. Moreover, other roles are those related to
each of the four verification processes previously
identified. Other roles would may appear in the
design phase. For space reasons we just present the
Auditor role schema (figure 4).

Preliminary Interaction Model. As for the
preliminary roles model, and although this model
may experience changes once the organizational
structure is defined, some preliminary interaction
protocols could be identified. For this model a
representative example is presented in figure 5 (for
space reasons all the formats, validities and relations
verifications are grouped in one agent class for each
type).

Organizational Rules. The organizational rules are
invariants that agents, playing the corresponding
roles, have to observe for maintaining a correct
behaviour of the organization.
Different kind of rules may be defined for the BCP
auditing system, but for space reasons we just
present some examples of the complete set.

GAIA4E: A TOOL SUPPORTING THE DESIGN OF MAS USING GAIA

85

Figure 4: The Auditor Role schemata in Gaia4E.

Figure 5: The CreateAgent Protocol Model in Gaia4E.

ICEIS 2009 - International Conference on Enterprise Information Systems

86

Figure 6: The global view of the Organizational Structure in Gaia4E.

Some of these rules may also control the order of
the activities. For example, rule 1 means that
CreateAgent has to be executed before of
ProgrammingAgent; while rule 2 states that
ReceiveConfirmation precedes the warning for an
ErrorKey or the request for a specific auditing
process (in this case the format auditing).
Other rules may specify different constraints for the
general behaviour of the organization. For example,
rule 4 means that if an Auditor has been validated all
the corresponding reports (for Format, Validity,
Relation and Sum) must exist.
1. CreateAgent → ProgramminAgent
2. ReceiveConfirmation→ ErrorKey | RequestAuditFormat

3. Key≠ null

4. ∀ Auditor, confirmation=true → ReportFCA≠ null ∧
ReportFCB≠ null ∧ ReportFCC≠ null ∧
ReportFCD≠ null ∧ ReportVCA≠ null ∧
ReportVCB≠ null ∧ InformeVCC≠ null ∧
ReportVCD≠ null ∧ ReportRCA-CC≠ null ∧
ReportRCB-CA≠ null ∧ ReportRCB-CC≠ null ∧
ReportRCC-CA≠ null ∧ ReportSum≠ null

5. ∀ Auditor, home=true ∧ FinalReport≠ null → change
BD BCP

Organizational Structure. Since the user has the
control over the system, she/he is in charge of the
creation of the auditor agent. This auditor agent in
turn, depends on the checker agent that is in charge
of auditor validation. The auditing process starts
once the auditor creates all the agents in charge of
the different verification processes for the audited
bank. Those agents prepare and send a report
according to the corresponding validation results.
Since the auditor has created all the verification
agents, it controls those agents and may eventually
decide to eliminate them at any moment.

Thus, a natural organizational structure is
presented in figure 6. It is worth to outlines that
Gaia4E offers designers to associate graphical files
to the documentations. Thus, for the specification of
the topology of the organization it is possible to
model it with other graphics environments and then
insert the model into the Gaia4E corresponding area.

Detailed Design. The detailed design of Gaia
considers the Agent Model, in which each role
corresponds to a class, and the Service Model. For
each auditing process, one Auditor and one Checker
agents are instantiated while the other agents
(Format, Validity, Relation, and Sum) may or may
not be instantiated. If the Auditor agent is not
recognized by the Checker these other agents are not

GAIA4E: A TOOL SUPPORTING THE DESIGN OF MAS USING GAIA

87

instantiated, in all other cases, the verification agents
are created when necessary until all errors have been
corrected.

In the Service Model the designers identify the
services associated to each class specifying inputs,
outputs, pre and post-conditions. Inputs and outputs
are derived from the Protocols (for the services
associated to the agent interaction) and from the
Environmental Model (for the services that operate
on the resources). Pre and post-conditions derive
from the safety properties of roles, from the
organizational rules, from constraints on the
availability of the resources, and from specific
values of resources or data from other agents. For
example the service “RequestAuditFormat” needs
the “User Configuration” as input; it has the pre-
condition “Confirmation=True”, and the post-
condition “FormatCA≠NULL and
FormatCB≠NULL and FormatCC≠NULL and
FormatCD≠NULL”.

