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Abstract: This paper presents a method based on level sets to segment the liver using Computer Tomography (CT) 
images. Initially, the liver boundary is manually set in one slice as an initial solution, and then the method 
automatically segments the liver in all other slices, sequentially. In each step of iteration it fits a Gaussian 
curve to the liver histogram to model the speed image in which the level sets propagates. The parameters of 
our method were estimated using Genetic Algorithms (GA) and a database of reference segmentations. The 
method was tested using 20 different exams and five different measures of performance, and the results 
obtained confirm the potential of the method. The cases in which the method presented a poor performance 
are also discussed in order to instigate further research. 

1 INTRODUCTION 

In medical imaging analysis, image-guided surgery 
and organs visualization, segmentation is a crucial 
step. This step is particularly arduous in abdominal 
CT images because different organs lie within 
overlaping intensity value ranges and are often near 
to each other anatomically.  

Numerous techniques have been proposed in the 
literature for extraction of organs contours in 
abdominal CT scans. They can be roughly divided in 
two main groups: model driven and data driven 
approaches. 

Model driven techniques (e.g. Lamecker et al., 
2004) use pre-defined models to segment the desired 
object from the available images. This kind of 
technique basically searches the images for instances 
that fit a given model described in terms of object 
characteristics such as position, texture and spatial 
relation to other objects. 

Data driven techniques (e.g. Fujimoto et al., 
2001) try to emulate the human capacity to identify 
objects using some similarity information present on 
image data, automatically detecting and classifying 
objects and features in images. Many of them use 
known techniques such as region growing and 

thresholding, combined with some prior knowledge 
about the object being analised. 

This paper proposes a model driven method 
based on level sets to segment the liver with an 
evolutionary approach to select its paremeters. Using 
an initial user-defined liver segment in one slice, the 
method segments the liver through all other slices. It 
uses a Gaussian fit to define the speed image where 
the level sets propagates. The initial solution at each 
slice is defined as the region previously segmented 
on an adjacent slice. Experiments using five exams 
as training set and other 15 exams for validation 
indicate the outcome of our method.  

The subsequent text is organised in the following 
way. Section 2 presents theorectical fundamentals of 
level sets and genetic algorithms. Section 3 presents 
the proposed segmentation method in details, section 
4 presents the parameters estimation experiments, 
section 5 reports some results, and the main 
conclusions are presented in section 6. 

154
A. B. Oliveira D., Q. Feitosa R. and M. Correia M. (2009).
LIVER SEGMENTATION USING LEVEL SETS AND GENETIC ALGORITHMS.
In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications, pages 154-159
DOI: 10.5220/0001787401540159
Copyright c© SciTePress



 

2 THEORETICAL 
FUNDAMENTALS 

In this section we introduce theoretical fundamentals 
related to the level sets method and present then an 
overall description of genetic algorithms.  

2.1 Level Sets 

Level set methods were developed by Sethian and 
Osher (Osher and Sethian, 1998) and firstly 
introduced in medical imaging by Malladi et al. 
(Malladi et al, 1995).  

Level set is a continuous deformable model 
method with implicit representation. Its main idea is 
to embed the deformable model in a d+1 
dimensional space, to segment iteratively an object 
in a d dimensional space, using partial differential 
equations. The main advantage of level sets is that it 
allows changes of surface topology implicitly. As it 
embeds the evolving surface, also called interface, in 
a higher dimensional function, this interface can 
split into several connected components or merge 
from different connected components naturally, and 
the embedding level sets function remains 
continuous. 

Considering ψ(x,t) the level sets function, x the 
position vector and t the time step of the level set 
evolution, the evolving surface is represented as the 
zero level set of ψ(x,t)=0. The segmentation result is 
achieved when the RMS difference between ψ(x,t)=0 
and ψ(x,t-1)=0 is less than a pre-defined minimum 
RMS value.  

The level sets function is normally a smooth well 
behaved function, in our work the signed distance 
function. This function calculates, for each voxel, 
the distance to the closest voxel in the interface. This 
distance is negative inside the interface, and positive 
outside. 

