
Basic Definitions and Operations for Gestalt Algebra 

Eckart Michaelsen and Jochen Meidow 

FGAN-FOM, Gutleuthausstrasse 1, 76275 Ettlingen, Germany 

Abstract. The gestalt algebra is a mathematical construction designed to cap-
ture the perceptual structure of complex patterns. Such patterns occur e.g. in 
aerial images of urban terrain. The principles of gestalt construction – namely 
proximity, good continuation, similarity and symmetry – are used in a recursive 
way to describe image or scene data using terms following an algebraic defini-
tion. Such description can be used for recognition, matching, or data mining.  

1 Introduction 

In particular in the automation of understanding remotely sensed data – such as aerial 
images of urban terrain – frequently unexpected structures occur. ‘Unexpected’ here 
means that such structures or even similar structures are not present in the training 
data set available for the automatic understanding algorithms. Conventional pattern 
recognition methods are doomed to fail in such situations with the closed world as-
sumption – whereas human experts (and even non-expert subjects) perform reasona-
ble in understanding such unexpected patterns.   

In this contribution we will not attempt to describe an implemented computer sys-
tem mimicking such human skills. Instead, we will try to outline a mathematical de-
scription language for pattern structure. This will follow the findings of perceptual 
psychology – namely the gestaltists’ view on human perception. Hence it is called 
gestalt algebra.  

Our hope is that – once this language has been precisely defined and its properties 
and possible meanings are understood – it may foster the development of algorithms 
and in the end automatic systems that can cope with these unexpected pattern struc-
tures and reach the human performance. 

2 Related Work 

This is interdisciplinary work. Our own work is in image understanding in particular 
of remotely sensed data. It is however inspired by work from perceptual psychology 
as well as from algebraic and syntactic approaches to pattern recognition. 
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Gestaltism. Gestaltist literature (e.g. [15] and [5]) often argues by drawing dot pat-
terns demonstrating the gestalt phenomena by use of the reader’s/observer’s own 
perceptive mechanisms. In order to include such psychological findings in machine 
vision attempts have been made to lay mathematical – i.e. statistical – foundations to 
them [6,1]. There are approaches that combine such gestalt elements with generative 
grammars into a theory of vision for machines, animals, and humans [2].  

Practical Attempts on Remote Sensing Data. The main interest in automatic under-
standing of previously unseen repetitive or symmetric gestalts comes from remote 
sensing – in particular from aerial image analysis of urban scenery. Very interesting 
early work on arrangements and hierarchies of arrangements of objects in aerial im-
ages has benn presented already in 1980 by Nagao and Matsuyama [12]. The 
SIGMA-system [8] was designed to instantiate explicitly modeled gestalts with pro-
duction rules. Examples were rows of houses along a road. Sophisticated control 
structures are proposed to cope with handling the inevitable large computational ef-
fort. 

Algebraic Methods in Pattern Recognition. Visual language theory as for instance 
presented in [7] uses generative syntactic structures (on images instead of strings). 
There is also a branch along this line that uses algebraic settings [13]. This is known 
as image algebra. Much of that work is related to the pixel grid structure of images, 
e.g. how convolution filters or morphological filters can be captured algebraically etc.  

There is an algebraic theory of pattern recognition algorithms given by Zhuravlev 
[16]. Derived from that the descriptive image algebra has been introduced along with 
descriptive image models [3,4]. There the search for regularities of arbitrary form and 
hierarchy is identified as one of the many objectives of image analysis inside the 
descriptive algebraic approach. Also symmetry groups and grid structures used in this 
contribution are particular allowable transforms in the image formation models used 
in descriptive image algebra theory. However, in our gestalt algebra such group trans-
forms are always understood locally with respect to a specific location (and direc-
tion). 

Own Previous Work. The idea of gestalt algebra has been introduced in [10]. How-
ever, this rather preliminary work lacks some of the precision required for such an 
endeavor. Particularly, the definitions there rested on just a metric space. According-
ly, the definitions of the primitive operations were too vague. Here we emphasize that 
the operations must be well-defined. The new gestalt resulting from an operation is 
given by error minimization calculation algorithms. So we have to show existence 
and uniqueness of this solution. In order to do so, we restrict ourselves here to loca-
tions in a vector space with directions, since this is a structure of the primitive domain 
of practical relevance. Examples are ‘edgels’ in 2D or surface patches in 3D. More 
general definitions may follow in future work. 

Most of our own previous work is about specifically designed productions systems 
describing particular structures. E.g. production systems utilizing specific gestalt 
groupings were proposed e.g. for complex 3D-scene understanding [14] and building 
recognition from high resolution SAR-images [10]. [11] treats the mitigation of the 
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computational load for such systems. An approximating and accumulating interpreter 
is given. The purpose of this contribution is a generalization of all such systems: The 
revealing of their common fundament in perceptual grouping. 