Gaia and Gaia4E do not cover the development
and implementation stages. For those activities, in
the BCP Auditing System we adopt the Aglets
Software Development Kit (ASDK).

4 CONCLUSIONS

In this work, we presented the design tool Gaia4E
(standing for: Gaia for ECLIPSE) which supports
the work of agent engineers covering all the phases
and the models of Gaia. Trying to facilitate a larger
acceptance and adoption of such a tool we have
implemented it as a plug-in for the Eclipse
environment, widely used in software engineering
community (especially, in the object oriented arena).

Such strategic factors may facilitate a broader
introduction of the Gaia methodology in the industry
practice. The Gaia4E CASE was adopted in different
industrial projects; one of them was presented in the
previous section to illustrate the tool.

Due to the adherence to Gaia, Gaia4E suffer the
same limitations. Among them, it does not cover the
requirement elicitation phase and the
implementation. Moreover, Gaia4E adopts the same
notations of the original Gaia. Consequently,
relevant improvement to the design tool may be
derived from improvements in the Gaia process and
notations. In this sense, we are working to include
Gaia+AUML (Cernuzzi and Zambonelli 2004;
Cernuzzi et al. 2004) into Gaia4E. Additionally, we
are exploring methods and notations to be
harmonically included into the Gaia process to cover
the requirement elicitation phase. Finally, a really

attractive open issue which may strongly improve
the acceptance of Gaia4E is the capability of the
automatic generation of independent agents with
their respective software code.

ACKNOWLEDGEMENTS

This work was partially supported by the Italian
MUR in the frame of the PRIN project "MEnSA -
Agent oriented methodologies: engineering of
interactions and relationship with the
infrastructures".

REFERENCES

Cernuzzi, L., Zambonelli, F., 2004. Experiencing AUML
in the Gaia Methodology. In: Proceedings of 6th
International Conference on Enterprise Information
Systems - ICEIS 2004 (Vol. 3, pp. 283-288), Portugal.

Cernuzzi, L., Juan, T., Sterling, L., and Zambonelli, F.,
2004. The Gaia Methodology. (Chapter book) in
Methodologies and Software Engineering for Agent
Systems. The Agent-Oriented Software Engineering
handbook. F. Bergenti, M.-P. Gleizes and F.
Zambonelli Editors, (pp. 69-88), Kluwer Publishing.

Ciancarini, P., Wooldridge, M., 2001. Agent-Oriented
Software Engineering. Proceedings of the 1st
International Workshop on Agent-Oriented Software
Engineering, Springer Verlag, LNCS, Vol. 1957, 1-24.

ECLIPSE: available in http://www.eclipse.org/
Giorgini, P., Kolp, M., Mylopoulos, J., Castro, J., 2005.

Tropos: A Requirements-Driven Methodology for
Agent-Oriented Software. (Book Chapter) In: Agent-
Oriented Methodologies. Idea Group, 20-45.

Gómez, J., Pavón, J., 2003. Agent Oriented Software
Engineering with INGENIAS. Proceedings of the 3rd
Central and Eastern Europe Conference on
Multiagent Systems, Springer Verlag, LNCS 2691, pp.
394-403.

Zambonelli, F., Wooldridge, M., Jennings, N. R., 2003.
Developing Multiagent Systems: The Gaia
Methodology. ACM Transaction on Software
Engineering and Methodology, vol. 12, Nº 3, 417-470.

Zambonelli, F., Omicini, A., 2004. Challenges and
Research Directions in Agent-Oriented Software
Engineering. Journal of Autonomous Agents and
Multiagent Systems, vol. 9, Nº 3, Kluwer Academic
Publishers, 253-283

ICEIS 2009 - International Conference on Enterprise Information Systems

88