Given an initial surface S0 and consequently 
ψ(x,t=0), the level set function is evolved under the 
control of the differential equation 1, as proposed in 
ITK library (Yoo et al, 2002), that defines the 
displacement of the interface in a time step.  
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The gradient (or its module) of ψ(x,t) appears in 

each term of the equation. As we defined ψ(x,t)  as a 
signed distance function, the gradient of ψ(x,t) points 
from inside to outside considering the interface 
ψ(x,t)=0, and |ψ| = 1, by definition. 

A, P and Z, are usually calculated from the input 
image. A is the advection term. This term is a vector 
field responsible for attracting the evolving surface 
to determinate features, usually related to boundaries 
of objects, and pre-defined barriers. It is weighted by 
the constant advection weight α, and multiplied by 
the gradient of ψ(x,t). 

P is the propagation term. This term is a 
propagation image, also called speed image, where 
the level sets propagates. This image normally has 
high values in regions where the interface can 
expand quickly, and values close to zero in regions 
where it should move slowly or stop, normally close 
to important features. It is weighted by the constant 
propagation weight β and multiplied by the module 
of the gradient of ψ(x,t). 

К is the mean curvature of the interface, and is 
defined as the divergence of the normal to the 
interface, usually being calculated using first and 
second derivatives of the interface, based on finite 
differences. In this way, К > 0 for convex regions, 
and К < 0 for concave regions. Z is a spatial 
modifier for the mean curvature К, and modifies the 
value of К in a determinate spatial position. In this 
work it was defined as P, in such a way that the 
curvature has less importance when close to 
important features. It is weighted by the constant 
mean curvature weight γ and multiplied by the 
module of the gradient of ψ(x,t).  

A segmentation algorithm based on level sets 
may use all these terms, or it may omit one or more 
terms. 

Many of the parameters mentioned until now 
must be properly adjusted for the level sets method 
to produce accurate result. The determination of 
appropriate parameter values can usually not be 
done by heuristics mainly due to the complexity of 
the target application. Multiple local minima 
frequently found in such problems make it difficult 
to use non-linear optimization methods   for 
parameter adjustment. 

A well known alternative to estimate 
segmentation parameters of complex functions, 
usually hard to model analytically or with many 
local minima, are Genetic Algorithms.  

2.2 Genetic Algorithms 

Genetic Algorithms are a computational search 
technique to find approximate solutions to 
optimization problems. They are based in the 
biological evolution of species as presented by 
Charles Darwin. The main principle of the Darwin’s 
Theory of Evolution is that individual characteristics 
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are transmitted from parents to children over 
generations, and individuals more adapted to the 
environment have greater chances to survive and 
pass on particular characteristics to their offspring. 

In evolutionary computing terms an individual 
represents a potential solution for a given problem, 
and its relevant characteristics with respect to the 
problem are called genes. 

A population is a set of individuals in a particular 
generation, and individuals in a population are 
graded as to their capacity to solve the problem. 
That capacity is determined by a fitness function, 
which indicates numerically how good an individual 
is as a solution to the problem (Michalewicz, 1994). 

GAs propose an evolutionary process to search 
for solutions that maximize or minimize a fitness 
function. This search is performed iteratively over 
generations of individuals. For each generation the 
less fitted individuals are discarded and new 
individuals are generated by the reproduction of the 
fittest. The creation of the new individuals is done 
by the use of genetic operators. 

A genetic operator represents a rule for the 
generation of new individuals. The classical genetic 
operators are crossover and mutation. Mutation 
changes gene values in a random fashion, respecting 
the genes’ search spaces. Mutation is important to 
introduce a random component in the search of a 
solution in order to avoid convergence to local 
minima. 

Crossover operators act by mixing genes 
between two individuals to create new ones that 
inherit characteristics of the original individuals. The 
general idea is that an individual’s fitness is a 
function of its characteristics, and the exchange of 
good genes may produce better fitted individuals 
depending on the genes inherited from their parents. 
Although less fitted individuals can also be 
generated by this process, they will have a lower 
chance of being selected for reproduction.  

Other genetic operators can be found in the 
literature (Michalewicz, 1994). Most of them are 
variants of crossover and mutation, adapted for 
specific types of problems. 

3 SEGMENTATION METHOD 

The proposed method relies on two heuristics: the 
liver parenchyma is roughly homogeneous, and liver 
veins are mainly inside the liver, as well as liver 
nodules. The impact of these heuristics on cases 
where peripheral nodules and veins are present is 
discussed in details in section 6. 