3 Definitions 

The gestalt algebra is introduced in four steps: In Section 3.1 the domain with its 
primitive elements is introduced. Then the symmetry groups are given in Section 3.2. 
They are working on the associated space – such that the objects can be mapped on 
each other. These mappings define a matching assessment for groups of objects. Thus 
the fundament is laid for the gestalt operations given in Section 3.3 and finally our 
new algebra in Section 3.4. 

3.1 The Primitive Domain and its Gestalts 

Let V be a vector space of finite dimension n over the field R. We also demand that 
there is a metric dV given on V, e.g. the Euclidean metric.  We identify the column 
vector v=(v1 ,…, vn)T with its homogenous notation v=(v1 ,…, vn,1)T.  

Furthermore, let P be the corresponding projective space, i.e. Rn+1\{0} with the 
usual equivalence x~λx for geometric entities and λ≠0. We also demand that there is 
a projective metric dP given on P, e.g. the Hilbert projective metric.  

We call the following subset D of the product space  

{ }= ∈ × ⋅ =( , ) ; 0D v p V P p v  (1) 
the primitive domain. On it we will build our algebraic structure. Examples are edge 
elements (edgels) with location and direction - which may be obtained by a gradient 
filter - or spatial positions with a local surface orientation. The constraint in (1) de-
mands that the locations v are located on the hyperplane p. 

In order to distinguish more than one type of object we introduce a finite set of 
primitive symbols Sp={σ1,…, σs}. A trivial metric dS can be defined on this finite set 
being zero for equal elements and one otherwise.  

Furthermore, each object has a quality assessment value 0≤α≤1 assigned to it. α=1 
refers to the quality of the best possible object1. α=0 refers to the quality of the worst 
possible object. I.e. these are the least salient objects, those that just trespass the thre-
shold used for segmentation. 

Such an object instance g={σj, d, α}  will be called a primitive gestalt henceforth 
where d ∈ D are the feature values of it. For such primitive gestalts a metric is intro-
duced by choosing suitable positive weights ß. 

( )σ α σ α β σ σ β β= + +1 1 1 1 2 2 2 2 1 2 1 2 1 2( ,( , ), ),( ,( , ), ) ( , ) ( , ) ( , )S S V V V Vd v p v p d d v v d p p  (2) 

                                                           
1 “best” may refer to the largest occurring value in the particular image or to the largest possible value given a 

synthetic optimal datum such as an ideal edge 
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3.2 Operations on Primitives - Proximity and Symmetry on the Domain  

Here the primitive gestalt operations are defined. We also give some important stan-
dard examples. Generalization to non-primitive operations will be given in Section 
3.3. 

Definition 1. Gestalt Operations on Primitive Gestalts. A symmetry group is group 
G of mappings f such that 

→:f V V  (3) 

is bijective and preserves the metric. G contains the identity as neutral element and an 
inverse f -1 for each element.  

Such mappings have a reference frame associated with them – i.e. a position γp∈V,  
an orientation γo∈P, and a scale factor γs∈R. Let d0,…,dk be a tupel of vectors in D 
with k<m. We further demand that the minimization problem 

γ
ε

=

= −∑ 2
0

1
min ( ( ))

k

i i
i

d f d  (4) 

is uniquely solvable. From such a solution we can obtain a new assessment using 
ς εα − ⋅< = ≤0 1e , (5) 

with a suitable domain-dependent parameter ζ. So we have defined an operation oG 
which constructs a new gestalt object from the k primitive gestalts in a unique way. 
We write  

1( ,..., )G ko d d  or also 1 2Gd o d  if k=2. (6) 

For each exemplary Gestalt operation we have to show separately that the operation is 
well-defined (existence and uniqueness of the solution) and list corresponding alge-
braic laws – such as existence of a neutral element, associativity, commutativity etc. 

Example 1. The gestalt principle ‘proximity’ is defined on a finite set of points X by 

∈

= ∑1
| | x X

c x
X

 and ςα − −

∈

= ∑
2( )1

| |
x c

x X
e

X
. (7) 

The new cluster gestalt object contains c as position attribute and α as assessment. 
It can also contain a direction from the eigenspace s corresponding to the larger ei-
genvalue of the covariance. Note here the scaling parameter ζ which is discussed in 
Section 4. We write  

{ }α == = ⊕ 1,( , ), k
new i ig t c s g   (8) 

where t is a simple tree consisting of the symbol ‘cluster’ at the root and the symbols 
σj at the leaves. The corresponding symmetry group is the trivial group containing 
only the identity. Averaging gives always a well-defined result in metric vector spac-
es. It is associative and commutative.   
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However, such proximity grouping can also be done in the projective space P in-
stead of the vector space V. Then it represents the gestalt principle good continuation. 
Averaging can then be defined using the metric on P. For this gestalt operation a new 
symbol is needed. We use ‘¦’. There may be a problem with well-definedness. For 
certain uniformly arranged configurations there will be no center in P. This can be 
fixed by introducing an arbitrary ‘worst possible’ gestalt with assessment value zero. 
‘¦’ is  commutative  and  it  will also turn out associative once the operation on non- 
primitives is given in Section 3.3. 