The first step is to define, at a slice N, an initial 
solution that is expected to contain great part of the 
liver. This solution does not need to be accurate, as 
it will be later deformed too. Then, an iterative 
process takes place, both upwards and downwards, 
processing sequentially the whole stack of slices. In 
this process the initial solution of a slice to be 
processed is defined as the result previously 
computed at the adjacent slice.  

The same segmentation algorithm is applied in 
each iteration step. It receives as input data, the 
image slice and the result obtained in the adjacent 
slice. This initial solution is then deformed towards 
the liver boundaries using an approach based on 
level sets. 

As seen in section 2.1, one needs to define the 
propagation, advection and mean curvature terms, to 
create the level set function. However, in this work 
the advection term was not used, because the 
boundaries of the liver cannot be robustly detected 
as the liver usually share similar pixel intensity 
values with some of its anatomical neighbouring 
structures.  

The speed image of the propagation term is 
defined by a model based on two automatically 
defined thresholds TL and TH (TL<TH) and the 
input image g(x). This model is expressed by 
equation 2: 
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One can notice that P(x) assumes positive values 

when the pixel intensity relies inside the range 
[TL,TH] and negative values when it is outside the 
range. In this way, the surface expands where pixel 
values are inside the range, and shrinks otherwise. 

The computation of TL and TH is based on the 
assumption that the histogram of voxels inside the 
liver is usually Gaussian like shaped.  

Initially the histogram of the region inside the 
initial solution is calculated. Then a Gaussian curve 
is fitted to the histogram, using a non-linear 
minimization estimator, and two thresholds TL and 
TH are computed as the values where the Gaussian 
achieves two pre-defined values GL and GH. This 
range [TL,TH] of grey level values is expected to be 
characteristic of liver parenchyma.  

The spatial modifier Z(x) of the mean curvature 
К is set as P(x). So Z(x) = P(x).  

At this point the level sets process takes place, 
deforming the given initial solution towards the liver 
boundaries using all the terms just defined, until the 
convergence criteria is achieved (minimum RMS).  
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This level sets approach segments the liver 
parenchyma, but nodules and veins, which normally 
appear respectively as darker and brighter regions, 
are not segmented. This problem is partially 
eliminated by the use of a ‘fill-holes’ morphologic 
algorithm, that merges veins and nodules that are 
totally inside the liver. When a nodule or vein is at 
the periphery, though, they usually do not appear in 
the final result. 

The process ends when it achieves the first and 
last slices, or when an initial segment is vanished by 
the level sets algorithm in a given slice.  

In this section it was possible to observe that the 
method needs five different parameters to run, which 
were tuned using an evolutionary approach:  

1. Minimum RMS: the convergence criteria of 
level sets function, defined in terms of the 
root mean squared (RMS) change in the 
level set function. 

2. GL: Gaussian low factor  
3. GH: Gaussian high factor 
4. β: level set propagation weight 
5. γ: level set mean curvature weight 

4 PARAMETERS ADAPTATION 

4.1 Processing Scheme 

In the devised GA each individual consists of a set 
of segmentation parameter values; each parameter is 
represented by a gene. The fitness of each solution 
(individual) is calculated by comparing the 
segmentation produced by the solution with the 
reference segmentation, using five different 
measures of performance (Heimann et al, 2007), as 
described in section 4.3.  

As described in section 3, the segmentation 
method has a set of five parameters to be optimized: 
Minimum RMS, GL, GH, β and γ.  

Each parameter value (genes) of the initial set of 
solutions (initial population) is generated randomly, 
in given ranges. As the evolutionary process 
advances, the best solutions (fittest individuals) are 
selected and new solutions (generations) are created 
from them (reproduction).  

The selection of individuals for reproduction 
takes the fitness values into consideration, so that the 
fittest individuals have a larger probability of being 
selected. Furthermore, the best individuals from one 
generation are kept in the next generation. The 
evolutionary process stops after a fixed number of 
generations, and the gene values of the fittest 

individual are taken as the final (adapted) 
segmentation parameter values. 

4.2 Reproduction Procedure 

As stated before, the initial population is created by 
setting random values for the genes of each 
individual. After fitness evaluation a new population 
is created by replacing the Q worst individuals of the 
prior population, being Q a positive integer value 
smaller than the population size. 

The new individuals are created by genetic 
operations over selected individuals of the prior 
population. The selection of individuals is done by a 
roulette mechanism, which takes into consideration 
normalized fitness values (Davis, 1990). 

The following genetic operators were used 
(Davis, 1990; Michalewicz, 1994). One point 
crossover: two individuals exchange genes; 
arithmetic crossover: a linear combination of a set of 
genes of two individuals is per-formed; mutation: 
the value of a gene is substituted by a random value. 

The selection of the reproduction operation is 
also done by a roulette mechanism, considering a 
predefined probability value for each operator. To 
help preventing convergence to local minima, the 
operators’ application probabilities are interpolated 
during the evolution process (Davis, 1990), 
decreasing crossover probability while increasing 
mutation probabilities. 

In each generation the best individuals can be 
saved to the preceding generation, according to a 
Steady State rate. This rate specifies the amount of 
individuals that will be saved to the next generation. 

It is also possible to make more than one 
experiment in sequel, and the best individuals of one 
experiment are saved to the next experiment, 
guiding the following experiment to good solutions. 

In this work, the GA was configured as the 
following: number of generations = 30; population 
size = 30; initial crossover rate = 0.8; final crossover 
rate = 0.65; initial mutation rate = 0.1; final 
crossover rate = 0.8; initial steady state rate = 0.8; 
final steady state rate = 0.2; number of sequenced 
experiments = 2; rate of seed from the first 
experiment to the second = 0.1. 

4.3 Fitness Evaluation 

The fitness of an individual should indicate how 
good the segmentation result in relation to the 
reference segmentation is. In mathematical terms, 
given a set of reference segments M and a parameter 
vector N a fitness function F(M,N) that properly 
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expresses the goodness of a segmentation outcome 
must be defined.  

Once the fitness function F is chosen, the task of 
the GA consists in searching for the parameter 
vector Wopt, for which the value of F is minimum: 
 

( )[ ]( )NMF ,minargW Popt =  (3) 
 

The fitness function devised in this work is 
defined as the mean of five score measures that 
evaluate the differences between two different 
surfaces: the one obtained by the segmentation 
method using the parameters of the evaluated 
individual and a given reference.  

These score measures were defined taking into 
account the variability of the results obtained 
manually with different specialists. In this way, it 
considers that a high-scored method is as precise as 
a human specialist.  

To implement this idea, values of the mean error 
usually obtained in human manual segmentation 
were estimated for each of the five metrics defined. 
In this way the score is high when the differences 
(errors) between the result and the reference are 
similar to the ones usually obtained by the 
specialists, and low if the differences are bigger than 
that.  

The reference and the evaluation metrics are 
provided by SLiver07 conference (Heimann et al, 
2007), and the evaluation metrics used are: 

1. Volumetric overlap (VOE): is the number 
of voxels in the intersection of 
segmentation and reference, divided by the 
number of voxels in the union of 
segmentation and reference.  

2. Relative absolute volume difference, in 
percent (RVD): 1 minus the total volume of 
the segmentation divided by the total 
volume of the reference 

3. Average symmetric absolute surface 
distance, in millimetres (ASD): the border 
voxels of segmentation and reference are 
determined and for each voxel in these sets, 
the closest voxel in the other set is 
determined (using Euclidean distance). All 
these distances are stored, for border voxels 
from both reference and segmentation. The 
average of all these distances gives the 
averages symmetric absolute surface 
distance. 

4. Symmetric RMS surface distance, in 
millimetres (RMSSD):  is similar to the 
previous measure, but stores the squared 
distances between the two sets of border 

voxels. After averaging the squared values, 
the root is extracted and gives the 
symmetric RMS surface distance.  

5. Maximum symmetric absolute surface 
distance, in millimetres (MSD): is similar 
to the previous two, but only the maximum 
of all voxel distances is taken instead of the 
average.  

5 EXPERIMENTAL 
EVALUATION 

In order to evaluate the performance of the proposed 
method a software prototype was developed in 
C++/C#. The prototype includes the library that 
implements the GA, and the ITK library which 
implements the level sets framework used in the 
segmentation method.  