Example 2. Mirror symmetry on the 2D vector space over real numbers as indicated 
in Figure 1a). A mapping f of this space is defined by an axis2 in normal form 
a=(a1,a2,a3). We write line equations as row vectors and points as column vectors  
using homogeneous coordinates. For 2D points x=(x1,x2,1)T with the incidence rela-
tion a·x=0 we will have x’=f(x)=x. For all other points x’=f(x)≠x will hold. Fixing for 
them x3=1 and |a|=1 we determine x’ by the mirror constraint a·x’=  - a·x and the 
perpendicular constraint a·(x×x’) =0 on the axis and the join. These conditions are 
sufficient to calculate x’ given x and a (or a given x and x’). Furthermore we can 
obtain as location y=a×(x×x’) for the new symmetry gestalt object. These are analytic 
linear calculations that have a unique solution. We write 

{ }= =,( , ),1 | ´newg t y a g g   (9) 

where t is a simple tree consisting of the symbol ‘mirror’ at the root and the symbols 
σ and σ´ the leaves. 

However, if an object has not only a position x∈V but also a direction d∈P as indi-
cated in Fig. 1a) the corresponding direction will be d’=x’×(a×d). The simultaneous 
solution for location and direction will be over determined. Here there will be an error 
sum ε≥0 and this value will be used to assess the new mirror gestalt object, cf. equa-
tion (4).  

For simplicity, we have used the cross product here which restricts the definition to 
the 2D domain. However, generalization to nD is straight forward. The operation is 
well-defined and commutative, but it will turn out being not associative (once the 
operation on non-primitives is given in Section 3.3).   

Example 3. Rotational symmetry of order m on the 2D vector space over real num-
bers. A mapping f of this space is defined by the invariant center point c=f(c), i.e. the 
fix point. Here we will use Euclidean coordinates. For a 2D point x=(x1,x2)T a set of 
m points {x, x’, …,x(m-1)} is generated: 

β β
β β

⎛ ⎞
= + −⎜ ⎟−⎝ ⎠

( ) cos( ) sin( )
( )

sin( ) cos( )
i i i

x c x c
i i

where β=2π/m (10) 

This set represents the new gestalt object. It is attributed with the center c, the order 
m and the vector (x-c) which gives its size and phase. Given a sub-set X of the points 
{x, x’, …,x(m-1)} not all points must be present – the parameters c and r=|x-c| can be 

                                                           
2 we do not discuss a mirror at infinity here, i.e. a1=a2=0 
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obtained by minimizing the squared error sum. For this there is an analytic solution – 
so the operation is well defined. c and (x-c) are the attributes of the new gestalt ob-
ject. Figure 1b) shows an almost perfect example with m=5. We write  

{ }α == − = 1,( ,( )), k
new i ig t c x c g   (11) 

where t is a simple tree consisting of the symbol ‘rotation5’ at the root and the sym-
bols σj at the leaves. This operation will turn out non-associative as well. 

 
Fig. 1. Symmetries in the domain: a) mirror symmetry, b) rotational symmetry, c) lattice. 

Example 4. One dimensional lattice structure on the 2D vector space over real num-
bers is given by a translation vector v. Using ordinary Euclidean coordinates a point x 
is mapped to x’=x+v. This mapping generates an infinite simple group. Therefore 
such a gestalt object can never be completely present in a finite measurement datum – 
such as an aerial image. But given a sub-set X of the points {…,x, x’, …} the vector v 
can be estimated uniquely from minimizing the sum of squared errors, cf. Figure 1c). 
This again gives a well-defined operation and we will write  

{ }α •
• == = ( )

1,( , ), k i
new ig t c v g   (12) 

where t is a simple tree consisting of the symbol ‘lattice’ at the root and the symbols 
σj at the leaves. For this operation we have commutativity – because v is a projective 
entity where the sign does not matter. Associativity will also be given once we have 
defined the operation also on non-primitive gestalts in Section 3.3. 

3.3 Operations on Non-primitives Gestalts 

The idea now is that each of the gestalts presented in Fig. 1 is scaled down and then 
composes new non-primitive gestalts: E.g. a lattice of rotational groups that consist of 
mirror symmetric pairs of cluster objects. The algebraic formulation allows writing 
down arbitrary complex non-primitive gestalts as a term. The basic structure of such 
terms is a derivation tree.  