To estimate the optimal set of parameters, the 
prototype allows the user to define the search ranges 
of each parameter. In our experiment a set of five 
exams was used for training, i.e., for estimation of 
segmentation parameter values, using the 
evolutionary approach. Then, using the optimal 
segmentation parameters found, the other 15 exams 
available on the dataset were evaluated. 

Table 1: Liver segmentation results. 

Evaluation Best Worst Mean 
VOE  

(Score) 
5.45 

(78.70)  
12.07 

(52.82) 
7.35 

(71.29) 
RVD 

(Score) 
-0.63 

(96.63) 
8.12 

(56.80) 
-2.19 

(82.27) 
ASD 

(Score) 
0.76 

(80.85) 
3.57 

(10.70) 
1.35 

(66.25) 
RMSSD 
(Score) 

1.69 
(76.46) 

8.22 
(0) 

3.05 
(58.58) 

MSD 
(Score) 

17.03 
(77.59) 

55.09 
(27.21) 

26.81 
(64.72) 

Overall Score 82.05 29.57 68.62 
 
Table 1 illustrates the results obtained in the 

evaluation phase. We compiled our results, depicting 
the best, worst, and mean results for all test set. The 
overall score was computed as the simple mean of 
the five different metric scores. 

 

   
Figure 1: Best result obtained (left) axial view; (center) 
coronal view; (right) sagittal view. 

(a)
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The method attained a good performance in 17 of 
the 20 exams, in which the overall score is above 65. 
Figure 1 shows the result obtained in the best case, 
with overall score of 82.05. It is possible to observe 
that the liver boundaries are accurately defined. 

In 3 exams, though, the results contain some 
significant errors that can be verified visually. The 
exam with the lowest score among all exams tested 
has an overall score of 29.57. In this exam the liver 
has a huge nodule, and it causes a leak of the 
segmented region towards adjacent darker 
structures. Considering the size of the nodule, the 
result is reasonable, though. 

On another exam with low score (46.18) it is 
possible to observe a single major error, caused by a 
peripheral nodule not classified as liver. This is 
explained by the heuristic adopted, that considers a 
single Gaussian curve to model liver tissue. Once the 
nodule in this exam appears much darker than the 
liver parenchyma, its voxel intensities lie outside the 
range [TL,TH] defined by the Gaussian fit. As the 
nodule is peripheral, it wasn’t possible to correct this 
error with morphological fill holes, and therefore the 
nodule region was not included in the final result.  

Our results can be easily compared with many 
other approaches, since the data and evaluation 
metrics were obtained from the website of the liver 
segmentation competition held in the Sliver07 
conference, and the results of other approaches are 
also available there. Thus, this comparison with 
other works is straightforward once one visits the 
conference’s website. If compared with other 
automatic and semi-automatic methods, our method 
has a good performance being ranked among the top 
5 score. 

6 CONCLUSIONS 

We have presented a method to segment the liver 
based on a level sets approach, using an evolutionary 
method to estimate its optimal parameters. These 
parameters were coded into genes of the individuals 
of a GA, and the fitness evaluation was defined to 
measure the similarity between a user defined 
reference and the segmentation result.  

Trough all the experiments it was possible to 
verify the potential of the presented methodology. 
The use of level sets, which is a consolidate 
alternative to segment medical images, achieved 
good performances in the tested exams, and the use 
of GA to estimate its optimal parameters produced 
robust parameters.  

The method has, though, some limitations. It 
presented some low performances in the presence of 
peripheral nodules and veins, and also when nodules 
with volume similar to the liver parenchyma were 
observed. These cases were presented in details in 
section 5. 

It is important to notice that the method can be 
applied to segment other organs beside the liver, 
especially considering the ones roughly 
homogeneous. In this case the GA would estimate 
other parameters based on the input reference of the 
organ to be segmented. 

Some suggestions for further research would be a 
better modelling to build the speed image 
considering also the information of liver internal 
structures, such as vessels and nodules. Another 
possibility would be use the advection term to 
suppress or reinforce some specific barriers, which 
could be used to avoid leaking and also enable the 
inclusion of peripheral nodules and veins in the final 
result. 
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