Definition 2: Gestalt Derivation Tree. A gestalt algebra derivation tree is a tree of 
gestalt objects that codes the algebraic decomposition of the gestalt at the root. At the 
leaves of such trees we have primitive gestalts and at each other node we have a non-
primitive, i.e. a gestalt operation and attributes (at least a location and often orienta-
tion and scale as well). We will call a sub-tree of a such a tree a root-sub-tree if it has  
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common root with the tree. 

Definition 3. Non-primitive Gestalt Algebra Operation. Given a tuple of gestalts 
(g1,…,gk) to which this operation is to be applied the first thing to do is accessing the 
corresponding trees (t1,…,tk). The diagram in Figure 2 shows that then two things can 
be done in parallel: 
1) Establish tmax which is the maximal tree for which tree homomorphism can be 
achieved to a root sub-tree of all ti. Tree homomorphism here means the structure of 
the tree must be equal and the operations at the non-terminal nodes as well. We refer 
to corresponding root-sup-trees as (t’1,…,t’k). There may be several homomorph pos-
sibilities for each.  

 

2) Chose the gestalt operation o i.e. the group G and the mappings as given in the 
examples 1-4 in Section 3.2. Recall that k≤m must hold, where m is the cardinality of 
G. Given this a correspondence τ is determined such that the error is minimal follow-
ing equation (2). Recall, this is a primitive step like in Section 3.2. 

 
Fig. 2. State diagram for gestalt algebra operation. 
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Once these two steps have been done among the homomorph possibilities for the 
(t’1,…,t’k) the optimal correspondence is searched. Given these correspondences the 
optimization (2) can be done in the same primitive manner – yielding a residual error 
and the position, direction etc. for the new more complex gestalt. 
 

 
Fig. 3. Example of a non-primitive gestalt: a) primitives with location and orientation, b) non-
primitive gestalt – lattice of rotational groups of mirror symmetries 

Figure 3 shows an example. It is a two element lattice whose location and orientation 
is indicated in Figure 3b) as white dot with crossing line indicating the orientation. Its 
two parts are indicated as light grey dots. These consist each of five mirror gestalts in 
darker grey. Each of them is given by the small primitives. We will write it as 

{ } ( )•
• = == = 2 5 ( ) ( )

1 1,( , ),1 ( | ')i i
example i j j jg t c v g g . (13) 
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Here all trees are completely present and homomorph. Moreover, the deviations from 
the set-positions are zero giving this gestalt (13) an assessment of one. In practice 
some of the parts will be missing, the given ones will be displaced by measurement 
errors or morphing, and there will be spurious clutter primitives (and non-primitives). 
So α=1 will be very rare.   

The closure of these operations given the set of primitives defined in Section 3.1 
will be called a gestalt algebra. An element of such algebra codes a set of primitive 
objects and a chain of operations on them that explain their arrangement in the do-
main. We emphasize that the Examples 1-4 are only standard examples for operations 
particularly suited for gestalt perception in 2D image space. In particular for spaces of 
higher dimension – such as spatial data, videos, or music – other group operations 
may also induce valuable gestalt operations. For each such particular group the alge-
braic properties of the corresponding gestalt algebra operation must be invested sepa-
rately – e.g. by giving a counter example against associativity or proving it. And the 
interaction with the other gestalt algebra operations must be revealed (i.e. searching 
for distributivity).  

4 Conclusions, Discussion and Outlook 

An algebraic structure has been defined that can capture complex perceptive gestalt 
structure of patterns in mathematical terms. Associativity, distributivity, and commu-
tativity for the operations are certainly still open issues in this field. Non-primitive 
gestalt objects may be decomposed in a different sequence of operations – as is evi-
dent from the example in Fig. 2. The tree homomorphism required for matching in 
Section 3.3 has to include such equivalences. In future work we will attempt giving a 
clear definition of these associativity, distributivity, and commutativity laws which 
gestalt algebra inherits from the group structure inside the operation definitions.  

It will be advisory to derive the assessment functions and scale parameters ζ (see 
Equation (5)) inside the gestalt operations from probability models for foreground 
objects and clutter density estimations or defaults. Such modeling can be done either 
by estimating the parameters using the probabilities directly or giving bounds for 
them by using expectation values following [1]. For the time being this remains an 
open research topic. From Figure 3 it is obvious that each step in a gestalt algebra 
term is associated with certain `change in scale´. We also leave that issue to future 
work. 

Also a major issue will be the computational complexity. Using gestalt algebra top 
down to generate gestalts is probably not really a big computational load – however 
using it bottom up to mine given sensor data for structure will cause considerable 
effort. Recall that the structure of these definitions is of quite combinatorial nature 
and we assume that such search will be NP-hard. There are, however, ideas for miti-
gating these troubles by trading soundness for feasibility [9, 11]. 
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